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Abstract
Palladium nanoparticles (Pd NPs) supported on a cerium-based metal–organic framework Ce-MOF-801 (Pd/Ce-MOF-801) 
was prepared using an incipient wetness impregnation strategy. Multiple analytical techniques were used to investigate the 
physicochemical properties of Pd/Ce-MOF-801. Afterwards, its catalytic efficiency in the Suzuki-Miyaura cross-coupling 
reaction between different haloarenes and phenylboronic acid was assessed. The developed Pd/Ce-MOF-801 displayed a 
high catalytic performance at 318 K and in the presence of K2CO3 as well as aqueous ethanol (as a solvent), much superior 
to Pd/Ce-BTC as well as the analogs reported in the literature by comprehensively comparing the catalytic activity and the 
relationship between reaction temperature and catalyst dosage. Moreover, the catalyst exhibited negligible Pd species leaching 
and was capable of being recycled in eight successive runs without any decay in reactivity. Such protocol has the advantages 
of ambient reaction conditions and tolerance to various substrates with various functional groups.
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1  Introduction

Biaryl and its derivatives are widely used to produce poly-
mers, pharmaceutical intermediates, bioactive compounds, 
and functional materials because of their unique and 

irreplaceable features [1–3]. Synthesis of these compounds 
via the carbon–carbon bond formation approach, such as 
the Suzuki-Miyaura coupling reaction catalyzed by Pd cata-
lysts, is the central approach in modern synthetic chemistry 
[4–6]. Homogeneous catalysts, such as palladium com-
plexes with nitrogen and phosphine-containing ligands, 
usually exhibited high catalytic activity and selectivity in 
this kind of transformation mainly due to the high intrinsic 
reactivity of Pd [7]. However, the expensive nature of pal-
ladium complexes along with issues regarding separation 
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and recyclability make it difficult to use these homogenous 
catalysts in practical applications.

To surmount these challenges and make the process fit the 
standards of green chemistry, researchers immobilized the 
palladium precursors on a range of porous materials, such as 
carbon [8–12], graphene [13–15], silica [16], zeolites [17], 
modified inorganic oxide [18], mesoporous materials [19, 
20], and multi-walled carbon nanotube [21, 22], expecting 
to achieve stable, supported nanoparticles (Pd NPs) catalysts 
for the effective C–C bond forming reaction. Significantly, 
the particle size and dispersion of Pd NPs catalysts strongly 
influence their catalytic reactivity. The resilience of the 
recoverable and reusable materials against the leaching and 
agglomeration of the active sites is directly related to both 
of these properties at the same time [8, 9, 16]. Typically, a 
supporting substrate with a large specific surface area will 
yield supported Pd NPs catalysts. However, the resultant 
solid catalysts often displayed lower catalytic efficiency 
than the corresponding homogeneous analogs [20]. Even 
worse, the problems of leaching and aggregation of Pd NPs 
frequently occurred for some of these catalysts when used 
in liquid-phase media [21, 22]. Therefore, there is an urgent 
demand for highly active and stable supported Pd catalysts 
for the Suzuki-Miyaura coupling process.

Cerium oxide (CeO2) is frequently utilized in heterogene-
ous catalysis [23], for example, in the oxidation of volatile 
organic compounds, partial hydrogenation, water–gas shift 
reaction, by virtue of their advantages of reversible Ce3+/
Ce4+ redox pairs, tailorable oxygen vacancies, and surface 
acid–base properties [24–26]. Moreover, recent studies 
have manifested that reducible CeO2-supported Pd NPs 
presented a high catalytic activity in the Suzuki-Miyaura 
cross-coupling [26]. However, the deficiencies of CeO2, 
such as low specific surface area and little availability of 
coordinate sites on the external surface, usually result in 
low loading and dispersion of metal NPs. Metal–organic 
frameworks (MOFs) have received considerable attention in 
heterogeneous catalysis owing to their large specific surface 
area, porous structure, and homogeneously distributed metal 
nodes [27–30]. MOFs are suitable for immobilizing metal 
NPs and other guest molecules with uniformly cage-like 
structures. Thus, various metal NPs@MOF composites were 
designed and tested in catalysis for several organic trans-
formations, including coupling reactions [31–33], selective 
hydrogenation [34, 35], multi-component reactions [36], etc.

Ce-MOF-801, a cerium-based MOF with the molecu-
lar formula Ce6O4(OH)4(fumarate)6, is highly appropriate 
for immobilizing Pd NPs because of its large specific sur-
face area abundant cage-like structure, as well as its high 
stability in a polar solvent (such as water) [37]. Moreover, 
approximately 10% of Ce3+ defect sites exist within this 
MOF’s skeleton this means that at least one Ce3+ atom is 
present in about 50% of Ce6 nodes [38]. These advantages 

of Ce-MOF-801 may provide unique contributions to diverse 
catalytic redox processes, such as Suzuki-Miyaura cross-
coupling. Therefore, this paper described a facile frame-
work for making Pd/Ce-MOF-801 catalyst. Moreover, under 
benign circumstances, we effectively established its high 
catalytic activity and reusability in the Suzuki-Miyaura reac-
tion. To our delight, the designed Pd/Ce-MOF-801 performs 
superior to that published in the literature.

2 � Experimental

2.1 � Catalyst Preparation

2.1.1 � Synthesis of Ce‑MOF‑801

The Ce-MOF-801 nanocrystals were synthesized by a one-
step room-temperature self-assembling approach [39]. 
A typical procedure began with the addition of 822 mg 
(1.5 mmol) of (NH4)2Ce (NO3)6 to a glass flask. Next, 2 mL 
of formic acid and 8 mL of distilled water were poured 
into the flask, and then the mixture was violently stirred 
for a period of 5 min. Thereafter, the solution received 
175 mg (1.5 mmol) of fumaric acid by dropwise addition. 
Within 12 h, the solution became very hazy, pointing to Ce-
MOF-801 formation. The solid product was obtained by 
centrifugation, washed three times with water and ethanol, 
and dried under vacuum for 12 h at 343 K.

2.1.2 � Preparation of 1 wt% Pd/Ce‑MOF‑801

A typical incipient wetness impregnation approach was used 
to prepare a nominal 1 wt% Pd/Ce-MOF-801 sample [40]. 
Specifically, a calculated amount of Ce-MOF-801 (0.1 g) 
was mixed with an aqueous solution of H2PdCl4 (32.3 mg/
mL, 31 µL) to obtain the impregnated sample. The wet sam-
ple was aged at 298 K for 24 h, followed by 12 h of vacuum 
oven drying at 373 K. To obtain the supported catalyst, the 
resulting solid was reduced with 20 mol% H2 at 523 K for 
4 h.

2.2 � Suzuki‑Miyaura Cross‑Coupling Reaction

In a typical reaction, a solvent (4 mL) was combined with 
catalyst (4 mg, 0.1 mol% Pd), bromobenzene (0.32 mmol), 
phenylboronic acid (0.38 mmol), and base (0.38 mmol) in a 
Schlenk flask (10 mL in capacity), respectively (Scheme 1). 
Flask was hermetically sealed and heated to 318 K for the 
specified time. The reaction mixture was quantitatively ana-
lyzed by gas chromatography (Shimadzu, GC-2014) with 
InertCap five capillary column. The products were also con-
firmed by NMR spectroscopy. For the reusability evaluation, 
the spent Pd/Ce-MOF-801 catalyst was centrifuged, rinsed 
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with ethyl acetate and water, heated at 393 K for 12 h, and 
reused without reduction.

3 � Results and Discussion

3.1 � Catalyst Characterization

The XRD patterns of the synthesized Ce-MOF-801 and Pd/
Ce-MOF-801 are compared in Fig. 1. The simulated Zr-
MOF-801 and the synthesized Ce-MOF-801 were nearly 
identical in terms of their line shape [39], without any dif-
fraction peak associated with ceria appearing, implying that 
the as-prepared Ce-MOF-801 was a pure-phase MOF. For 
the Pd/Ce-MOF-801 catalyst, the skeleton network of Ce-
MOF-801 was able to be well remained after the introduc-
tion of Pd precursor and further reduction treatment. How-
ever, due to the greater radii of Ce4+ (0.97 Å) compared to 
Zr4+ (0.84 Å), these reflections were also marginally pushed 
to lower 2θ values in Ce-MOF-801 and Pd/Ce-MOF-801. 

Additionally, similar to the pure Ce-MOF-801, Pd/Ce-
MOF-801 did not exhibit any extra metal Pd-related Bragg 
peaks, which is likely due to the low Pd contents in the 
MOF. However, the intensities of the peaks were margin-
ally reduced.

The N2 adsorption/desorption isotherms of Ce-MOF-801 
and Pd/Ce-MOF-801 are shown in Fig. 2. Both samples 
showed a sharp increase in adsorption at low relative pres-
sures of P/P0 < 0.05. Following the IUPAC nomenclature, 
the two samples displayed typical I-type isotherms, indi-
cating the appearance of microporous structure in their 
frameworks [39]. Based on the nitrogen adsorption curves, 
the Brunauer–Emmett–Teller (BET) specific surface area 
and pore volume of Pd/Ce-MOF-801 were calculated to be 
397.1 m2/g and 0.25 cm3/g, respectively. Both of these val-
ues were lower than those of pure Ce-MOF-801 (494.5 m2/g 
and 0.31 cm3/g, respectively), indicating that Pd NPs were 
successfully immobilized within the MOF framework. The 
Fourier transform infrared (FTIR) spectra of Ce-MOF-801 
and Pd/Ce-MOF-801 are shown in Fig. S1. Briefly, the 

Scheme 1   A schematic illustration of the synthesis of Pd/Ce-MOF-801

Fig. 1   The powder XRD patterns of various samples
Fig. 2   The N2 adsorption/desorption isotherms of Ce-MOF-801 and 
Pd/Ce-MOF-801
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asymmetric (1550 cm−1) and symmetric (1390 cm−1) strong 
stretching vibrations of the carboxylate groups were pre-
sent in the Pd/Ce-MOF-801 crystals [39]. Furthermore, 
the peak at 990 cm−1 was related to the stretching vibration 
peak of C=C, and 667 cm−1 was the symmetric vibration 
stretching peak of the Ce–O bond in the structure of Pd/
Ce-MOF-801. These peaks were in close agreement with 
those of Ce-MOF-801 at similar positions. The TGA curve 
of Pd/Ce-MOF-801 revealed good thermal stability up to 
573 K (Fig. S2).

The morphology was investigated by SEM analysis. Fig-
ure 3a showed the morphology of Ce-MOF-801, exhibit-
ing a typical irregular shape and polyhedral structure. After 
immobilizing Pd NPs, there was no essential change in the 
morphology and porous structure for the prepared Pd/Ce-
MOF-801 compared with Ce-MOF-801, but the color of the 
samples changed from faint yellow to grey. In the Pd/Ce-
MOF-801 solid, the Pd NPs were highly dispersed (black 
dots) over the Ce-MOF-801 support without any significant 
aggregation (Fig. 3c). The Pd NPs with a mean size of 9 nm 
were estimated by calculating more than 200 randomly 
selected particles (Fig.  3d). The support Ce-MOF-801 
showed gray color with lighter contrast due to their compo-
sitions of light elements (low Z value). The loading of metal 
Pd on Ce-MOF-801 was determined by inductively coupled 
plasma atomic emission spectroscopy (ICP-AES), and the 
results showed that the content of Pd was 1 wt%.

To determine the chemical oxidation state of Pd and Ce in 
Pd/Ce-MOF-801, X-ray photoelectron spectroscopy (XPS) 
measurements were performed. The high-resolution XPS 
spectra of Ce 3d acquired from Pd/Ce-MOF-801 are pre-
sented in Fig. 4a. The binding energy located at 904.0 eV, 

885.6 eV, and 880.6 eV were belong to Ce3+ and the typical 
characteristic peaks at 906.6 eV, 900.6 eV, 888.0 eV, and 
882.2 eV were assigned to Ce4+ [41]. The results indicated 
that the Ce3+/Ce4+ couple co-existed in the Pd/Ce-MOF-801. 
The presence of Ce3+ suggests the loss of oxygen in Ce-
MOF-801, which is related to the oxygen vacancies [42]. 
Moreover, the XPS of the fresh Pd/Ce-MOF-801 exhibited 
two strong binding energy peaks at 335.2 and 340.4 eV for 
the 3d 5/2 and 3d 3/2 core levels, respectively, indicating 
that the metallic palladium species in the catalyst (Fig. 4b) 
[43]. Additionally, a slight amount of the oxidized Pd spe-
cies appeared in the sample, which may be due to the expo-
sure of Pd/Ce-MOF-801 to air. High-resolution XPS spectra 
of O 1 s showed three distinct peaks, which correspond to 
lattice oxygen, surface active oxygen, and adsorbed oxygen, 
as shown in Fig. 4c [44]. In the Pd/Ce-MOF-801, the sig-
nificant amount of oxygen vacancies is shown by the find-
ing that the lattice oxygen content is low while the amount 
of surface-active oxygen is high [45]. We also verified the 
existence of oxygen vacancy by EPR spectroscopy (Fig. 4d). 
The result showed that Pd/Ce-MOF-801 had large oxygen 
vacancies and was likely beneficial for enhancing the cata-
lytic behavior.

3.2 � Catalytic Properties

Using the cross-coupling of bromobenzene and phe-
nylboronic acid as a probe reaction, we started investi-
gating the catalytic performance of Pd/Ce-MOF-801 in 
the Suzuki-Miyaura reaction after finishing the catalyst 
characterizations. When using 0.1 mol% (4 mg) palladium 
to bromobenzene, Pd/Ce-MOF-801 gave a biphenyl yield 

Fig. 3   SEM images of a 
Ce-MOF-801 and b Pd/Ce-
MOF-801; TEM image c and d 
the corresponding particle size 
distribution pattern of Pd/Ce-
MOF-801
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of 94.5% after reacting at 318 K for a short time of 0.5 h 
(entry 6, Table 1). Notably, the target product biaryl was 
obtained with a 100% selectivity. However, only a lim-
ited product was generated over the parent MOF supports 
(entry 1), implying that the active Pd site was intrinsically 
indispensable for this kind of coupling reaction. Moreo-
ver, a control catalyst, Pd/Ce-BTC, was also prepared and 
evaluated (Figs. S3–S7 in SI), e.g., Pd NPs supported on 
Ce-BTC, achieved only a 16.6% yield (entry 3), likely 
owing to its low specific surface and pore volume.

The influence of other bases on the probe reaction was 
investigated, including K2CO3, NaHCO3, Et3N, NaOH, 
Cs2CO3, and Na2CO3. Comparing K2CO3 to different 
organic and inorganic bases, as indicated in Table 1, it 
was observed that K2CO3 is a suitable base to supply the 
desired product with the best yield and relatively quick 
reaction time (entry 6, Table 1). Moreover, the amount 
of K2CO3 usage was also optimized, and the optimal dos-
age was 0.38 mmol. Additionally, a considerable solvent 
effect was seen after more solvent screening. Notable, in 
the presence of Pd/Ce-MOF-801, aqueous EtOH (v/v, 
1:1) gave the maximum yield in the shortest time (0.5 h). 
While in other solvents such as H2O, aqueous acetonitrile, 
and DMF, lower results were observed (entries 14–22, 
Table 1). Based on the intended product yield, 50% EtOH 
was ultimately the best-suited solvent for the probe reac-
tion. From Table S1, it was noticed that the transforma-
tion did not outcome satisfactory yields at different tem-
peratures like 313 K (entry 3, Table S2), and the optimum 
result was obtained at 318 K.

To ascertain the reaction's kinetic characteristics, bro-
mobenzene and phenylboronic acid were coupled over Pd/
Ce-MOF-801. This was done at various temperatures. It was 
anticipated that the coupling rate wouldn’t depend on the 
amount of phenylboronic acid present (fivefold to bromoben-
zene) [46]. As can be seen in Fig. 5a, the pseudo-first-order 
kinetics provided a good match for the couplings at the three 
different temperatures, and rate constants (k) could be cal-
culated as the inverse of the slope of the curve. The activa-
tion energy (Ea) for the Suzuki-Miyaura coupling system 
over Pd/Ce-MOF-801 was then calculated to be 74.8 kJ/mol 
(Fig. 5b), which is quite similar to that mediated by other 
Pd-based catalysts reported in the literature [46].

Subsequently, we studied the effect of the removal of Pd/
Ce-MOF-801 on the cross-coupling of bromobenzene and 
phenylboronic acid (the hot filtration test). The supported 
Pd-based catalyst was isolated from the liquid mixture upon 
reacting for 10 min, and the coupling reaction was allowed 
to continue for an additional 20 min. During this period, no 
further increase in the product yield was measured upon 
catalyst removal (Fig. 5c). The amount of Pd leaching in the 
reaction medium was analyzed by ICP-AES analysis, which 
confirmed that only a negligible amount of Pd was leached 
during the coupling reaction. However, due to the complex-
ity of the cross-coupling reaction, further in-depth experi-
ment work is still needed to demonstrate whether its mecha-
nistic nature is homogeneous or heterogeneous catalysis.

Furthermore, the Pd/Ce-MOF-801 could be easily and 
successfully separated from the reaction mixture after cou-
pling. It could then be rinsed appropriately with aqueous 

Fig. 4   The high-resolution XPS 
results of the Ce 3d spectra (a), 
Pd 3d spectra (b), O 1 s spectra 
(c) of Pd/Ce-MOF-801; EPR 
spectrum of Pd/Ce-MOF-801 
(d)
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EtOH before being put through the next run without addi-
tional reduction treatment. The Pd/Ce-MOF-801 nanocom-
posite displayed stable catalytic behavior up to eight suc-
cessive cycles without any decay in reactivity (Fig. 5d). We 
further analyzed the crystal structure, porous property, and 
Pd dispersion of the used Pd/Ce-MOF-801 catalyst after 
recycling 8 times using XRD, N2 adsorption isotherm, and 

TEM (Figs. S8–S10). The results showed that the spent cata-
lyst retains its initial crystal structure without any change in 
the Pd NPs size, which in turn validates the robustness of 
the Ce-MOF-801-stabilized Pd NPs catalyst.

Based on the literature and our experimental results, the 
cross-coupling reaction mechanism is tentatively deduced 
[26, 47, 48]. Ce3+ cations and the O vacancy were formed 
during the synthesis process of Ce-MOF-801. In the ini-
tial stage of the Suzuki-Miyaura coupling, the active 
OHδ− groups were likely in situ created via the adsorption 
and dissociation of H2O on the O-vacancy sites. Subse-
quently, the electrons transfer to the Pd NPs was significantly 
promoted on account of the electron-donating effect between 
the Ce3+ cations and OHδ− (as the electron pair donors), 
which positively impacted the oxidative addition of aryl hal-
ide. This step was regarded as the rate-determining step in 
the C–C coupling reactions to form the critical intermediate 
ArPdIIX, and it subsequently promoted the catalytic activity 
of Pd for the C–C coupling reactions.

Additionally, Pd/Ce-MOF-801 was used to couple a 
variety of haloarenes with phenylboronic acid in the most 
favorable reaction circumstances to research the substrate 
range and functional group tolerance (Table 2). The cata-
lytic systems described here were capable of withstanding 
a variety of functional groups under the conditions of the 
current reaction (entries 1–12, Table 2). Excitingly, Pd/Ce-
MOF-801 efficiently boosted the Suzuki-Miyaura coupling 
of these aryl halides with phenylboronic acid to the desired 
biphenyl compounds with excellent efficiency. Aryl halides 
substrates with electron-withdrawing, and electron-donating 
substituents, including methyl, formyl, methoxyl, nitro, and 
ester groups, yielded the corresponding products selectively 
and efficiently. Overall, these results suggest a broad range 
of substrates and functional groups were well tolerated by 
our Pd/Ce-MOF-801 catalyst. Moreover, all NMR spectra 
were in agreement with those described in the literature 
[49–51], supporting the effective synthesis of the targeted 
compounds.

In order to demonstrate the superiority of the catalytic 
system we developed, a thorough comparison with other 
widely used methods for coupling bromobenzene and phe-
nylboronic acid has been conducted. The Pd/Ce-MOF-801 
nanocomposite revealed a superior activity by comprehen-
sively comparing reaction conditions and the product yield 
(Table S3).

Table 1   Optimization of the reaction conditions of the Suzuki-
Miyaura cross-coupling

Reaction conditions: A mixture of 0.32  mmol of bromobenzene, 
0.38  mmol of phenylboronic acid, 4  mg (0.1  mol%) of Pd/Ce-
MOF-801, and 4 mL of solvent (Ethanol/H2O = 1:1) at 318 K
a Ce-MOF-801 (4 mg)
b Ce-BTC (4 mg)
c Pd/Ce-BTC (0.1 mol%)
d DMF/H2O = 1:1
e Acetone/H2O = 1:1
f Acetonitrile/H2O = 1:1

Entry Base Alkali 
dosage 
(mmol)

Solvent Time (h) Yield (%)

1a K2CO3 0.38 Ethanol/H2O 4 3.1
2b K2CO3 0.38 Ethanol/H2O 4 6.6
3c K2CO3 0.38 Ethanol/H2O 0.5 16.6
4 NaHCO3 0.38 Ethanol/H2O 2 44.2
5 Na2CO3 0.38 Ethanol/H2O 0.5 90.1
6 K2CO3 0.38 Ethanol/H2O 0.5 94.5
7 Cs2CO3 0.38 Ethanol/H2O 0.5 85.2
8 NaOH 0.38 Ethanol/H2O 2 66.5
9 Et3N 0.38 Ethanol/H2O 2 25.0
10 K2CO3 0.16 Ethanol/H2O 0.5 54.5
11 K2CO3 0.32 Ethanol/H2O 0.5 87.6
12 K2CO3 0.64 Ethanol/H2O 0.5 84.7
13 K2CO3 0.96 Ethanol/H2O 0.5 85.2
14 K2CO3 0.38 Ethanol 2 5.8
15 K2CO3 0.38 DMF/H2Od 0.5 30.6
16 K2CO3 0.38 DMF 2 18.6
17 K2CO3 0.38 Acetone/H2Oe 0.5 91.2
18 K2CO3 0.38 Acetone 2 3.3
19 K2CO3 0.38 Acetonitrile/

H2Of
2 6.0

20 K2CO3 0.38 Acetonitrile 2 1.8
21 K2CO3 0.38 Toluene 2 2.9
22 K2CO3 0.38 H2O 2 16.5
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4 � Conclusions

Ce-based MOF Ce-MOF-801 nanocrystals were synthe-
sized by a facile one-step room-temperature synthesis 
method, then Pd NPs loaded on Ce-MOF-801 solids was 
successfully prepared by an incipient wetness impregna-
tion technique. The synthesized Pd/Ce-MOF-801 cata-
lyst acted as a highly effective heterogeneous catalyst 
for Suzuki-Miyaura cross-coupling reactions under mild 
reaction conditions, with markedly improved activity 
compared to Pd/Ce-BTC as well as analogs described in 

the literature. The excellent catalytic performance of the 
developed Pd/Ce-MOF-801 is likely related to the large 
specific surface area, highly dispersed Pd NPs, and an 
appropriate number of Ce3+ defect sites within the cata-
lyst. Advantages of our strategy include efficient hetero-
geneous catalysis at relatively mild conditions, less usage 
of rare palladium metal, a shorter reaction time, and easy 
catalyst recycling and reuse, as compared to traditional 
homogeneous approaches. However, inexpensive and 
large-scale synthesis of Ce-MOF-801 is still one of the 
prerequisites for its practical application.

Fig. 5   a, b Kinetic studies of the Suzuki-Miyaura cross-coupling 
of bromobenzene and phenylboronic acid over Pd/Ce-MOF-801; 
c Effect of the removal of Pd/Ce-MOF-801 during the reaction; d 
Recycling results. Reaction conditions 0.32 mmol of bromobenzene, 

0.38 mmol of phenylboronic acid, and 0.38 mmol of K2CO3 in 4 ml 
of Ethanol/H2O (v/v, 1:1) mixed solvents by using 4  mg of Pd/Ce-
MOF-801 (0.1 mol% Pd), 318 K, 0.5 h
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nylboronic acid, and 0.38  mmol of K2CO3 in 4  ml of Ethanol/
H2O (v/v, 1:1) mixed solvents by using 4  mg of Pd/Ce-MOF-801 
(0.1 mol% Pd), 318 K, 0.5 h. b353 K, 2 h
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