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Abstract
The present study aims to produce a mycelium-bound lipase of the fungus Rhizopus oryzae CCT3759 by submerged fer-
mentation in order to be applied as biocatalyst in the hydrolysis of different vegetable oils. Optimal cultivation conditions 
have been achieved in a medium containing olive oil as inducer for 72 h of fermentation, thus obtaining 30.5 g/L of dry 
biomass concentration and hydrolytic activity of 389.1 U/g, which corresponds to a total lipase activity around of 12,000 
U/L. Maximum hydrolytic activity was observed at pH 6.0 and 40 °C. Kinetic parameters concerning apparent Michaelis–
Menten constant  (Km = 50.5 mM) and maximum reaction rate  (Vmax = 815.4 µmol/g min) have been determined in olive oil 
emulsion hydrolysis. Thermal stability tests revealed that the enzyme retained 75% of its initial activity after 4 h at 50 °C, 
whose thermal inactivation constant  (Kd) and half-life  (t1/2) was 0.073  h−1 and 9.4 h, respectively. The effect of biocatalyst 
concentration, expressed as activity units—U (200 and 400 U), on the hydrolysis of vegetable oils was investigated under 
fixed conditions: oil/buffer mass ratio of 25% (m/m), 100 mM buffer sodium phosphate pH 6.0, 40 °C and the mechani-
cal stirring frequency of 600 rpm. As expected, increasing the initial activity from 200 to 400 U leads to higher values of 
initial reaction rates and hydrolysis percentage. However, initial reaction rate values were similar for six different vegetable 
oils due to the high accessibility of the lipase to the substrate under such experimental conditions. A complete hydrolysis 
of olive, cottonseed, sunflower and canola oils has been achieved after 26–30 h of reaction using 400 U of activity. These 
results suggest a promising application of the produced biocatalyst in the production of free fatty acids, an important class 
of compounds for oleochemical industries.
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1 Introduction

The worldwide consumption of vegetable oils has been 
increasing yearly and their production has reached 200 
million metric tons in 2020/2021 globally, and Brazil is an 
important oilseed producer in the world. These data refer to 
the production of main vegetable oils, such as coconut oil, 
cottonseed, palm, palm kernel, peanut, rapeseed, soybean 
and sunflower [1].

Despite the fact that the food industry is the main sec-
tor of consumption of vegetable oils, they have also been 
used as feedstocks for obtaining FFA and glycerol, which are 
important precursors for the pharmaceutical, cosmetic and 
oleochemical industries to produce biodiesel [2–5], biosur-
factants [6–8], flavors esters [9, 10], biolubricants [11–15], 
and structured lipids [16–18].

A well-known commercial process for obtaining FFA is 
the Colgate-Emery Process, which is carried out at high tem-
peratures (250 °C) and pressures (50 bar). In these abrupt 
operating conditions, undesirable reactions of oxidation, 

dehydration and interesterification of oils and fats require 
steps of separation and purification of the final products 
[19–21].

In order to overcome problems involved in the thermo-
chemical process, an enzymatic hydrolysis of vegetable oils 
has been yielding satisfactory results. The use of lipases 
as biocatalysts has several advantages over thermochemi-
cal methods, as they can act under moderate conditions of 
temperatures and pressure, thus reducing energy costs and 
facilitating recovery and purification of the final product [19, 
22, 23]. These enzymes have been widely used for producing 
FFA from refined vegetable oils/animal fats or waste oils 
with high FFA content in their compositions as feedstocks 
[3, 19, 22, 23].

Lipases (triacylglycerol acylhydrolases EC 3.1.1.3) 
are enzymes that act in the hydrolysis of ester-carboxylic 
bonds present in oils and fats, which result in releasing 
FFA and glycerol. However, they can act in esterification, 
interesterification and transesterification reactions in non-
aqueous media. In addition, they have important features 
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such as chemo-, regio-, enantioselectivity and high ver-
satility towards a variety of substrates—natural and non-
natural esters [24–27]. Such very attractive properties 
indicate that lipases can be applied in different industrial 
segments, such as detergents, textiles, cosmetics, pharma-
ceuticals [28, 29].

Lipases can be obtained from animal, vegetable or 
microbial origins, however those obtained from microbial 
origins are the most commonly used by industries due to 
their favorable characteristics to the industrial sector [30, 
31]. Among their attractive characteristics to the industrial 
sector, the following can be highlighted: high activity and 
stability over a wide range of temperature and pH values, 
and in organic solvents. In addition, they have higher pro-
duction yield, possibility of genetic manipulation and rapid 
cell growth in low-cost media [32, 33].

Lipases produced by microorganisms can be either extra-
cellular or intracellular [30, 33, 34]. Among intracellular 
lipases, there are those bound to the mycelium, which are 
defined as lipases that are associated with fungal biomass, 
thus being naturally immobilized. Although being myce-
lium-bound, lipases are still active, therefore they can be 
used as biocatalysts so as to partially eliminate costly steps, 
such as purification, recovery and immobilization by differ-
ent protocols [35–37].

The fungus Rhizopus oryzae has already been reported 
as good lipase producer. It is a filamentous fungus of the 
genus Rhizopus which is capable of producing different 
metabolites such as enzymes (cellulases, lipases, proteases, 
tannases), organic acids (lactic and fumaric acid), aromatic 
compounds and dyes, in addition to having the advantage of 
being categorized as a GRAS fungus (Generally Recognized 
as Safe), thus it is safe for applications in the food industry 
[38, 39].

Rhizopus oryzae strains contain two types of lipase, a 
34 kDa lipase bound to the cell wall and a 31 kDa lipase 
bound to the membrane and cell wall [40]. Most of its lipases 
require a pH value ranging between 6.0 and 8.5 and their 
ideal temperature ranges between 30 and 45 °C to express 
the high hydrolytic activity. These enzymes are most active 
for esters containing fatty acids with 8 to 18 carbon atoms 
[41].

There are still few studies in literature on the application 
of mycelium-bound lipase of the fungus Rhizopus oryzae in 
the hydrolysis of vegetable oils for producing FFA of great 
relevance to the oleochemical industry, which makes it a 
promising niche for the development of new research [42]. 
Therefore, the present work aims to investigate the potential 
of a strain of Rhizopus oryzae CCT3759 as a producer of 
mycelium-bound lipase, its biochemical and kinetic char-
acterization and application in the hydrolysis of different 
commercial oils in order to obtain FFA.

2  Materials and Methods

2.1  Microorganism

The used strain was that of the fungus Rhizopus oryzae 
CCT3759 obtained from the André Tosello Tropical Research 
and Technology Foundation (Campinas, SP, Brazil). In order 
to obtain and maintain culture spores, fungal cells had been 
previously inoculated on Sabouraud agar medium under asep-
tic conditions. The culture was incubated at 30 °C and 72 h, 
or until they reached the highest sporulation status. Cells were 
washed with 10 mL sterile distilled water to obtain spore sus-
pension under aseptic conditions.

2.2  Materials

Olive oil (Carbonell™); cottonseed oil and canola oil (Vital-
liv™); corn oil (Sinhá™); sunflower oil and soybean oil 
(Liza™) were purchased at a local market (Alfenas, MG, 
Brazil). Sabouraud agar medium and soybean peptone were 
acquired from HiMedia Laboratories (Mumbai, MH, India). 
Gum Arabic, monobasic potassium phosphate, monobasic 
sodium phosphate, bibasic sodium phosphate were acquired 
from Dinâmica Química (Indaiatuba, SP, Brazil); and magne-
sium sulfate heptahydrate, sodium hydroxide, sodium nitrate, 
ethanol solution (70% v/v) from Vetec Química (São Paulo, 
SP, Brazil). All other reagents and organic solvents of analyti-
cal grade were purchased from Vetec Química.

2.3  Culture Medium and Experimental Conditions

The culture medium consisted of 30 g/L of vegetable oil (cot-
tonseed, olive oil, canola, sunflower, corn or soybean oils), 
70 g/L of soybean peptone, 1 g/L of  NaNO3, 1 g/L of  KH2PO4 
and 0.5 g/L of  MgSO4.7H2O, and all of which have been pre-
viously autoclaved (121 °C and 15 min). Cultivations were 
performed in 250 mL-Erlenmeyer flasks containing 100 mL 
of autoclaved medium and inoculated with a suspension of 
1 ×  106 spores at 30 °C and orbital shaking at 180 rpm. Spore 
concentration was determined by counting cells in a Neubauer 
chamber using an  Olympus® binocular microscope (Olympus 
Corporation, Tokyo, Japan). At the end of the culture process, 
the produced biomass was separated from the medium by vac-
uum filtration, washed with water and acetone and quantified 
for hydrolytic activity and humidity by drying the wet biomass 
(0.25 g) in a microwave oven (180 W per 5 min) [43]. Subse-
quently, the fungal biomass were stored at 4 °C prior to use.



4 W. S. M. Reis et al.

1 3

2.4  Determination of Submerged Culture 
Conditions Of Rhizopus oryzae CCT3759 
for Mycelium‑Bound Lipase Production

In each culture cycle, the mycelium-bound lipase produc-
tion was evaluated in terms of dry biomass concentration 
(g/L) and hydrolytic activity (U/g) by the method of olive 
oil emulsion hydrolysis described by Marotti et al. [37], and 
total lipase activity (U/L) that was defined as the units of 
hydrolytic activity produced per liter of cultivation [44]. 
To determine better experimental conditions for producing 
whole-cells with high catalytic activity, six vegetable oils 
with different fatty acid compositions such as olive, cotton-
seed, canola, sunflower, corn or soybean oils (Table 1) have 
been evaluated. In this study, the influence of the submerged 
cultivation time was also evaluated for each studied carbon 
source at every 24, 48, 72 and 96 h of submerged cultiva-
tion. Enzymatic activity (U) is defined as the amount of dry 
biomass or culture broth required for the release of 1 μmol 
of FFA per minute under experimental conditions (0.1 g of 
biomass or 1 mL of culture broth at 37 °C and 100 mM 
buffer sodium phosphate pH 7.0).

2.5  Characterization of Biochemical and Kinetic 
Properties of Mycelium‑Bound Lipase

Biochemical and kinetic properties of lipase bound to the 
mycelium were characterized by olive oil emulsion hydroly-
sis. The effect of temperature was evaluated in the range of 
25–60 °C using a 100 mM buffer sodium phosphate at pH 
6.5, while the pH effect was investigated in the range of 
4–5.5 (100 mM buffer sodium citrate) and from 6.0 to 8.0 
(100 mM buffer sodium phosphate) at 40 °C. The influence 
of substrate concentration (olive oil) was investigated in the 
range of 5 and 40% m/m (corresponding to 186 to 1488 mM 
of FFA) under optimal conditions (100 mM buffer sodium 
phosphate pH 6.0 and 40 °C). Apparent Michaelis–Menten 
kinetic constants  (Km) and maximum reaction rate  (Vmax) 

were determined according to a non-linear model using the 
software Origin Pro version 5.0. Thermal stability tests were 
performed by incubating the biomass in a 100 mM buffer 
sodium phosphate pH 6.0 and a thermostatic bath at 50 °C 
by 4 h. Samples were removed periodically to determine 
residual hydrolytic activity. The thermal denaturation con-
stant  (Kd) and half-life time  (t1/2) were respectively deter-
mined as follows (Eqs. 1 and 2):

where ln A is the residual activity after the heat treatment 
during a incubation period and ln A0 is the initial enzyme 
activity.

2.6  Hydrolysis Reactions of Vegetable Oils 
in Stirred‑Tank Reactors

In 250 mL glass jacketed reactors, 100 mL of the sub-
strate composed by the emulsion of 25 g of vegetable oil 
in 100 mM buffer sodium phosphate pH 6.0, using Gum 
Arabic as an emulsifier (3% m/v) were prepared. The tests 
were carried out at 40 °C and the ratio of enzyme units was 
set at 200 and 400 U (which corresponds to an average mass 
of approximately 0.9 and 1.8 g of dry biomass, respectively) 
and 600 rpm of mechanical stirring, which was performed 
by using an overhead motor stirrer with a steel helical impel-
ler. A 50:50 (v/v) mixture of acetone and ethanol was added 
to the aliquots (0.5 g) that have been removed periodically, 
and FFA concentration was quantified by titration with a 
20 mM sodium hydroxide solution (NaOH) using phenol-
phthalein as indicator. Hydrolysis percentage (%) was cal-
culated by Eq. (3) [46].

(1)lnA = lnAo − Kd.t

(2)t1
2
=

0, 693

Kd

Table 1  Fatty acids composition 
and average molecular mass of 
FFA and vegetable oils used in 
this study [45]

Fatty acid Composition (% m/m)

Cottonseed Olive Canola Sunflower Corn Soybean

C16:0—Palmitic 25.2 11.3 4.5 6.3 11.9 11.5
C18:0—Stearic 1.8 2.8 2.0 3.9 2.1 4.1
C18:1—Oleic 16.5 74.5 60.4 20.9 27.2 23.5
C18:2—Linoleic 54.8 9.8 21.2 67.6 57.7 53.3
C18:3—Linolenic 0.2 0.5 9.4 0.2 0.6 6.8
Average molecular 

mass of FFA (g/mol)
274.7 279.3 280.5 279.5 278.2 276.0

Average molecular 
mass of vegetable 
oils (g/mol)

865.1 878.9 882.5 879.5 875.6 869.1
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where: Va is the volume of NaOH (mL) solution required in 
the sample; Vb is the volume of NaOH solution required in 
the control (mL); CNaOH is the molar concentration of NaOH 
(20 mM); M is the average molecular mass of FFA in the 
vegetable oil (Table 1); m is the sample mass (0.5 g); f is the 
oil fraction (0.25).

Initial reaction rates have been analyzed by the formation 
of FFA (mM) in the first 12 h of reaction. The results were 
plotted using the software Origin Pro version 5.0 to obtain 
a linear equation for initial hydrolysis reaction rates of each 
vegetable oil. The calculation of FFA concentration is per-
formed as described in Eq. (4).

where: Va is the volume of NaOH in the sample (mL); Vb 
is the volume of NaOH in the control (mL); CNaOH is the 
molar concentration of NaOH (20 mM); m is the sample 
mass (0.5 g).

3  Results and Discussion

3.1  Selection of Culture Conditions 
for the Mycelium‑Bound Lipase Produced 
from Rhizopus oryzae CCT3759

The growth and regulation of metabolic activities of micro-
organisms are directly influenced by physical–chemical con-
ditions of the culture medium and the characteristics of each 
microorganism, for example, different oils can be applied 
as inducers in lipase production [47]. The first stage of this 
study consisted in investigating the best culture conditions 
for obtaining a mycelium-bound lipase with high catalytic 

(3)Hydrolysis(%) =

(

Va − Vb

)

.CNaOH .10
−3
.M

m.f

(4)FFA(mmol∕L) =
Va − Vb.CNaOH.10

3

m

activity. For such purpose, six vegetable oils with different 
fatty acid compositions (Table 1) have been studied as induc-
ers for producing a mycelium-bound lipase from Rhizopus 
oryzae CCT3759. These vegetable oils were selected due 
to their different fatty acid compositions that can be easily 
obtained in our country (Brazil).

Table 2 shows the average values of dry biomass concen-
tration and the hydrolytic activity of the biomass produced. 
According to the results, all oils showed greater lipase reten-
tion onto the mycelium of fungal biomass, since the lipase 
produced was mostly retained onto the fungus mycelium 
due to lower values of hydrolytic activity in the fermentation 
broth (< 30.0 U/mL, see Table 3).

The results obtained in cultures with olive oil and can-
ola oil showed the best results regarding biomass concen-
tration (based on dry biomass), reaching 35.0 ± 2.0 and 
17.2 ± 0.6 g/L, respectively. In fact, the results obtained by 
using olive oil as inducer showed higher values than other 
vegetable oils in all studied cultivation times (24, 48, 72 
and 96 h), with its lowest biomass concentration being 
24.5 ± 4.0 g/L, that is higher than maximum values obtained 
for the other evaluated vegetable oils (see Table 2). Olive 
and canola oils also reached the highest values of hydrolytic 
activity, 389.1 ± 16.2 and 364.5 ± 13.2 U/g, respectively, 

Table 2  Influence of cultivation time of Rhizopus oryzae CCT3759 on biomass concentration (g/L) and hydrolytic activity of the mycelium-
bound lipase (U/g of micellium)

Vegetable oil 24 h 48 h 72 h 96 h

Hydrolytic 
activity (U/g)

Biomass 
concentration 
(g/L)

Hydrolytic 
activity (U/g)

Biomass 
concentration 
(g/L)

Hydrolytic 
activity (U/g)

Biomass 
concentration 
(g/L)

Hydrolytic 
activity (U/g)

Biomass 
concentration 
(g/L)

Cottonseed 450.0 ± 20.6 3.2 ± 1.0 764.3 ± 36.0 5.6 ± 0.3 715.0 ± 57.8 7.9 ± 1.2 209.8 ± 11.0 13.1 ± 4.5
Olive 291.9 ± 9.5 24.5 ± 4.0 275.2 ± 30.6 30.9 ± 1.9 389.1 ± 16.2 30.5 ± 2.1 322.9 ± 18.0 35.0 ± 2.0
Canola 267.8 ± 4.9 1.6 ± 0.1 336.8 ± 13.4 5.8 ± 1.0 364.5 ± 13.2 17.2 ± 0.6 245.9 ± 16.7 13.2 ± 3.0
Sunflower 252.1 ± 15.1 3.0 ± 0.6 388.2 ± 30.7 6.7 ± 0.6 263.7 ± 12.1 10.1 ± 0.9 181.4 ± 20.1 10.3 ± 0.4
Corn 335.0 ± 13.0 3.1 ± 0.9 285.7 ± 56.0 4.3 ± 0.6 233.2 ± 20.2 5.7 ± 0.6 189.5 ± 20.6 7.8 ± 0.2
Soybean 385.4 ± 35.0 4.5 ± 3.8 251.4 ± 36.1 3.1 ± 0.2 287.8 ± 37.1 6.1 ± 0.1 195.8 ± 7.4 7.0 ± 0.7

Table 3  Influence of cultivation time of Rhizopus oryzae CCT3759 
on hydrolytic activity in the fermentation broth (U/mL)

Vegetable oil Hydrolytic activity (U/mL)

24 h 48 h 72 h 96 h

Cottonseed 25.0 ± 0.5 20.1 ± 1.0 21.0 ± 0.9 19.8 ± 0.7
Olive 23.9 ± 0.4 27.4 ± 0.6 23.3 ± 0.4 25.4 ± 0.3
Canola 24.5 ± 0.8 28.0 ± 3.1 28.7 ± 1.3 24.9 ± 0.3
Sunflower 26.2 ± 1.2 25.7 ± 1.1 26.2 ± 1.8 19.3 ± 3.7
Corn 23.2 ± 1.6 25.8 ± 1.4 23.1 ± 1.7 20.6 ± 1.4
Soybean 22.8 ± 4.1 28.2 ± 1.2 23.3 ± 0.6 19.6 ± 0.9
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but lower than the results provided by cottonseed oil 
(764.3 ± 36.0 U/g) after 72 h of cultivation.

Both vegetable oils (olive and canola oils) showed results 
that suggest greater activity retention onto the mycelium 
after reaching maximum activity after 72  h of cultiva-
tion. After this period, an activity reduction of 17.0% was 
observed for olive oil (from 389.1 to 322.9 U/g) and 32.5% 
for canola oil (from 364.5 to 245.9 U/g) for 96 h of cultiva-
tion. A drastic activity reduction of 72.5% was also obtained 
for the lipase produced using cottonseed oil (764.3 U/g in 
72 h to 209.8 U/g at the end of 96 h of cultivation). These 
results may be due to the need for a new carbon source 
after substrate consumption (oils/fats and/or by-products), 
in which there was a consumption of primary metabolite 
(enzyme) to maintain cell growth.

In this study, total enzyme activity for the selection of 
vegetable oil as a carbon source was also evaluated, as 
shown in Fig. 1. According to these results, a maximum 
total enzyme activity around of 12,000 U/L was achieved 
after 72 h of fermentation using olive oil as inducer.

According to Table 2 and Fig. 1, the difference in enzy-
matic activities and total lipase activity presented by lipase 
produced over cultivation time can be explained by the dif-
ferent composition of fatty acids present in all oils. Studies 
suggest that Rhizopus oryzae cells using vegetable oils with 
higher concentration of oleic and linoleic acids in their com-
position efficiently obtained a fungal biomass with high cata-
lytic activity [48, 49]. The same behavior was observed in 
this study, once olive oil has the highest percentage of oleic 
acid (74.5% m/m), which provides whole-cell lipases with 
greater activities [37, 47]. In this sense, while olive oil and 

canola oil are rich in oleic acid, over 60%, the other studied 
oils present percentages below 28% (Table 1), thus explain-
ing the low yields of hydrolytic activity obtained using the 
other vegetable oils.

Similar results have been achieved in other studies involv-
ing the production of whole-cells from Rhizopus oryzae 
with high hydrolytic activity [44, 50–52]. Hama et al. [48] 
demonstrated that, with the use of oleic acid or olive oil as 
inducer to produce Rhizopus oryzae lipases, it was found 
a strong inhibition of lipase secretion and a high amount 
of lipase located in the cell wall and membrane. Andrade 
et al. [53] and Lima et al. [54] evaluated the effect of differ-
ent vegetable oils on cell growth and the catalytic activity 
of Mucor circinelloides, moreover, it was observed that the 
highest values of hydrolytic activity and cell growth have 
been achieved in both studies by using olive oil as carbon 
source due to a high concentration of oleic acid in its compo-
sition. Marotti et al. [37], under the same cultivation condi-
tions selected in this study, carried out a selection of species 
of fungi belonging to the genus Penicillium that produce a 
mycelium-bound lipase and the highest values of hydrolytic 
activity and biomass concentration have also been obtained 
from different strains using olive oil as carbon source.

Based on these results, further tests were conducted using 
30 g/L of olive oil and a submerged cultivation time of 72 h.

3.2  Biochemical Characterization 
of Mycelium‑Bound Lipase

Biochemical and kinetic characteristics of the produced 
mycelium-bound lipase are presented in Fig. 2. The effect 
of temperature on the mycelium-bound lipase activity 
was in the range of 25 °C to 60 °C and pH 6.5 (Fig. 2a) 
which showed that, in these experimental conditions, the 
produced lipase has greater catalytic activity at 40 °C with 
hydrolytic activity of 738.1 ± 11.8 U/g (relative activity of 
100%). Lipase has been proved capable of acting in a wide 
temperature range (25–60 °C) with relative activity above 
80%. Temperatures above 40 °C resulted in a progressive 
reduction of hydrolytic activity due to the enzyme thermal 
inactivation. Similar results have been observed in previous 
studies [55, 56].

Sebsequently, the effect of pH on the hydrolytic activity 
of the mycelium-bound lipase was also evaluated at 40 °C 
(Fig. 2b). Under experimental conditions, it is observed 
that the produced lipase showed higher values of catalytic 
activity at pH 6.0 (maximum activity of 869.5 U/g ± 8.8 
U/g) and a slight increase in pH promoted a slight decay 
of enzyme, maintaining 72% of its maximum activity at pH 
6.5 (631.4 ± 8.2 U/g). Similar results have been reported for 
whole-cell Rhizopus oryzae S3 lipase [56].

The apparent Michaelis constant  (Km) and maximum 
reaction rate  (Vmax) of the reaction were determined through 

Fig. 1  Effect of vegetable oil and cultivation time of Rhizopus oryzae 
CCT3759 on the total lipase activity (U/L)
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olive oil hydrolysis emulsified with Gum Arabic in the range 
from 5 to 50% m/m, which is equivalent to FFA concentra-
tion from 186 to 1488 mM (Fig. 2C). The reactions have 
been carried out under the optimum conditions determined 
above (100 mM buffer sodium phosphate pH 6.0 and 40 °C). 
These parameters were determined by a non-linear adjust-
ment of the Michaelis–Menten model, thus obtaining a 
high correlation coefficient  (R2) of 0.9983. The apparent 
values of  Km and  Vmax were 50.5 mM and 815.4 μmol/g.min, 

respectively. The produced lipase showed higher  Vmax and 
greater affinity  (Km) to the substrate (olive oil) than those 
produced using different fungus species, such as Penicil-
lium italicum (539.1 μmol/min, 151.3 mM); Penicillium 
janthinellum (387.6 μmol/min and 123.6 mM); Penicillium 
purpurogenum (493.8 μmol/min and 141.4 mM) [37]; Peni-
cillium citrinum (123.2 U/g and 158.1 mM) [36]; Penicillium 
citrinum (136.5 mM and 267.3 μmol/g min) [54]; Mucor 
circinelloides (186.9 μmol/g min and 115.7 mM) [57].

Fig. 2  Biochemical and kinetic characterization of the lipase bound 
to the mycelium of Rhizopus oryzae CCT3759 in the hydrolysis of 
olive oil emulsion. a Effect of reaction temperature (maximum activ-
ity of 738.1 ± 11.8 U/g, defined as 100% relative activity); b Effect of 

pH (maximum activity of 869.5 ± 8.8 U/g, defined as 100% relative 
activity); c Effect of olive oil concentration on the hydrolytic activ-
ity and estimation of apparent kinetic parameters; d Thermal stability 
tests at 50 °C and estimation of inactivation parameters
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The enzyme inactivation profile is shown in Fig. 2d, 
in which the lipase was maintained at pH 6.0 (100 mM 
buffer sodium phosphate) and 50 °C. After 4 h, the lipase 
showed retention of approximately 75% of its initial activity 
(866.87 ± 5.4 U/g). The linear decay model fitted well to the 
experimental data  (R2 = 0.9202), in which it was possible 
to determine thermal inactivation constant  (Kd) and half-
life  (t1/2)—0.0733  h−1 and 9.4 h, respectively. This result is 
of great industrial interest, because the longer the enzyme 
remains active and stable, the lower the number of required 
replacements of the biocatalyst and therefore have to reduce 
the costs involved. The produced lipase showed greater ther-
mal stability than other studies found in literature. Essamri 
and Deyris and Comeau [55] reported that lipase was inac-
tivated at 40 °C for 30 min of incubation time. Razak et al. 
[56] reported that there was retention of 70% of initial activ-
ity after incubation at 50 °C for 3 h.

3.3  Vegetable Oils Hydrolysis in a Tank‑Stirred 
Reactor

After determining the best cultivation experimental con-
ditions and evaluating the parameters that maximize the 
hydrolysis reaction such as pH, reaction temperature and 
substrate concentration, as described above, it was evalu-
ated the performance of produced whole-cells from Rhizo-
pus oryzae CCT3759 as biocatalyst in the hydrolysis of six 
different vegetable oils using two different concentrations 
(200 U and 400 U) in order to maximize the FFA production. 
Enzymatic hydrolysis reactions of vegetable oils were car-
ried out under the best reaction conditions obtained for olive 
oil emulsion described above (100 mM buffer sodium phos-
phate pH 6.0 and 40 °C). These tests were carried out using 
an oil/buffer mass ratio of 25% (m/m), since a good disper-
sion of whole-cells in the reaction medium was observed in 
this condition, which resulted in maximum enzyme activity 
(see Fig. 2C). In preliminary tests performed at a concen-
tration of vegetable oils at 50% m/m that is maximum con-
centration assessed in tests for determining apparent kinetic 
parameters (see Fig. 2d), it was observed a strong aggrega-
tion of oil droplets to the mycelium under such experimental 
conditions. The enzymatic hydrolysis profiles of vegetable 
oils and the determination of initial reaction rate values 
obtained using 200 U and 400 U of enzymatic activity are 
shown in Fig. 3.

According to Figs. 3a, b and Table 4, the increase in 
activity from 200 to 400 U resulted in higher initial reac-
tion rates (see “v values” in Table 4) in the first 12 h of 
reaction using canola oil (36.8–46.9 mM/h), sunflower oil 
(33.1–51.1 mM/h) and soybean oil (26.2–40.7 mM/h), as 

expected. On the other hand, similar values of initial reac-
tion rates for cottonseed oil (42.2–42.5 mM/h), olive oil 
(43.6–47.7 mM/h) and corn oil (42.5–44.9 mM/h) have been 
obtained in the same conditions. These results could be due 
to high selectivity of this lipase to hydrolyze preferentially 
vegetable oils containing high concentration of oleic and 
linoleic acids in their compositions, as aforementioned (see 
Sect. 3.1).

According to Fig. 3a, oils hydrolysis tests conducted 
with 200 U has achieved hydrolysis percentages ranging 
from 66.7 ± 1.3 to 86.4 ± 0.4% after 48 h of reaction. As 
expected, higher amounts of enzyme in the reaction (400 
U) also increased the percentage of hydrolysis and reduced 
reaction time (Fig. 3b). In fact, a complete hydrolysis of 
olive, cottonseed, canola and sunflower oils was achieved 
after 26–30 h reaction. Under these same conditions, hydrol-
ysis percentage of sunflower and soybean oil of 96 and 90%, 
respectively, was achieved after 30 h of reaction (Table 4).

Based on these results, olive oil was the one that achieved 
the highest hydrolysis percentage and, thus, FFA concentra-
tion (Fig. 3b). This indicates that the obtained lipase has 
high selectivity for vegetable oils containing high concen-
tration of oleic acid  (C18:1) in their composition as olive oil, 
about 74.5% m/m. In fact, high hydrolysis percentage was 
also achieved for cottonseed and sunflower oils due to their 
high concentration of oleic acid and linoleic acid  (C18:2), 
since both present a similar concentration of this unsatu-
rated fatty acid, as aforementioned. The results obtained 
in the hydrolysis of soybean oil suggest that Rhizopus ory-
zae CCT3759 lipase has less activity for oils composed of 
higher proportions of linolenic acid  (C18:3). These results 
corroborate the previous results of lipase production, since 
the microorganism produces lipase to enable the assimilation 
of vegetable oil as a carbon source for energy production 
and, consequently, cell growth, production of enzymes and 
other compounds.

4  Conclusion

An application of whole-cells in biocatalysis reactions con-
sists in using microbial biomass with high catalytic activity 
as biocatalyst, which is a technology that offers advantages 
such as low production costs, ease of operation, reduced 
recovery costs, purification or immobilization of lipases. 
The best culture conditions for obtaining catalytic cells 
were evaluated in 72 h of submerged culture using olive 
oil as a carbon source. Under fixed reaction conditions, 
hydrolysis percentages greater than 90% after 26–30 h of 
reaction in a stirred tank reactor for all evaluated oils have 
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been obtained. Therefore, this study has demonstrated that 
whole-cell Rhizopus oryzae CCT3759 is an interesting bio-
catalyst to produce FFA due to its high catalytic activity 
in mild reaction conditions and selectivity to catalyze ester 
bonds hydrolysis containing high monounsaturated fatty 

acids in their composition as oleic acid. Moreover, a more 
in-depth study is currently being performed by the present 
research group using residual oils (frying oil) as inductor to 
produce whole-cell Rhizopus oryzae to be subsequently used 
as biocatalysts in non-aqueous media, in addition to indus-
trial esters production (emollient esters and biolubricants) 
by esterification reactions.

Fig. 3  Effect of mycelium concentration on the initial reaction rate 
(a 200 U and b 400 U) and hydrolysis percentage (A 200 U and B 
400 U) of vegetable oils. The reactions were carried out using oil/

buffer mass ratio of 25% containing 3% m/v of Gum Arabic, 40 °C, 
pH 6.0 (100  mM buffer sodium phosphate) and mechanical stirring 
frequency of 600 rpm
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