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Abstract 
From the last two decades, white biotechnology, with particular reference to deploying enzyme bio-catalysis, has gained 
special research interest to valorize the bio-sources lignocellulosic biomass. In this context, ligninolytic enzymes from a 
white biotechnology background have tremendous potentialities to transform biomass following the green agenda. The 
enzyme-based white biotechnology is now considered a key endeavor of twenty-first century, as it offers socio-economic and 
environmental merits over traditional biotechnology, such as eco-friendlier processing conditions, no/limited use of harsh 
chemicals/reagents, high catalytic turnover, high yield, cost-effective ratio, low energy costs, green alternative of complex 
synthesis, renewability, reusability, and recyclability. Research efforts are underway, around the globe, to exploit naturally 
occurring biomass, as a green feedstock and low-cost substrates, to generate value-added bio-products, bio-fuels, and bio-
energy. One core problem in developing an eco-friendlier and economical bioprocess is the pre-treatment of lignocellulosic 
biomass to entirely or partially remove the lignin barrier from cellulose fibers, thereby allowing the enzymes to access the 
cellulose fibers and generate the products of industrial interests. The entire process requires lignocelluloses deconstruction 
where ligninolytic enzymes in synergies with redox mediators systems have not explored much. The limited exploitation of 
ligninolytic enzymes with tremendous catalytic efficiencies has created a massive research gap that we have tried to cover 
herein. This review further insights the white biotechnology, also termed industrial biotechnology, which uses microorgan-
isms and their unique enzyme system to facilitate the clean and sustainable deconstruction process.
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1  Introduction

With the rapid development of society, the current eco-
nomic, social, and environmental apprehensions have 
triggered the scientific community to explore greener 
and renewable raw materials for sustainable energy and 
bioproducts. Fossil-based raw feedstocks are non-renew-
able and also adversely affect the natural ecosystem and 

thus constituting serious risks to human health. There-
fore, fossil fuels no longer accomplish the supply for 
bioenergy and many other value-added biochemicals [1, 
2]. At contemporary, the onslaught of climate change, 
increasing agro-industrial waste materials, and valoriza-
tion of natural resources profoundly affect nature [3]. In 
this avenue, biorefining might offer a significant con-
nection to a sustainable and green industry by effective 
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exploitation of waste biomass resources into biofuel and 
diverse commodity products [4]. Lignocellulosic biomass 
appears to be a low-cost, abundant and bio-renewable 
resource on earth, which holds the immense potential to 
create an imperishable global energy future. Removal 
of lignin from plant biomasses promotes the hydrolysis 
efficacy of cellulose and hemicellulose and thus enabling 
the use of carbohydrate portion of lignocellulose in pro-
ducing ethanol and other biofuels [5, 6]. Approximately, 
a huge amount of lignin (50–60 million tons) is gener-
ated yearly by only the paper and pulp industry and is 
foreseen to continuously rise because of the increasing 
biorefinery developments to replace fossil feedstocks 
with renewable lignocellulosic waste biomass. Accord-
ing to a recent DOE (department of energy) statement, 
about 0.225 billion tons of lignin can be generated by 
the processing of 750 million tons of biomass to biofuel 
[7]. Only 2% of this lignin content is commercially used, 
whereas the rest is usually burned to supply processing 
heat and steam for the paper and pulp mills [8].

Though industrial waste as lignocellulosic biomass 
is a huge source of carbohydrates and lignin, its direct 
utilization as a starting feedstock for chemicals and 
biofuels is hindered by their intricate structure. Thus, 

deconstruction and depolymerization of the highly 
recalcitrant lignocellulosic biomasses into industrially 
pertinent compounds exhibits the major obstacle to 
realizing the economic viability of the biomass-based 
technologies. Due to the complicated cross-linked and 
three-dimensional polymeric network, lignin structure is 
extremely recalcitrant to decomposition [9–11]. Chemi-
cal, physical, and physicochemical are among the current 
lignocellulosic decomposition alleyways for the lignin 
breakdown because of notable conversion efficiency but 
are associated with high energy requirement, by-products 
generation, and undesired solubilization of hemicellu-
lose. The biological method presents the characteristic 
advantages of the lack of yield loss that is otherwise 
associated with the thermal breakdown of lignin. It also 
offers the prospect of target-oriented lignin biodegrada-
tion by applying selective ligninolytic microorganisms 
and their enzyme systems, thereby circumventing the 
generation of unwanted by-products or intermediates. 
Importantly, the biocatalytic processes executed under 
mild reaction conditions that reduce the energy input, 
cost and ecological influence [12, 13]. In nature, white-
rot fungi (WRF) and certain bacteria are the selective and 
efficient lignin biodegraders. The ligninolytic enzyme 

Table 1   Characteristic features of main classes of ligninolytic enzymes

ABTS 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid, NHA N-hydroxy-N-phenylacetamide, 3-HAA 3-hydroxyanthranilique acid

Type of enzymes Localization Molecular 
weight (kDa)

Opti-
mum pH 
range

Opti-
mum 
tem-
perature 
(°C)

Mediators Reaction References

Phenol oxidase
Laccase Extracel-

lular
43–100 3.0–10 20–80 Phenols, syrin-

galdehyde, 
ABTS, aniline, 
NHA,3-HAA, 
Hydroxybenzo-
tri azole

4-Benzenediol + O2 = 4 benzosem-
iquinone + 2 H2O

[114–120]

Peroxidases
(a) Lignin peroxi-

dase
Extracel-

lular
35–50 3.0–5.0 33–50 Veratryl alcohol 1,2-Bis(3,4-dimethoxyphenyl) pro-

pane-1,3-diol + H2O2 = 3,4-dimeth-
oxybenzaldehyde + 1-(3,4-dimeth-
oxyphenyle)ethane-1,2-diol + H2O

[74, 121–125]

(b) Manganese 
peroxidase

Extracel-
lular

32–62.5 2.0–5.0 30–70 Mn, gallic acid, 
ferulic acid, 
Tween-80, 
unsaturated 
fatty acids

2Mn(II) + 2H+  + H2O2 = 2Mn(III) 
+ 2H2O

[126–131]

(c) Versatile 
peroxidase

Mostly 
extracel-
lular

40–45 3.0–5.0 40–50 Veratryl alcohol, 
Mn,

Donor + H2O2 = oxidized 
donor + 2H2O

[132–135]
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system is categorized into two main classes namely per-
oxidases (manganese, lignin, and versatile peroxidase) 
and laccases (Table 1) [14]. To date, very scarce reports 
have been documented in the scientific literature on the 
exploitation of ligninolytic enzymes-based pretreatment 
processes for degradation and deconstruction of biomass. 
Figure 1 illustrates the schematic representation of ligni-
nolysis and lignin deconstruction potential of ligninolytic 
enzymes. Therefore, this review exploits the untapped 
potential of lignin-modifying enzymes (LMEs) in the 
effective utilization of lignocellulosic biomass for the 
biosynthesis of a range of important compounds such as 
biofuel, paper pulping, and animal feed.

2 � Lignocellulosic Biomass: 
Structural‑Compositional Aspects 
and Recalcitrance

Lignocellulose is composed of three basic constituents that 
include lignin, cellulose, and hemicelluloses. On average, 
lignocellulosic biomass comprises 50–80% (on dry basis) 
of carbohydrates that consist of hexose and pentose sugar 
units. Cellulose is a linear polysaccharide composed of 
reoccurring units of D-glucose subunits connected through 
β-(1,4)-glycosidic linkages with an amorphous and crystal-
line structure. The cellulose chains are associated together 
forming cellulose fibrils, which are feebly united via van 
der Waals forces and hydrogen bonding [15]. A strong 

Fig. 1   Schematic representation of ligninolysis and lignin deconstruc-
tion potential of ligninolytic enzymes. The upper starting part repre-
sents the natural lignin with sinapyl alcohol, p-coumaryl alcohol, and 
coniferyl alcohol units. The middle part represents the unique action 

mechanisms of ligninolytic enzymes, i.e., laccase, lignin peroxidase, 
and manganese peroxidase as models. The last part shows vari-
ous mono-lignin products that can be obtained after multiple steps 
involved in the ligninolysis process
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hydrogen-bonded network within the cellulose inhibited 
the activity of enzymes for the hydrolytic reaction [16]. 
Hemicelluloses are multifaceted heterogeneous polysac-
charides consisting of a wide variety of hexoses (glucose, 
mannose, and galactose), pentoses (xylose and arabinose), 
and sugar acids. Hemicelluloses are comparatively easy 
to hydrolyze owing to the amorphous structures, and low 
molecular weight properties with short lateral chains. These 
are organized in branched chains by β-1,4- with occasional 
β-1,3-glycosidic linkages and exist as intermediates between 
cellulose and lignin structures [17]. Lignin is a non-carbo-
hydrate aromatic polymer of phenyl propane and methoxy 
groups, which renders them highly challenging to hydrolyze 
[18]. It typically makes about 20–30% of the dry weight of 
wood and is documented to be the most plentiful organic 
material on the earth after cellulose [19]. Lignin is inter-
connected with cellulose and hemicelluloses and gener-
ates physical seals around these components preventing 
the enzymatic attack [20]. Lignin polymer is composed of 
three monolignols explicitly coniferyl alcohol, p-coumaryl 

alcohol, and sinapyl alcohol (Fig. 2) [21]. The chemical link-
ages that principally contribute to the lignin resistance are 
C–C and ether bonds [22]. Due to the non-susceptibility of 
these bonds to hydrolytic agents, lignin is highly recalcitrant 
to degradation. With regard to substituents attached to the 
phenylpropanoid backbone, lignin is classified into guaia-
cyl-syringyl and guaiacyl lignin. Guaiacyl lignin exhibits 
methoxy groups in the 3-carbon position, whereas guaiacyl- 
syringyl lignin encompasses methoxy groups both in the 
3-and 5-carbon positions. Generally, the molecular weight, 
composition, and magnitude of lignin vary according to the 
type of plant. Notably, hardwoods, softwoods, and grasses 
depend on the lignin distribution in the plant material, where 
the softwoods contain the highest lignin content (28–32%), 
followed by hardwoods (20–25%) and grasses (17–24%) [23, 
24].

The biotransformation of lignocelluloses to bio-refineries 
is substantially refrained by the compositional, chemical 
and structural properties of biomass, which renders these 
resources a challenging task to be exploited as cellulosic 
feedstocks for biofuel production. Hemicellulose and cel-
lulose after hydrolyzing into their sugar components can be 
bio-transformed into bioethanol and other commodity chem-
icals through fermentation processes. Nevertheless, ferment-
able sugars required for fermentation are constricted inside 
the recalcitrant lignocellulosic structure. Therefore, biomass 
pretreatment is a core step to entirely or partially eliminate 
lignin walls for a more efficient enzymatic attack for poly-
saccharides hydrolysis in the lignocellulosic biomass. Pre-
treatment results in the degradation of the outer coating of 
lignin that hinder enzymatic approachability to cellulose and 
hydrolyzes the cellulose crystalline structure. The efficient 
yield of glucose-enriched fermentable hydrolysate from the 
feedstock cellulose content is an indispensable criterion in 
the processing and utilization of lignocellulose for biofuel 
production [25].

3 � Chemical Pretreatment Methods: 
Advantages and Drawbacks

In bioprocess engineering, pretreatment is referred to as 
a process that transforms lignocellulosic biomass from its 
pristine form, resilient to cellulolytic hydrolysis, into a form 
that is more amenable to cellulose hydrolysis. An ideal pre-
treatment should also carry out the hydrolysis of hemicel-
luloses to its monomeric fermentable sugar units without 
the generation of accompanying fermentation and hydroly-
sis inhibitors, such as organic acids, phenolic compounds, 
furfural, and 5-hydroxymethylfurfural, which might affect 
subsequent processing steps and reduce the competitive 
ethanol yield [26, 27]. As described in many reports, dif-
ferent methods such as chemical (acid or basic catalysts), 

Fig. 2   a The three constitutive monomers of lignin: p-coumaryl alco-
hol, coniferyl alcohol, and sinapyl alcohol; b Structure illustrating 
the principal bonds in lignin, a three-dimensional highly cross-linked 
biopolymer. Reprinted from Longe et  al. [21] with permission from 
the American Chemical Society. Copyright (2018) American Chemi-
cal Society
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physical, and biological methods can be carried out for pre-
treatment purposes. In contrast to acid and liquid-hot-water 
pretreatments, alkali pretreatments greatly solubilize lignin 
and xylan side chains, leading to a profound improvement 
for efficient enzymatic hydrolysis [20, 28]. Alkaline-based 
delignification is generally more robust at dissolving a larger 
portion of lignin while leaving behind significant hemicel-
lulose in an insoluble polymeric form. In comparison with 
acid pretreatment, alkaline processes cause relatively less 
sugar loss and many of the caustic salts can be regenerated 
and recovered. However, the use of alkali solutions such as 
NaOH, Ca(OH)2 or ammonia causes swelling, resulting in 
increased internal surface area, decreased crystallinity and 
degree of polymerization, alteration in lignin structure, and 
separation of lignin-carbohydrate linkages. It also results 
in a noticeable carbohydrate degradation from very harsh 
alkaline pretreatment [29, 30]. The application of mild 
alkaline pretreatments with lime Ca(OH)2 can overcome 
this problem, and the efficacy of lime pretreatment has been 
documented for different lignocellulosic biomasses such 
as corn Stover, sugarcane bagasse, and switchgrass [31]. 
Pretreatment of lignocellulosic biomass with the lignino-
lytic enzymes is a novel, environmental-friendly and most 
workable approach than chemical conversion because of the 
highest yields, negligible byproduct generation, minimum 
energy necessities, and the mild processing conditions. The 
pretreatment process for lignocellulose depolymerization in 
the current industrial practice is highly argued and at con-
temporary, no appropriate and cost-efficient pretreatment 
strategy is still available in the market.

4 � Biological Method: A Green Lignocellulose 
Pretreatment Approach

The biological method is a promising alternative pretreat-
ment for a cleaner and greener technology and has received 
incredible importance in the biotechnology community and 
researchers. In the wave of green technology paradigm, bio-
logical pretreatment approach offers numerous merits over 
chemical and physical conversion methods, for example: 
(i) greater reaction and substrate specificity, (ii) minimal 
requirements of energy (iii) less ecological concerns, and 
(iv) elevated titers of the target products [25, 32]. Decon-
struction and depolymerization of lignocellulosic agricul-
tural biomass residues by microbial lignocellulolytic con-
sortia are accountable for a balanced carbon cycle in the 
ecosystem [33]. However, the biotechnological adaptation 
of biological processes should initiate by manipulating or 
engineering microbial strains for the high-level produc-
tion of lignocellulolytic enzymes. Improvement of strains 
by genetic engineering and the establishment of an enzyme 

cocktail are the two major strategies that may be employed 
for overall cost reduction [34, 35].

5 � Fungal Pretreatment

Fungal pretreatment relates to the employment of fungal 
strains for the disruption and modification of lignocellulosic 
architecture for succeeding enzymatic processing [36, 37]. 
White rot, brown rot, and soft rot are three major types of 
fungi that are commonly associated with fungal pretreatment 
for lignin degradation. By colonization on the cell lumina, 
WRF disrupts the cell wall structure of lignocellulosic bio-
mass. Further propagation of the fungal mycelia leads to 
erosion of the cell wall. Brown rot fungi (BRF) generally 
found on gymnosperm wood generate brownish rotten wood, 
which is readily fragmented into smaller parts. Soft rot fungi 
(SRF) produce numerous small pores in the secondary layer 
without destroying the middle lamella [38]. Among the main 
categories, most common fungi associated with the depo-
lymerization of lignocellulosic biomass are WRF such as 
Pycnoporus cinnabarinus, Pleurotus ostreatus, BRF Fomi-
topsis pinicola, and SRF Trichoderma sp. [39–44].

6 � White‑Rot Fungi and Their Unique 
Ligninolytic Armory

In nature, white rot Basidiomycota are the most promising 
lignin decomposers and inarguably the most suitable candi-
dates for utilization in industrial bioprocess require deligni-
fied lignocellulosic feedstocks as substrates. It is reported 
that MnP (E.C. 1.11.1.13), LiP (E.C. 1.11.1.14) and laccase 
(E.C. 1.10.3.2) are principle LMEs of WRF that are respon-
sible for not only lignin deconstruction but are also involved 
in degrading a diversity of xenobiotic and bioremediation 
of toxic industrial effluents. After purification, characteri-
zation, and immobilization, this set of unique extracellular 
enzymes could also be used in pulp and paper industries as 
non-polluting and economical bio-pulping and bio-bleaching 
agents to substitute environmentally unfriendly chemicals 
(e.g. chlorine) and saving energy expenses of mechanical 
pulping [45]. These enzymes also find broad-spectrum bio-
technological applications such as wastewater remediation, 
clarification of numerous fruit juices, wines and musts, 
bio-bleaching of cotton, and bio-stoning of denim fabric in 
denim industries, as well as in pulp and paper industries 
[46, 47].

Extracellular ligninolytic enzymes are equipped with the 
potential capability to oxidative depolymerization of lignin 
molecules and their derivatives in cell-free systems. This set 
of enzymes is categorized into two classes i.e. oxidases and 
peroxidases. Among these, the only laccase belongs to the 



530	 M. Bilal, H. M. N. Iqbal 

1 3

oxidase type, whereas MnP, LiP, and VP are belonging to 
the peroxidase type. The high redox potential renders these 
enzymes as exceptional candidates for the lignin amendment 
and transformation in lignocellulosic substrates [10, 48].

LiP, also known as diaryl propane oxygenase, is a heme-
containing glycosylated ligninolytic biocatalyst that cata-
lyzes H2O2-mediated oxidative deconstruction of lignin and 
lignin-related recalcitrant aromatic compounds to multiple 
end-products. After the discovery in the extracellular culture 
of WRF P. chrysosporium [49], its numerous isozymes were 
recognized in P. chrysosporium [50], T. versicolor [51], P. 
radiata [52], and P. sordida [53]. For instance, Farrell and 
coworkers, [50] reported the presence of six LiP isozymes 
viz. H1, H2, H6, H7, H8, and H10 in the culture broth of P. 
chrysosporium BKM-F-1767. Likewise, five LiP isozymes 
in the same strain with different substrate specificity, stabil-
ity, isoelectric point, and sugar content were characterized 
[54]. The molecular weight and isoelectric point range of 
this monomeric hemoprotein ranges from 38 to 43 kDa and 
3.3 to 4.7, respectively [54]. It optimally works at acidic 
pH (around pH 3.0) in the presence of veratryl alcohol as 
the substrate [55, 56]. High redox potential enables LiPs to 
oxidize an array of non-phenolic lignin structures includ-
ing arylglycerol-aryl ethers thus constituting more than 
90% degradation of lignin [57]. Their oxidative properties 
involve the formation of one-electron oxidation based radical 
cation, leading to intramolecular addition, demethylation, 
rearrangements, and side-chain cleavage [58]. Notably, the 
presence of various tryptophan residues on the surface of 
the enzyme molecule results in the modification of cata-
lytic performance, substrate specificity and stability of the 
enzyme [59].

MnP has been documented as the most common LME 
produced by nearly all wood-rotting basidiomycetes [60]. In 
general, WRF secretes multiple forms of this glycosylated 
heme protein in their ligninolytic culture with diverse molec-
ular weights ranged from 40 to 50 kDa. Up to 11 various 
MnP different isoforms have been reported in the culture 
extract of Ceriporiopsis subvermispora [61]. MnP follows 
a catalytic cycle similar to other heme-containing peroxi-
dases, such as LiP or HRP except utilizing Mn2+ as a typical 
electron donor. Regarding catalytic mechanism, MnP car-
ries out the preferential oxidation of phenolic structures to 
phenoxy radicals in H2O2–assisted enzyme reaction by con-
comitant Mn2+ oxidation to a highly reactive Mn3+, which 
resultantly, can degrade a wide range of phenolic molecules 
including phenols, cleave and dyes [62]. However, the deg-
radation potential of MnP can be protracted to non-phenolic 
structures with the advent of low-molecular-weight media-
tors i.e. thiyl or lipid radicals [63]. Furthermore, many other 
synergistically-acting proteins with MnPs has also extended 
the roles of these biocatalysts in fungal ligninolysis. The 
literature survey demonstrated numerous reports on the 

MnP-assisted oxidative depolymerization of synthetic and 
natural lignins as well as many other refractory compounds 
[60, 64, 65].

Laccases are N-glycosylated extracellular blue multi-
copper oxidases with ubiquitous distribution in eukaryotes 
and prokaryotes. However, laccases from microbial origins, 
in particular, from WRF have enticed incredible interest 
because of pronounced oxidation ability to multiple com-
pounds and a wider spectrum of substrate specificity [66]. 
Based on copper centers, these enzymes are characterized 
into groups including type 1 (blue), type 2 (normal), and 
type 3 or coupled binuclear. Type 1 and type 2 exhibits one 
Cu atom each, whereas type 3 possesses two Cu atoms [67]. 
The biocatalytic efficacy of laccases relied on the oxida-
tion–reduction potential of the type 1 copper ion, where 
oxidation of substrate happens. The higher redox potential 
of the microbial laccases than plant-based enzymes indi-
cates their higher catalytic efficiency and activity relative 
to plants-sourced enzymes. On the other hand, type 2 and 
type 3 form a tri-nuclear cluster (T2/T3) for molecular oxy-
gen reduction to water by transferring electrons from T1 to 
the tri-nuclear site [68]. Usually, the biocatalytic reaction of 
laccases implicates four substrates oxidation together with 
oxygen reduction to two molecules of water. The utiliza-
tion of atmospheric oxygen as a source of electron acceptor 
is beneficial in laccase-mediated catalytic reaction than the 
use of H2O2 by peroxidases. Nonetheless, these enzymes 
necessitate the use of redox mediators i.e. acetosyringone, 
2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid 
(ABTS), syringaldehyde (SA), vanillin, and 1-hydroxy ben-
zotriazole for abatement of numerous recalcitrant and non-
phenolic environmental contaminants. In spite of this short-
coming, the use of laccases has gained noteworthy interest 
due to their tremendous biotechnological applications.

Versatile peroxidase (VP) produced by Bjerkandera sp. 
and Pleurotus sp. exhibits bifunctional characteristics of 
both LiP and MnP to oxidize veratryl alcohol and aromatic 
compounds (as LiP) and Mn2+ to Mn3+ (as MnP). It adopts 
an analogous catalytic mechanism as the other peroxidases 
[69], but the oxidation sites diverge from LiP and MnP 
according to the spectroscopic, site-directed mutagenesis 
and crystallographic analyses. The VP-assisted oxidized 
Mn3+ possesses the same features with Mn3+ oxidized by 
MnP because it functions as a diffusible oxidizing agent for 
phenolic lignin. Furthermore, it also comprises the residues 
that interact with veratryl alcohol and aromatic compounds 
in such a way as LiP ensures [70].
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7 � Ligninolytic Pretreatment: Deriving More 
Value from Lignocellulosic Waste

Biological degradation and conversion of lignocellulosic 
biomass is a complicated process, where several process 
variables such as cultivation conditions, cultivation duration, 
fungal strains, enzyme system, and fungal degradation mech-
anisms are involved. Though fungal assisted biomass pre-
treatment demand low energy and is carried out under mild 
environmental conditions; the necessity of a longer cultiva-
tion period (10 to 100 days) of these processes is the major 
issue for their exploitation to achieve high decomposition 
at the industrial level. Hence, it is of worth significance to 
find a highly efficient lignin degradation approach. In recent 
times, researchers are rekindling their interest in applying 
enzymes as an alternative to fungi because of the problems 
associated with the direct application of fungi, such as sat-
isfactory growth challenges on a larger scale, longer incuba-
tion durations, and mycelial penetration into the substrate. 
Among a range of biological strategies, the direct use of 
enzymes is one of the newest strategies in the degradation 
of lignocellulosic biomass. Ligninolytic enzymes treatment 
may portray a more effective and simpler treatment method 
to address the problems that come across during the fungal 
pretreatment. Hence, enzymatic pretreatment has appeared 
a topic of choice for future consideration. Table 2 summa-
rizes the application and comparative analysis of different 
technologies for biomass delignification process in terms of 
economic benefit and environmental impact [71].

In comparison with chemical utilization, enzymes-based 
treatment is extremely favorable owing to several advan-
tages such as higher catalytic performance, greater reac-
tion specificity, and milder processing conditions. A set of 
LMEs, explicitly MnP, LiP, laccase, and VP are predomi-
nantly involved in lignin modification and depolymeriza-
tion [72–74]. In addition to these enzymes, reports have also 
demonstrated some accessory ligninolytic enzymes that can 
degrade lignin such as glyoxal oxidase (GLOX), aryl-alcohol 
oxidase (AAO), and feruloyl esterase (FEA). It is important 
to note that ligninolytic enzymes carry out lignin removal 
through oxidation and reduction reactions using oxygen as 
the final electron acceptor [75].

The delignification of plant biomasses by crude lignino-
lytic enzyme extracts presents numerous advantages that 
include;

(i)	 the occurrence of other auxiliary enzymes and media-
tors in crude extracts of WRF such as FEA may facili-
tate the ligninolytic consortium for effective lignin deg-
radation by breaking the diferulic associations between 
xylan chains, thus unveiling the structures and liberat-
ing the lignin molecules [76].

(ii)	 Though the crude extract comprises ligninases as the 
predominant enzymes, the presence of some cellulo-
lytic enzymes in enzyme extracts of WRF facilitates 
the simultaneous hydrolysis of the delignified lignocel-
lulosic materials.

(iii)	 The ligninolytic and cellulolytic extracts can be applied 
in Simultaneous Pretreatment, Saccharification, and 
Fermentation (SPSF) process configuration that can 
save energy and time.

(iv)	 In contrast to acid and alkaline pretreatments, the 
biological method results in the generation of fewer 
inhibiting product. More than 35 different by-products 
are known to be generated from chemical pretreatment 
of lignocellulosic substrates. These by-products have 
shown a potential inhibitory effect on microbial growth 
and enzyme approachability [77].

(v)	 Ligninolytic pretreatment is carried out under gentle 
conditions excluding the necessity of extreme pH and 
temperature to accomplish the utmost hydrolysis effi-
ciency.

In the past decade, many researchers have described 
the efficiency of the crude enzymes-based pretreatment 
approach in different lignocellulosic waste biomasses 
(Table 3). Pretreatment of various plant residues by the 
crude enzymatic extract from T. villosa Kreisel CCMB 651 
resulted in a lignin loss of 35.05%, 39.61%, and 63.11% 
from sugarcane bagasse, coconut shell, and sisal fiber, 
respectively, after a treatment period of 4 h [78]. Naraian 
and coworkers, [79] achieved 5.2% lignin removal of corn 
cob by pretreatment with a crude ligninolytic enzyme con-
sortium from P. florida PF05. The crude extract produced by 
S. commune IBL-06 in the solid-state culture of rice straw 

Table 2   Comparative analysis 
of different pretreatment 
strategies for biomass 
delignification

Pretreatment process Biomass del-
ignification

Loss of sugar Process duration Cost evaluation Environ-
mental 
impact

Physical High High – High costs Negative
Chemical High High – High costs Negative
Fungal High Low 6 to 45 days Low costs Positive
Enzymatic High Low 2 to 48 h High costs Positive
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was capable of removing 47.5%, 61.7%, 67.2% and 72.3% 
lignin from corncobs, banana stalk, wheat straw, and sug-
arcane bagasse, respectively, after 48 h. It was also noted 
that the effective pretreatment of aromatic or phenolic com-
pounds by ligninases also diminishes the toxic effect of the 
medium for consequent cellulolytic saccharification and 
fermentation process [9]. A laccase-based enzymatic pre-
treatment led to the highest lignin removal of 81.67% after 
a 6 h process optimized through the response surface statis-
tical approach [80]. Asgher and coworkers, [25] pretreated 
sugarcane bagasse with the ligninolytic extract obtained 
from the P. ostreatus IBL-02 by growing on wheat straw. 
The as-obtained enzymes extract caused 33.6% removal of 
lignin in an eco-friendly manner. Likewise, a considerable 
reduction (39.6%) in the lignin contents of wheat straw was 
also noted by ligninolytic treatment [81]. Particularly, the 
treatment by a single type of ligninolytic enzyme is not very 
effective to accomplish greater lignin removal. Therefore, 
the delignification rate is maximized by applying a mixture 
of ligninolytic enzymes. For illustration, in contrast to P. 
chrysosporium (lacked in laccase activity) that caused only 
17.2% of lignin exclusion, Phlebia floridensis showed the 
superior lignin removal efficiency (25.2%) in a wheat straw 
due to the contribution of three major types of ligninolytic 
enzymes [82].

For the first time, Longe et al. [21] investigated the poten-
tial of MnP, LiP, and laccase (major ligninolytic enzymes) 
for the depolymerization of three structurally different indus-
trial lignins: alkali, kraft and organosolv lignin. As compared 
to MnP (0.8 V) and laccase (0.5–0.8 V), the utmost redox 
potential (1.2 V versus standard hydrogen electrode) of LiP 
enabled more easily oxidative depolymerization of lignin 
followed by MnP and laccase. Nevertheless, MnP exhibited 
the paramount ability to cleave overall bonds for lignin deg-
radation compared with LiP and laccase. Results highlighted 
that all three lignins responded differentially to enzymatic 
depolymerization, and organosolv removal was generally 
much easier relative to alkali or kraft lignin. The aptitude 
of ligninases was assessed to improve lignocellulosic waste 
composting and compared with the inactivated counterparts 
as control. As compared to the control, the ligninolytic treat-
ment augmented the degradation efficiency of hemicellulose 
and lignin by 11.74% and 5.24%, respectively [83].

The ligninolytic repository functions well in a wet and 
slightly acidic setting because of the release of organic acids 
by the wood rot basidiomycetes. Whereas, the bio-based del-
ignification conditions are far from that prerequisite in each 
biotechnological application. It is worthy to mention that 
the ligninolytic enzymes can be acclimatized to non-native 
environments by advanced evolutionary approaches [84]. 
Recently, a directed evolution approach has garnered incred-
ible interest to tailor ligninolytic enzymes and has been suc-
cessfully applied to engineering aryl alcohol oxidase [85], Ta
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laccase [86], dye-decolorizing peroxidase [87], versatile 
peroxidase [88], and unspecific peroxygenase [89]. Using 
this evolutionary technology, Brissos and coworkers, [87] 
created a dye-decolorizing peroxidase variant from P. putida 
MET94 that presented a 100-fold improved catalytic efficacy 
for depolymerization of 2,6-dimethoxy-phenol, a phenolic 
lignin prototype, under alkaline environments. Markedly, 
this evolved biocatalysts conquered greater tolerance to 
the high concentration of H2O2 and thus overcoming the 
major concerns of peroxidases for biotechnological exploi-
tation. In another study, this strategy was implemented in 
the presence of high co-solvents concentrations of distinct 
chemical nature and polarities to obtain a variant with co-
solvent promiscuity. The resultant evolved mutant displayed 
adequate catalytic performance and remained stable at high 
concentrations of the tested co-solvents (50% v/v). After 15 
series of evolution, a fungal-derived laccase variant showed 
a pH-activity displacement towards the alkaline region and 
presented remarkable activity and improved kinetics against 
phenolic as well as non-phenolic structures after the five 
additional evolutionary rounds [90]. Installing consensus 
mutations into existing enzymes results in activity diversities 
with reference to the laboratory revived biocatalysts [91]. 
Apart from the academic outcomes, advancement in evolu-
tionary technology on ligninolytic enzymes accompanied by 
advanced enzyme tailoring and synthetic biology approaches 
will confidently lead to more effective lignocellulosic bio-
pretreatments, and also diversify and magnify the portfolio 
of bio-products from lignin polymer [92].

8 � Redox Mediators: Small Molecules 
with a Strategic Role in Enzymatic 
Ligninolysis

A mediator is a small, diffusible aromatic molecule that 
functions as an electron carrier between the substrate and 
the biocatalyst. A wide variety of mediators (synthetic or 
natural) contributes to lignin degradation by lignin-modi-
fying enzymes by readily diffusing into the lignin network 
following the activation by the enzyme. Moreover, it can 
modify the redox potential of the enzymes for accelerated 
lignin modification and depolymerization [93]. For effective 
depolymerization of lignin molecule, the mediator should 
possess some unique properties such as high water solubility, 
low molecular weight, high oxidation–reduction potential, 
and radicals forming ability, and profound biodegradation 
efficacy. Generally, WRF naturally secretes or produce medi-
ators in their micro-environment [94]. Some soluble and col-
loidal lignins may act as natural redox mediators in the oxi-
dative process. For instance, veratryl alcohol acts as a natural 
mediator for P. chrysosporium LiP, whereas 3-hydroxyan-
thranilic enabled P. cinnabarinus laccase to oxidizing non-
phenolic lignin structures [95]. The use of mediators could 
also extend the capability of ligninolytic enzymes to oxidize 
a broad spectrum of substrates [96]. The catalytic effect of 
the LMS towards non-phenolic substrates depends on the 
mediator specificity towards various functional moieties, the 
redox potential of the mediator, and the steric interference 
of the catalytic substrate. Laccase without a mediator is no 
capable of oxidizing the dominant non-phenolic structures, 

Fig. 3   Oxidation of a non-phe-
nolic β-O-4 laccase mediator 
system by Trametes versicolor 
laccase-HBT system. Reprinted 
from Christopher et al. [12], an 
open-access article distributed 
under the terms of the Creative 
Commons Attribution License 
(CC-BY)
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which account for 80–90% of the lignin molecule [97]. This 
incompetence might be explained to low redox potential, 
and lacking sufficient energy for electrons extraction from 
the aromatic non-phenolic compounds. Figure 3 shows the 
oxidation of a non-phenolic β-O-4 laccase mediator system 
by the laccase-HBT mediator system from T. versicolor.

Several mediators are only effective with ligninases 
rather than a combination of oxidative-hydrolytic enzy-
matic systems. Both sequential, as well as simultaneous 
pretreatment, using the lignin mineralizing system of T. 
hirsute with NHA as a redox mediator and xylanase from 
T. reesei has shown greater pulp lignin removal with refer-
ence to pretreatment using the solitary enzyme. Neverthe-
less, sequential pretreatment was found superior compared 
relative to simultaneous with delignification efficiency of 
70.6% and 67.2%, respectively, because of the synergis-
tic action of the enzymes [98]. Typical redox mediators 
for laccase activity include veratryl alcohol, vanillin, and 

syringaldehyde and synthetic mediators such as ABTS, 
1-hydroxy benzotriazole (1-HBT), violuric acid (VA) or 
2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) [99]. The 
molecular structures of some natural and synthetic media-
tors of laccase are portrayed in Figs. 4 and 5. The selection 
of mediators can not only affect the degradative capacity 
but also induces the stereo-specificity of laccase in the 
substrate. For example, the addition of 3-hydroxyanthrani-
lique acid (HAA) could promote laccase-catalyzed depo-
lymerization of lignin by hindering the repolymerization 
process [95]. 4-tert-butyl-2,6-di-methyl phenol (TBDMP) 
and 2,4,6-tri-tert-butyl-phenol (TTBP) are associated with 
the rearrangement mechanism leading to cleavage of 4-O-5 
bonds in lignin [100]. Longe et al. [21], for the first time, 
compared the impact of three novel additives comprising 
TTBP, TBDMP, and HAA with three classic mediators 
ABTS, VA, and 1-HBT and determined their efficiency to 
increase lignin degradation. Results indicated the marked 

Fig. 4   Chemical structures of some synthetic laccase mediators: (1) > N–OH type; (2) phenothiazine-type; and (3) pyrazolone-type. Reprinted 
from Christopher et al. [12] an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY)
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reduction in molecular weight with the use of ABTS and 
VA, however, these mediators showed a slow depolym-
erization process than that to the other tested mediators. 
On the contrary, the addition of other mediators presented 
comparatively fewer influences on the molecular weight of 
lignin but had superior oxidation than individual laccase. 
Notably, laccase-VA systems achieved up to 73% reduc-
tion in molecular weight of organosolv lignin, whereas the 
combination of laccase with ABTS, 1-HBT, and TBDMP 
catalyzed the 49%, 39%, and 43% degradation of lignin, 
respectively. The detailed characterization of the lignin 
degraded metabolites by quantitative 2D-HMQC NMR 
highlighted the mediator-dependent oxidation, and the 
mediator depolymerizing lignin the most, resulted in 
more oxidation. S units and the β-O-4 bonds containing S 
units in the lignin structure were evidently targeted by the 
enzyme oxidation (Fig. 6).

On the contrary, Rajak and Banerjee [80] recorded no 
stimulating role of mediators in lignin biodegradation by 
determining the impact of a series of mediators on lignocel-
lulosic delignification with laccase enzyme produced from 
Lentinus squarrosulus MR13. As compared to the treatment 
without mediators, the laccase catalyzed experimental treat-
ments revealed that mediators did not exhibit any notable 
promoting effect to improve percentage lignin degradation. 
This observation was in accordance with an earlier report, 

where mediators displayed no convincing role on the activity 
of laccase produced by Pleurotus sp. for boosting up lignin 
removal [101]. The lack of any substantial impact of a medi-
ator’s addition in enhancing percentage lignin delignification 
might be ascribed to the occurrence of natural mediators in 
the culture broth that react naturally with the enzyme.

In spite of the significant advantages of the enzyme 
cocktail, both hydrolytic and oxidative enzymes experi-
ence many challenges in various ranges of pH and tempera-
ture optima and thermal stability. Moreover, the oxidized 
mediator may lead to the inactivation of xylanase and lac-
case itself [102, 103]. Likewise, the degraded products i.e. 
benzoic, caffeic, ferulic, p-coumaric, sinapic, and vanillic 
acids might also inhibit the catalytic activity of xylanase 
[104]. In addition, several challenges need to be addressed 
in developing efficient laccase mediator system such as (1) 
reducing bioprocessing costs, (2) utilization of natural and 
non-toxic mediators, (3) better regeneratibility, (4) greater 
redox potential, (5) effective oxidizing ability towards both 
non-phenolic and phenolic lignin molecules, (6) lack of any 
inhibiting influence on laccase activity and (8) aptitude to 
creating effective laccase-mediator system with multiplicity 
of laccases [12].

Fig. 5   Chemical structures 
of some naturally occurring 
laccase mediators. Reprinted 
from Christopher et al. [12], an 
open-access article distributed 
under the terms of the Creative 
Commons Attribution License 
(CC-BY)



540	 M. Bilal, H. M. N. Iqbal 

1 3

9 � Detoxification of Lignocellulosic 
Hydrolysate by Enzymatic Treatment: 
Drive Towards Lignin Biotechnology

It is demonstrated that classical pretreatment techniques 
generate toxic side streams or inhibitors after the biomass 
delignification process. Production of these toxic residues 
affects the growth of fermentative microorganisms and cel-
lulolytic enzymes resulting in a marked reduction in overall 
ethanol titer [105, 106]. Chemical and physical technologies 
such as NaOH precipitation, filtration, and anion exchange 
chromatography are costly, produce sugar loss, and are inef-
fective to complete elimination of inhibitors in the feedstock 
hydrolysates. Whereas, bio-based treatment by implicating 
ligninolytic fungi or their unique enzyme consortium sub-
stantially decrease toxic compounds in the hydrolysates. 
Phenolic compounds are regarded as the utmost degraded 
type by fungal LMEs amongst various kinds of toxic com-
pounds generated in biomass hydrolysates [107]. These com-
pounds caused the inhibition of fermentation process even 
at 1 ppm concentration [108], whereas other types of toxic 
compounds possess a distinct behavior. The nature of feed-
stock, enzyme attributes, and the pretreatment severity affect 
the detoxification of these compounds. Enzyme treatment 

has been effectively accomplished in the elimination of tox-
icity after various physicochemical pretreatments i.e. strong 
acids, organosolv, hot liquid water, and steam explosion. 
Moreover, the ligninolytic-assisted detoxification process 
increased the fermentation performance and thereby etha-
nol productivity [105]. For instance, enzymatic treatment 
of sugarcane bagasse hydrolysate results in an ethanol yield 
5-times higher compared with ion exchange detoxification 
[109]. Under the optimized conditions of enzyme concentra-
tion, temperature, and mediators, the detoxification of phe-
nolic compounds in rice straw hydrolysates was improved 
to 92% [110]. Recently, AAO, a less inspected ligninolytic 
enzyme, has been employed to detoxify furan derivatives 
including polyunsaturated alcohols and 5-hydroxymeth-
ylfurfural (HMF) [111, 112]. Carro and coworkers [113] 
reported that AAO efficiently transformed HMF into 2,5-
furan dicarboxylic acid (FDCA). Similarly, AAO from P. 
eryngii also results in the efficient conversion of HMF into 
2,5-formylfurancarboxylic acid (FFCA); but it was not able 
to direct HMF transformation into FDCA. Thus, the addition 
of a fungal heme peroxygenase was necessary to complete 
the HMF catalysis. It can be concluded that ligninases-based 
toxicity removal of hydrolysate is a futuristic and environ-
mentally sound route for biotechnology industries for biofuel 

Fig. 6   Summary of the different lignin linkages and other structures identified by 13C/1H correlation 2D NMR. X = H/OCH3. Reprinted from 
Longe et al. [21] with permission from the American Chemical Society. Copyright (2018) American Chemical Society
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production. Nevertheless, this enzymatic approach should 
be standardized to expand their degradation ability towards 
many other types of toxic compounds from hydrolysates.

10 � Conclusions and Future Perspectives

The development of sustainable technologies for modifica-
tion and bioconversion of lignin and its building blocks into 
intelligent biomaterials and added-value products is obvi-
ously one of the emerging research concepts among the 
biotechnology community. Improved lignin processing for 
incorporating into bio-production is an ultimate objective 
and might encompass the exploration of biocatalysts with 
greater catalytic performance, tailored operational modes 
and consolidated bioprocessing conceptions. In this regard, 
the use of ligninolytic enzyme extracts has gained intensive 
research attention as a distinctive strategy that can help to 
develop an environmentally responsive and cost-efficient 
technology for deconstruction and detoxification of ligno-
cellulosic raw feedstocks. Ligninolytic enzymatic machin-
ery possesses desirable bio-physicochemical attributes 
and engenders the similar or higher conversion efficiency, 
detoxification and delignification magnitudes than the con-
ventional approaches. Furthermore, the development of a 
novel strategy for simultaneous pretreatment, saccharifica-
tion, and fermentation (SPSF) technology using ligninolytic 
and cellulolytic enzyme extracts may provide a cutting-edge 
approach in the field of biofuels that integrates applied biol-
ogy, process, and environmental engineering. Application of 
indigenous biotechnology for the debasement of agricultural 
biomass will surely minimize the use of toxic chemicals 
being used in conventional pretreatment processes with asso-
ciated environment protection and saving of a huge amount 
of foreign exchange by commercialization.
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