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Abstract 
A Heterogeneous catalyst developed for selective reduction of nitroarenes to the analogous anilines using formic acid as 
hydrogen source. This catalytic procedure offers a simplistic path to prepare aromatic amines in good to excellent yields. 
Especially, even anilines functionalized with other potentially reducible moieties are obtained with high selectivity. Herein, 
we report convenient and stable bimetallic AgPd nanocatalyst supported on metal organic framework coated with polyaniline. 
Hydrogenation of nitroarenes gave analogues anilines with excellent yields at 90 °C in 6 h with no use of additives. Catalyst 
maintained stable performance in five repeated cycles.
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1 Introduction

Aromatic primary amines (Ar-NH2) are important feed 
stocks and essential ingredients for the synthesis of several 
pharmaceutical, agrochemicals, dye, polymer, pigments, fine 
chemicals and natural products [1–3]. The method generally 
used for the production of Ar-NH2 is hydrogenation of func-
tionalised aromatic nitro compounds using a stoichiometric 
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amount of reducing agents in presence of metal catalyst 
based on gold, palladium, rhodium, ruthenium, and iridium 
[4–6]. However, a disadvantage of commercially offered Pd 
catalysts is their lack of chemo-selectivity. These catalytic 
systems are unfortunately related with environmental issues 
or formation of enormous undesired by-products. Supple-
mentary alteration of noble metals with suitable additives 
was essential to improve the selectivity, but not at cost of 
activity. While, the existence of other reducible functional 
groups in the nitroarenes creates the dual necessities of activ-
ity and selective reduction of nitro group pretty challenging. 
Leaching of metal from catalyst is also a major issue. The 
degree of leaching is strongly sensitive to the nanoparticle 
size, support material and most importantly reaction media 
and conditions. Although amazing improvements have been 
achieved but still the development of novel catalysts with 
broad functional group tolerance and high activity signifies 
an important challenge.

Recently, metal organic frameworks (MOFs) have estab-
lished as a promising class of porous materials with very 
large precise surface area, high porosity, and chemical tun-
ability [7]. Because of these advantages and facile synthesis 
of MOFs, have been accepted for common applications in 
many fields, including gas storage, gas separation, lumi-
nescence, drug delivery, and catalysis [8–12]. MOFs allow 
access to guest molecules similar to their pore size. A variety 
of approaches have been taken to create comparatively large 
pores in MOFs, including use of longer linkers, modula-
tors, defective crystallization, and templates [13–18] but the 
silver-catalysed decarboxylation (silver etching) [7] is quite 
interesting. It creates heterogeneous pores, even in highly 
stable MOFs, without changing the unique structure. This 
alteration in MOFs generates meso porosity which can allow 
comparatively large guest molecules.

To defeat the leaching obstruction and to improve the 
performance of catalyst, alternative support materials must 
be developed to achieve high dispersion, utilization, activ-
ity, and stability. To fulfil these requirements intrinsically 
conducting polymer (ICP) class has attracted significant 
attention. After intensive research it is found that among all 
ICPs polyaniline (PANI) is a finest choice because of con-
trollable conductivity, good chemical stability, high conduc-
tive property via doping with acids and, easy synthesis using 
tremendously simple chemical oxidation of the low price 
monomer (aniline) in aqueous solutions [19]. For PANI, It 
is expected that the N atoms in carbon matrix may not only 
act as an electron donor but also serve as anchoring sites for 
the precursor.

AgPd nanoparticles (NPs) are found to be promising in 
catalytic dehydrogenation of formic acid in aqueous medium 
[20–22]. The AgPd NPs was supported on metal organic 
framework for preparation of a heterogeneous nanocatalyst. 
To enhance the activity of catalyst MOF is firstly coated 

with PANI. The catalytic enhancement is due to the synergic 
effect between Ag, Pd and PANI. The improved activity is 
because of electron delocalization between the d orbitals 
of Pd and the PANI π-conjugated ligand. The PANI coat-
ing also protects the MOF support from direct exposure to 
the corrosion and leaching. Several advantages of PANI 
coating is also there. First AgPd NPs supported on PANI 
is quite stable, furthermore the method of growing NPs is 
awfully simple. In this work a series of MOF composites 
were synthesized.

Herein, we reported heterogeneously catalysed selective 
reduction of nitroarenes using green reductant formic acid as 
the source of hydrogen. We synthesised MOF-PANI-Metal 
alloy composite (UiO-66-D-PANI-AgPd). In the first step, 
MOF (Zr based metal organic framework UiO-66) particles 
were prepared by hydrothermal route. MOF was decarboxy-
lated by silver etching path. Then PANI was coated on the 
surface of decarboxylated MOF (UiO-66-D) by chemical 
(oxidative) polymerization method. In conclusion, AgPd 
nanoalloy grown on the PANI coated MOF surface.

1.1  Silver Etching Method

5 mL Acetonitrile solution of UiO-66 (100 mg), Potassium 
persulfate (135 mg, 0.5 mmol) and Silver nitrate (50 mg, 
0.3 mmol) were allowed to react in Teflon-lined autoclave, 
and placed in a preheated silicon oil bath at 120 ℃ for 1 h. 
Decarboxylated MOF was centrifuged and washed three 
times with water and acetone. It was activated by keep-
ing under vacuum for 1 h at 120 °C. This method was first 
introduced by Joeng et al. [7], they have described selective 
breaking of carboxylic bond during modification of MOFs, 
this will create pores in MOFs.

1.2  Preparation of Catalyst

Preparation of UiO-66-D-PANI-AgPd: Decarboxylated 
MOF (UiO-66-D) solution (250 mg, in 50 mL water) and 
Aniline solution (93 µL, 1 mmol in 50 mL water with 5 mg 
Sodium dodecyl sulphate SDS) were sonicated separately 
for 1 h. Then both the solutions were mixed together on 
an ice bath and acidic solution of Ammonium persulfate 
(APS) (229 mg, 1 mmol in 25 mL 1 M HCl) was added 
drop wise with continuous stirring. Solution remained on 
stirring until green colour appeared. In this green suspension 
10 mL aqueous solution of  AgNO3 (10% by weight of MOF) 
was added and stirred for 1 h. Further 10 mL aqueous solu-
tion of Pd(NO3)2 (10% by weight of MOF) was added and 
stirred for another 1 h, followed by addition of Hydrazine 
hydrate (3 mL, 65%). Suspension was maintained at 90 °C 
for 4 h with stirring. Catalyst was collected by centrifuga-
tion, washed three times with water and acetone and finally 
activated by keeping under vacuum for 1 h at 120 °C.
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2  Results and Discussion

To evaluate the efficiency and selectivity of catalyst, 
nitrobenzene was chosen as model substrate and solvother-
mal one-pot reactions (90 °C 6 h) between nitrobenzene and 
formic acid in aqueous medium was done. It is noted that Pd 
could be the main active component of the catalyst responsi-
ble for the selective hydrogenation. Recycled catalyst UiO-
66-D-AgPd losing its efficiency because of leaching. We also 
observed that after loading PANI the results were enhanced. 
Furthermore, high selectivity of the catalyst was retained 
with no leaching through up to five cycles. Recycling via 
simple centrifugation with loaded NPs (Tables 1, 2).  

2.1  Catalyst Characterization

AgPd NPs were synthesized from  AgNO3 and Pd(NO3)2 in 
water reducing by Hydrazine hydrate at 90 °C in 4 h. Fig-
ure 1 shows the XRD patterns of UiO-66-D-PANI-AgPd, 
UiO-66-D-AgPd and UiO-66-D. Similar to palladium, silver 
also has fcc structure with a cell constant of 0.40853 nm 
[23].

Decaroxylation of MOF confirmed by comparative IR 
data. Figure 2a, b provides the FTIR spectra of the decar-
boxylated MOF (UiO-66-D). It can be clearly seen that, after 
treatment with  AgNO3 and  K2S2O8 in Acetonitrile, intensity 

Table 1  Comparative yields of nitrobenzene hydrogenation reactions 
with various synthesised catalysts

Reaction conditions: Nitrobenzene (0.25 mmol),  H2O 1 mL, Formic 
acid (3 equivalent) catalyst 15 mg, temperature 90 °C for 6 h. Yield 
was determined by gas chromatography (GC–MS) analysis

Table 2  Chemoselective reduction of nitro group in various aromatic 
compounds

Reaction conditions: substrates (0.25 mmol), catalyst UiO-66-D-
PANI-AgPd, formic acid (3 equiv.),  H2O (1 ml). Temperature 90 °C 
for 6 h. b -formic acid (6 equiv.) Yield is based on gas chromatogra-
phy (GC–MS) analysis

Fig. 1  Comapartive XRD
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of the peak at 1676 cm−1 belongs to the stretching vibration 
of carbonyl decreases [24].

3  Conclusion

We have introduced a novel heterogenous catalyst UiO-66-
D-PANI-AgPd for selective reduction of aryl nitro group. 
Our catalyst is effective in dehydrogenating formic acid to 
form  H2 and subsequently utilizing the hydrogen generated 
in situ for reduction of nitro group into amine. The catalyst 
is easy to synthesize, stable, easily separable, and readily 
recyclable without loss of activity, and the reactions can be 
carried out in water, making the process environmentally 
friendly.
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