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Abstract
A pragmatic and swift method for the synthesis of Benzo[a]pyrano[2,3-c]phenazine derivatives via one pot, multicompo-
nent strategy by employing β-cyclodextrin in EtOH:H2O (1:1) solvent at 70 °C has been documented here. Utilization of 
supramolecular catalyst β-cyclodextrin which is highly efficient, green, biodegradable and reusable catalyst augments the 
synthesis amazingly, is the key feature of the current pathway. The catalyst could be recovered for four successive cycles 
without significant loss in catalytic activity.
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1  Introduction

On the ground of environmental concerns, chemists and 
researchers are switching their interest towards synthetic 
processes which incorporate the environmentally benign 
reagents for the synthesis of highly privileged scaffolds and 
this has emerged as a phenomenally recommended platform 
[1–3]. Taking into account the principle of green chemis-
try, avoiding hazardous reaction conditions by utilization 
of renewable feedstocks and supramolecular chemistry has 
acquired prodigious significance [4–6]. Chemical reac-
tions in the presence of a supramolecular catalyst which is 
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derived from biomass, boost the sustainability of the proce-
dure [7–9]. Within this context, cyclodextrins (CDs), cyclic 
oligosaccharides of D(+)-glucopyranosyl units which are 
associated by α-1,4-glycosidic linkage, have noteworthy 
engrossment with an exclusive characteristic of hydrophilic 
exterior and a hydrophobic central void. Cyclodextrins, gen-
erally obtained by the enzymatic degradation of starch have 
characteristic cylindrical shape with a narrow and a broad 
end. One primary hydroxyl group is present at the narrower 
end where as secondary hydroxyl groups are present at the 
second and third carbon of the broader end of cyclodextrin 
[10–12]. On the basis of the number of D(+)-glucopyranosyl 
units, CDs are generally classified into 3 categories namely 
α-, β and γ-CDs having 6, 7 and 8 D(+)-glucopyranosyl 
units, respectively [13–16]. The diameters of hydrophobic 
cavities for different CDs (α-, β and γ-CDs) are in the order 
of 0.47–0.56, 6.0–6.5 and 7.5–8.3 nm, respectively and the 
heights of all CDs are around 0.78 nm [13]. The structure of 
cyclodextrins facilitates them to form inclusion complexes 
with numerous substrates via weak interactions like non-
covalent bonding, H-bonding and vander waal forces of 
attraction and by ensnaring the substrate into their hydro-
phobic cavities [9, 16–18]. Among the three, β-cyclodextrin 
(β-CD) is the most frequently used CD. These attributes of 
CDs invigorated us to carry out our reaction in presence of 
β-cyclodextrin.

Now-a-days, atom and step economic approaches are 
utilized under the heading of multicomponent reactions 
(MCRs) for the straightforward access of diverse classes 
of compounds and this has emerged as a key tool for 

ecofriendly and sustainable protocols in organic synthe-
sis [19–22].

Benzo[a]pyrano[2,3-c]phenazine, a nitrogen and oxy-
gen containing heterocyclic compound, reveals tremen-
dous biological and pharmaceutical significance. It con-
sists of two characteristic units of important classes of 
heterocyclic compounds in which one is nitrogen-contain-
ing phenazine unit and the other one is oxygen contain-
ing pyran (Fig. 1). Phenazines form the core structure of 
various natural and synthetic products [23] and exhibit 
diverse biological activities as antiplatelet [24], antimalar-
ial [25], fungicidal [26], antitumor [27], trypanocidal [28] 
and anti-inflammatory activities [29]. In addition, they are 
also used as pesticides and dyestuffs [30].

Similarly, Pyrans are also present as a key motif in vari-
ous natural products and pharmaceuticals as polyether 
antibiotics, alkaloids and carbohydrates [31, 32]. Com-
pounds with pyran scaffold shows astonishing biological 
importances such as antitumor, antifungal, antioxidant, 
antileishmanial, anticoagulant, anticonvulsant and anti-
microbial activities. In addition, they are extensively used 
as potential biodegradable agrochemicals, pigments and 
cosmetics [33–36] (Fig. 2).

Even though, various synthetic pathways for Benzo[a]
pyrano[2,3-c]phenazine and its derivatives have been 
reported [30, 37–47] but some of them are endured with 
some downsides. In view of the vast biological signifi-
cance of Benzo[a]pyrano[2,3-c]phenazine and our ongo-
ing interest in the development of new green synthetic 
methodologies for heterocyclic compounds [48–53], we 
sought to develop a straightforward and facile domino 
synthetic protocol for Benzo[a]pyrano[2,3-c]phenazines 
by using 2-hydroxynaphthalene-1,4-dione, o-phenylenedi-
amines, aromatic aldehydes and malononitrile as reactants 
in presence of β-cyclodextrin in EtOH:H2O (1:1) solvent 
at 70 °C (Scheme 1).

Fig. 1   Structure of Benzo[a]pyrano[2,3-c]phenazine showing Phena-
zine and Pyran unit

Fig. 2   Some biologically active 
derivatives of Phenazines and 
Pyran
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2 � Experimental

2.1 � General Information

Reagents were obtained from commercial suppliers and 
used without further purification unless otherwise speci-
fied by a reference. All reactions were performed using 
oven-dried glass wares. Organic solutions were concen-
trated using a Buchi rotary evaporator. TLC was per-
formed using silica gel GF254 (Merck) plates. Melting 
points were determined by open glass capillary method 
and are uncorrected. IR spectra in KBr were recorded on a 
Perkin-Elmer 993 IR spectrophotometer, 1HNMR and 13C 
NMR spectra were recorded on a Bruker AVII 400 and 
100 MHz spectrometer in DMSO-d6 using TMS as inter-
nal reference with chemical shift value being reported 
in ppm. All coupling constants (J) have been reported in 
Hertz (Hz).

2.2 � General Method for the Synthesis of Benzo[a]
pyrano[2,3‑c]phenazine Derivatives (5a‑p)

To a homogeneous solution of β-cyclodextrin (20 mol%) 
in 15 ml of ethanol:water (1:1) at 70 °C, 1.0 mmol of 
2-hydroxynaphthalene-1,4-dione (1), o-phenylenediamine 
(2), aromatic aldehyde (3) and malononitrile (4) were 
added and stirred until the completion of reaction (moni-
tored by TLC) then water (10 ml) was added. Product was 
precipitated out which was filtered off by using Whatman 
filter paper. The crude product was purified by column 
chromatography by using ethyl acetate and hexane as elu-
ent. All the desired products were known and were char-
acterized by the comparison of their spectra and melting 
points with those reported in the literature [37–47].

2.3 � Spectral Data of Compounds

2.3.1 � 3‑Amino‑1‑phenyl‑1H‑benzo[a]pyrano[2,3‑c]
phenazine‑2‑carbonitrile (5a)

Yellow solid, M.P.: 297–299 °C; IR (KBr) ν (cm−1): 3440, 
3315, 3171, 2183, 1652, 1626, 1595, 1544, 1491, 1477, 
1400, 1381, 1353, 1322, 1263, 1165, 1121, 1048, 1021, 759, 
731, 704; 1H NMR (400 MHz, DMSO-d6) δ: 9.15 (d, 1H, 
J = 7.6 Hz), 8.40 (d, 1H, J = 8.0 Hz), 8.23–8.20 (m, 1H), 
8.10–8.07 (m, 1H), 8.01–7.91 (m, 4H), 7.42–7.38 (m, 4H), 
7.22 (t, 2H, J = 7.6 Hz), 7.10–7.06 (m, 1H), 5.43 (s, 1H); 13C 
NMR (100 MHz, DMSO-d6) δ: 159.6, 146.5, 145.2, 141.2, 
140.2, 140.1, 139.5, 130.5, 130.3, 130.1, 129.7, 129.2, 
129.0, 128.4, 128.1, 127.3, 126.3, 125.2, 124.4, 122.0, 
120.3, 113.6, 58.0, 37.1; MS (ESI) m/z: 400.

2.3.2 � 3‑Amino‑1‑(4‑chloro‑phenyl)‑1H‑benzo[a]
pyrano[2,3‑c]phenazine‑2‑carbonitrile (5b)

Yellow solid, M.P.: 286–289  °C; IR (KBr) ν (cm−1): 
3449, 3304, 3170, 2181, 1658, 1621, 1590, 1483, 1470, 
1400, 1381, 1345, 1322, 1288, 1262, 1160, 1101, 1081, 
1049, 1012, 843, 756, 747; 1H NMR (400 MHz, DMSO-
d6) δ: 9.29–9.27 (d, 1H, J = 8.76  Hz), 8.49–8.47 (d, 
1H, J = 8.6 Hz), 8.33–8.31 (m, 1H), 8.21–8.18 (m, 1H), 
8.05–7.94 (m, 4H), 7.47–7.45 (m, 4H), 7.31–7.28 (m, 2H), 
5.55 (s, 1H); 13C NMR (100 MHz, DMSO-d6) δ: 159.6, 
152.0, 144.1, 140.3, 139.6, 131.1, 130.6, 130.2, 130.1, 
130.0, 129.3, 129.1, 128.4, 128.0,125.3, 124.4, 122.0, 120.1, 
113.1, 57.3; MS (ESI) m/z: 434.

2.3.3 � 3‑Amino‑1‑(2‑chlorophenyl)‑1H‑benzo[c]
pyrano[2,3‑c]phenazine‑2‑carbonitrile (5c)

Yellow solid, M.P.: 300–302 °C; IR (KBr) ν (cm−1): 3331, 
3237, 3144, 2981, 1653, 1581, 1472, 1383, 1271, 1153, 
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1038, 950, 831, 755; 1H NMR (400 MHz, DMSO-d6) δ: 
9.27 (d, 1H, J = 8.0 Hz), 8.48 (d, 1H, J = 8.0 Hz), 8.30–8.27 
(m, 1H), 8.04–7.93 (m, 3H), 7.93–7.90 (m, 2H), 7.42–7.40 
(m, 1H), 7.34 (s, 2H), 7.23–7.21 (m, 1H), 7.13–7.09 (m, 
2H), 6.01 (s, 1H); 13C NMR (100 MHz, DMSO-d6) δ: 170.1, 
159.1, 146.3, 142.3, 141.2, 140.3, 140.0, 139.6, 132.0, 
130.6, 130.3, 130.1, 130.0, 129.2, 129.1, 129.0, 128.3, 
128.0, 127.1, 125.2, 124.5, 122.1, 119.2, 112.7, 56.6, 36.5; 
MS (ESI) m/z: 434.

2.3.4 � 3‑Amino‑1‑(2,4‑dichlorophenyl)‑1H‑benzo[a]
pyrano[2,3‑c]phenazine‑2‑carbonitrile (5d)

Brown solid, M.P.: 305–308 °C; IR (KBr) ν (cm−1): 3471, 
3310, 3162, 3063, 2181, 1653, 1620, 1584, 1463, 1400, 
1381; 1H NMR (400  MHz, DMSO-d6) δ: 9.17 (d, 1H, 
J = 8.0 Hz), 8.40 (d, 1H, J = 8.0 Hz), 8.19–8.21 (m, 1H), 
7.86–8.02 (m, 5H), 7.51 (s, 1H), 7.38 (s, 2H), 7.18 (d, 1H, 
J = 8.0 Hz), 7.11 (d, 1H, J = 8.0 Hz), 5.82 (s, 1H); MS (ESI) 
m/z: 469.

2.3.5 � 3‑Amino‑1‑(4‑bromo‑phenyl)‑1H‑benzo[a]
pyrano[2,3‑c]phenazine‑2‑carbonitrile (5e)

Yellow solid, M.P.: 281–283 °C; IR (KBr) ν (cm−1): 3464, 
3311, 3171, 2184, 1657, 1621, 1588, 1400, 1381, 1346, 
1327, 1289, 1219, 1161, 1101, 1051, 1007, 841, 753, 676; 
1H NMR (400  MHz, DMSO-d6) δ: 9.25-9.21 (m, 1H), 
8.46–8.44 (m, 1H), 8.30–8.27 (m, 1H), 8.18–8.13 (m, 1H), 
8.03–7.91 (m, 4H), 7.44–7.40 (m, 4H), 7.37–7.35 (m, 2H), 
5.50 (s, 1H); MS (ESI) m/z: 479.

2.3.6 � 3‑Amino‑1‑(3‑bromophenyl)‑1H‑benzo[a]
pyrano[2,3‑c] Phenazine‑2‑carbonitrile (5f)

Brown solid, M.P.: 266–268 °C; IR (KBr) ν (cm−1): 3481, 
3300, 3165, 3057, 2191, 1658, 1622, 1587, 1467, 1381; 
1H NMR (400 MHz, DMSO-d6) δ: 9.20–9.24 (m, 1H), 
8.41–8.46 (m, 1H), 8.26–8.30 (m, 1H), 8.12–8.15 (m, 1H), 
7.93–8.00 (m, 4H), 7.60–7.62 (m, 1H), 7.45–7.48 (m, 2H), 
7.39–7.43 (m, 1H), 7.27–7.31 (m, 1H), 7.17–7.21 (m, 1H), 
5.49 (s, 1H); MS (ESI) m/z: 479.

2.3.7 � 3‑Amino‑1‑(4‑methoxyphenyl)‑1H‑benzo[a]
pyrano[2,3‑c]phenazine‑2‑carbonitrile (5 g)

Yellow solid, M.P.: 268–270 °C; IR (KBr) ν (cm−1): 3428, 
3311, 3191, 3041, 2190, 1661, 1592, 1503, 1381; 1H NMR 
(400 MHz, DMSO-d6) δ: 9.25 (d, 1H, J = 8.0 Hz), 8.44 (d, 
1H, J = 8.0 Hz), 8.28–8.30 (m, 1H), 8.19–8.21 (m, 1H), 
7.93–7.98 (m, 4H), 7.31 (d, 2H, J = 8.0 Hz), 7.17–7.19 (m, 
2H), 6.75 (d, 2H, J = 8.0 Hz), 5.48 (s, 1H), 3.60 (s, 3H); MS 
(ESI) m/z: 430.

2.3.8 � 3‑Amino‑1‑(2‑methoxy‑phenyl)‑1H‑benzo[a]
pyrano[2,3‑c]phenazine‑2‑carbonitrile (5 h)

Yellow solid, M.P.: 268–270 °C; IR (KBr) ν (cm−1): 3309, 
3169, 3051, 2827, 2181, 1652, 1621, 1591, 1484, 1471, 
1452, 1395, 1381, 1347, 1327, 1287, 1247, 1161, 1100, 
1048, 1021, 829, 751; 1H NMR (400 MHz, DMSO-d6) δ: 
9.25–9.23 (m, 1H), 8.47–8.45 (m, 1H), 8.28–8.24 (m, 1H), 
8.05–7.88 (m, 5H), 7.20 (s, 2H), 7.11-7.04 (m, 2H), 6.94 (d, 
1H, J = 7.6 Hz), 6.75–6.71 (m, 1H), 5.84 (s, 1H), 3.85 (s, 
3H); MS (ESI) m/z: 430.

2.3.9 � 3‑Amino‑1‑(3‑methoxyphenyl)‑1H‑benzo[a]
pyrano[2,3‑c]phenazine‑2‑carbonitrile (5i)

Yellow solid, M.P.: 236–241 °C; IR (KBr) ν (cm−1): 3416, 
3336, 3211, 2189, 1661, 1591, 1487, 1381; 1H NMR 
(400 MHz, DMSO-d6) δ: 9.20 (d, 1H, J = 8.0 Hz), 8.41 (d, 
1H, J = 8.0 Hz), 8.23–8.26 (m, 1H), 8.13–8.16 (m, 1H), 7.97 
(t, 2H, J = 8.0 Hz), 7.91–7.92 (m, 2H), 7.39 (s, 2H), 7.11 (t, 
1H, J = 8.0 Hz), 7.00 (s, 1H), 6.90 (d, 1H, J = 8.0 Hz), 6.65 
(d, 1H, J = 8.0 Hz), 5.46 (s, 1H), 3.65 (s, 3H); MS (ESI) 
m/z: 430.

2.3.10 � 3‑Amino‑1‑p‑tolyl‑1H‑benzo[a]pyrano[2,3‑c]
phenazine‑2‑carbonitrile (5j)

Yellow solid, M.P.: 291–293 °C; IR (KBr) ν (cm−1): 3439, 
3307, 3171, 2183, 1657, 1621, 1591, 1492, 1471, 1394, 
1380, 1346, 1322, 1286, 1261, 1219, 1157, 1101, 1051, 
1018, 826, 753, 741; 1H NMR (400 MHz, DMSO-d6) δ: 
9.22 (d, 1H, J = 8.0 Hz), 8.43–8.42 (m, 1H), 8.27–8.24 (m, 
1H), 8.16–8.13 (m, 1H), 8.01–7.90 (m, 4H), 7.32–7.26 (m, 
4H), 7.01 (d, 2H, J = 8.0 Hz), 5.45 (s, 1H), 2.13 (s, 3H); 13C 
NMR (100 MHz, DMSO-d6) δ: 168.0, 164.1, 159.5, 150.1, 
146.2, 141.3, 140.0, 135.3, 130.6, 129.9, 129.3, 129.0, 
128.7, 127.4, 125.5, 123.4, 122.0, 118.1, 58.1, 36.9, 20.3; 
MS (ESI) m/z: 414.

2.3.11 � 3‑Amino‑1‑(4‑nitro‑phenyl)‑1H‑benzo[a]
pyrano[2,3‑c]phenazine‑2‑carbonitrile (5 k)

Yellow solid, M.P.: 280–282 °C; IR (KBr) ν (cm−1): 3327, 
3311, 3249, 3195, 2194, 1671, 1588, 1510, 1471, 1399, 
1381, 1341, 1289, 1261, 1215, 1162, 1103, 1049, 1021, 
823, 768, 741; 1H NMR (400 MHz, DMSO-d6) δ: 9.26 (d, 
1H, J = 7.6 Hz), 8.48 (d, 1H, J = 8.0 Hz), 8.30-8.28 (m, 1H), 
8.15–8.13 (m, 1H), 8.10 (d, 2H, J = 8.4 Hz), 8.05–7.91 (m, 
4H), 7.70 (d, 2H, J = 8.8 Hz), 7.54 (s, 2H), 5.66 (s, 1H); MS 
(ESI) m/z: 445.
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2.3.12 � 3‑Amino‑1‑(3‑nitro‑phenyl)‑1H‑benzo[a]
pyrano[2,3‑c]phenazine‑2‑carbonitrile (5 l)

Yellow solid, M.P.: 276–278 °C; IR (KBr) ν (cm−1): 3421, 
3333, 3194, 2187, 1661, 1625, 1591, 1521, 1492, 1471, 
1397, 1384, 1341, 1288, 1261, 1161, 1102, 1049, 1022, 
808, 758, 726, 692; 1H NMR (400 MHz, DMSO-d6) δ: 9.11 
(d, 1H, J = 7.6 Hz), 8.40 (d, 1H, J = 8.0 Hz), 8.28 (s, 1H), 
8.20–8.12 (m, 1H), 8.05–8.03 (m, 1H), 7.98–7.95 (m, 2H), 
7.90–7.86 (m, 4H), 7.53–7.51 (m, 3H), 5.57 (s, 1H); MS 
(ESI) m/z: 445.

2.3.13 � 3‑Amino‑11,12‑dimethyl‑1‑phenyl‑1H‑benzo[a]
pyrano[2,3‑c]phenazine‑2‑carbonitrile (5 m)

Yellow solid, M.P.: 295–297 °C; IR (KBr) ν (cm−1): 3471, 
3291, 3174, 3023, 2186, 1659, 1631, 1593, 1491, 1385, 
1338, 1291, 1262, 1203, 1162, 1105, 1054, 1023, 997, 
861, 762; 1H NMR (400 MHz, DMSO-d6) δ: 9.11 (d, 1H, 
J = 8.0 Hz), 8.39 (d, 1H, J = 8.0 Hz), 7.97–7.85 (m, 3H), 
7.69 (s, 1H), 7.37–7.34 (m, 4H), 7.21 (t, 2H, J = 7.6 Hz), 
7.07 (t, 1H, J = 7.6 Hz), 5.41 (s, 1H), 2.42 (s, 6H); MS (ESI) 
m/z: 428.

2.3.14 � 3‑Amino‑11,12‑dimethyl‑1‑(4‑nitro‑phenyl)‑1H‑ben
zo[a]pyrano[2,3‑c]phenazine‑2‑carbonitrile (5n)

Yellow solid, M.P.: 296–298 °C; IR (KBr) ν (cm−1): 3491, 
3319, 3163, 2185, 1656, 1629, 1587, 1509, 1469, 1382, 
1341, 1294, 1205, 1165, 1105, 1053, 1021, 853, 824, 
756, 711; 1H NMR (400 MHz, DMSO-d6) δ: 9.10 (dd, 
1H, J = 0.8 Hz, 8.0 Hz), 8.40 (dd, 1H, J = 1.2 Hz, 8.0 Hz), 
8.10–8.06 (m, 2H), 8.00–7.90 (m, 2H), 7.84 (s, 1H), 
7.63–7.59 (m, 3H), 7.53 (s, 2H), 5.47 (s, 1H), 2.45 (s, 3H), 
2.43 (s, 3H); MS (ESI) m/z: 473.

2.3.15 � 3‑Amino‑11,12‑dimethyl‑1‑(4‑bromo‑phenyl)‑1H‑b
enzo[a]pyrano[2,3‑c]phenazine‑2‑carbonitrile (5o)

Yellow solid, M.P.: 293–295 °C; IR (KBr) ν (cm−1): 3471, 
3361, 3173, 2181, 1657, 1616, 1591, 1480, 1403, 1383, 
1341, 1292, 1261, 1204, 1161, 1103, 1055, 1008, 858, 
824, 759; 1H NMR (400 MHz, DMSO-d6) δ: 9.20–9.18 (m, 
1H), 8.44–8.42 (m, 1H), 8.00–7.91 (m, 3H), 7.83 (s, 1H), 
7.41–7.38 (m, 4H), 7.35–7.31 (m, 2H), 5.45 (s, 1H), 2.48 (s, 
3H), 2.49 (s, 3H); MS (ESI) m/z: 507.

2.3.16 � 3‑Amino‑11,12‑dimethyl‑1‑(3‑nitro‑phenyl)‑1H‑ben
zo[a]pyrano[2,3‑c]phenazine‑2‑carbonitrile (5p)

Yellow solid, M.P.: 275–277 °C; IR (KBr) ν (cm−1): 3472, 
3329, 3201, 2198, 1711, 1662, 1627, 1590, 1525, 1470, 
1387, 1341, 1293, 1264, 1203, 1163, 1100, 1049, 871, 763, 

722; 1H NMR (400 MHz, DMSO-d6) δ: 9.22–9.20 (m, 1H), 
8.47–8.45 (m, 1H), 8.25 (t, 1H, J = 2.0 Hz), 8.03–7.91 (m, 
5H), 7.87 (s, 1H), 7.56 (d, 1H, J = 8.0 Hz), 7.53 (s, 2H), 5.69 
(s, 1H), 2.53 (s, 3H), 2.51 (s, 3H); MS (ESI) m/z: 473.

3 � Results and Discussion

In our initial quest for the optimization of the reaction con-
ditions, we chose 2-hydroxynaphthalene-1,4-dione (1), 
o-phenylenediamine (2a), 4-Chlorobenzaldehyde (3b) and 
malononitrile (4) as model substrates for the synthesis of 
Benzo[a]pyrano[2,3-c]phenazine (5a). Initially, due to envi-
ronmental concerns we chose water in place of widely used 
organic solvents as reaction medium. Throughout optimiza-
tion studies, we scrutinized the effect of different catalysts, 
solvents and temperature on our model reaction. The results 
have been recapitulated in (Table 1).

In our preliminary pursuit, we took 2-hydroxynaphtha-
lene-1,4-dione (1, 1.0 mmol) and o-phenylenediamine (2a, 
1.0 mmol) in the absence of catalyst at room temperature 
using water as a solvent and found that product was not 
formed even after 24 h of stirring (Table 1, entry 1). After 
this, we attempted the same reaction at 70  °C, yet again 
formation of product did not take place effectively (Table 1, 
entry 2). In our next endeavour we used some phase transfer 
catalysts like cetyltrimethylammonium bromide (CTAB), 
tetradecyltrimethylammonium bromide (TTAB) and sodium 
dodecylsulfate (SDS) and observed that the product was 
formed in very small amount after 12 h of stirring (Table 1, 
entries 3–5). After that we tried our reaction with cyclodex-
trins (Table 1, entries 6–8) and observed that β-cyclodextrin 
in presence of water as a solvent at 70 °C gave the best result 
with 82% yield of the product within 1 h (Table 1, entry 7).

Once an apposite green catalyst had been recognized for 
fostering this reaction, we carried out a batch of experiments 
in presence of different solvents at 70 °C in order to inspect 
the effect of different solvents on the course of the reaction 
(Table 1, entries 9–15) and found that EtOH:H2O (1:1) as 
a solvent is the most appropriate for our proposed pathway 
(Table 1, entry 10). Subsequently, we performed a set of 
reactions with different concentrations of β-cyclodextrin 
(Table 1, entries 10 and 16–18) and concluded that 20 mol% 
of β-cyclodextrin is relevant for the present strategy which 
afforded a 91% yield of product (Table 1, entry 10).

Further, our ensuing effort involved the optimization of 
temperature for the current protocol (Table 1, entries 10 and 
19–21). At first, we carried out the reaction at room tempera-
ture which gave only 25% yield of product in 12 h (Table 1, 
entry 19). Further we carried out the present protocol with 
50 °C, 70 °C and 80 °C and the yield of product clearly 
demonstrated that 70 °C is the most suitable temperature for 
our synthetic strategy (Table 1, entry 10).
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Consequently we managed to identify the optimized 
reaction conditions for the present transformation. Our 
reaction works well by using 20 mol% of β-cyclodextrin in 

EtOH:H2O (1:1) solvent at 70 °C, affording 91% yield of the 
product within 1 h with our model substrates.

Once the perfect reaction conditions had been identi-
fied, in order to ensure the versatility and generality of the 

Table 1   Optimization of reaction conditions 

Bold indicates the most suitable reaction condition for our proposed pathway
All reactions were carried out stirring with 1 (1.0 mmol) 2a (1.0 mmol) 3a (1.0 mmol) and 4 (1.0 mmol) using different solvent and catalyst 
under air at 70 °C
a Isolated yields
b absence of catalyst
c at rt
d not detected
e at 50 °C
f at 80 °C

Entry Solvent Catalyst Concentration (mol 
%)

Time (h) Yield (%)a

1 Water –b,c – 24 –d

2 Water –b – 24 Trace
3 Water Cetyltrimethylammonium bromide 20 12 34
4 Water Tetradecyltrimethylammonium bromide 20 12 12
5 Water Sodium dodecylsulfate 20 12 10
6 Water α-Cyclodextrin 20 6 42
7 Water β-Cyclodextrin 20 1 82
8 Water γ-Cyclodextrin 20 6 40
9 EtOH β-Cyclodextrin 20 1 72
10 EtOH:H2O (1:1) β-Cyclodextrin 20 1 91
11 EtOH:H2O (2:1) β-Cyclodextrin 20 1 80
12 EtOH:H2O (3:1) β-Cyclodextrin 20 1 77
13 MeOH β-Cyclodextrin 20 12 59
14 CH3CN β-Cyclodextrin 20 12 37
15 DMF β-Cyclodextrin 20 12 29
16 EtOH:H2O (1:1) β-Cyclodextrin 10 1 78
17 EtOH:H2O (1:1) β-Cyclodextrin 30 1 91
18 EtOH:H2O (1:1) β-Cyclodextrin 40 1 91
19 EtOH:H2O (1:1) β-Cyclodextrinc 20 12 25
20 EtOH:H2O (1:1) β-Cyclodextrine 20 1 67
21 EtOH:H2O (1:1) β-Cyclodextrinf 20 1 91
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proposed synthesis, the scope of the reported synthetic 
strategy was successfully evaluated (Scheme 2). We used 
different derivatives of o-phenylenediamine (2) and aro-
matic aldehydes (3) to achieve the illustrated pathway for 
the formation of target product (5a-p) in good to excellent 
yields. To our gratification, aromatic aldehydes (3) having 
both an electron withdrawing group and an electron donat-
ing group were well endured and afforded a significant 
yield of the product in all the instances.

3.1 � Practicability of the Reaction

To set up the feasibility of the current protocol, we car-
ried out the experiment on a large scale. For this we took 
our model substrates in a round bottom flask in presence 
of β-cyclodextrin in EtOH:H2O (1:1) solvent at 70  °C. 
2-hydroxynaphthalene-1,4-dione (1, 10 mmol, 1.7415 g), 
o-phenylenediamine (2a, 10 mmol, 1.081 g), 4-chloroben-
zaldehyde (3a, 10 mmol, 1.40 g) and malononitrile (4, 

Scheme 2   Substrate scope for 
5. All reactions were carried 
out stirring with 1 (1.0 mmol), 
2 (1.0 mmol), 3 (1.0 mmol) and 
4 (1.0 mmol) using 20 mol% 
β-Cyclodextrin as catalyst in 
EtOH:H2O (1:1) solvent under 
air at 70 °C.
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10 mmol) were reacted to obtain the dihydropyrano[2,3-c]
pyrazole (5b) in 91% yield in about 50 min by using com-
mon laboratory glasswares at 70 °C (Scheme 3).

3.2 � Recyclability of β‑CD

The reusability of catalyst was explored by investigating 
it’s activity in six cycles in which the initial use of fresh 
catalyst for the synthesis of Benzo[a]pyrano[2,3-c]phena-
zine was also taken into account. In each cycle, the catalyst 
was almost quantitatively recovered and even after third and 
fourth use there was a negligible decrease in the quantity 
and in the effectiveness of the catalyst but after fourth cycle 
there was appreciable decrease in the quantity and in the 
effectiveness of the catalyst (Fig. 3).

3.3 � Mechanism

A plausible reaction mechanism reconcilable with the above 
results is depicted in Scheme 4. The desired product is 
expected to form by the Knoevenagel condensation followed 
by Michael addition and at last cyclization within the cavity 
of β-CD where it is anticipated that seven free primary –OH 
groups of β-CD execute synergistically as a proficient host 
and supramolecular catalyst [54, 55]. Reactants may form 
reversible non covalent supramolecular complexes within 
the cavity in order to increase the localized concentration 
that results in the dissolution of reactants in the aqueous 
medium. Initially, the condensation of 2-hydroxynaphtha-
lene-1,4-dione (1) and diamine (2) takes place to afford the 
intermediate A. Similar condensation of aldehyde (3) and 
malanonitrile (4) occurs to form the intermediate B. After 
that, intermediate A reacts with intermediate B via Michael 
addition to yield an intermediate C. Finally, intermediate C 
undergo cyclization to afford the desired product 5.

4 � Conclusion

In conclusion, we have reported a facile and convenient 
new pathway for the one-pot, multicomponent, sustainable 
green synthesis of highly functionalized and efficacious bio-
logically significant scaffold Benzo[a]pyrano[2,3-c]phena-
zine and its derivatives in ethanol:water solvent at 70 °C 
in the catalytic activity of β-cyclodextrin. To the best of 
our knowledge this is the first synthesis of the title com-
pound. The utilization of biodegradable, environmentally 
benign supramolecular catalyst as a recyclable catalyst 
and EtOH:H2O mixed green solvent system has engrossed 
substantial attention and has emerged as a hallmark of this 
transformation. The other key attributes of the disclosed pro-
tocol are operational feasibility, short reaction time, simple 
workup procedure, good to excellent yields of the product 
and easy recovery plus reusability of the catalyst. All these 
traits ascertain the disclosed methodology as superior to the 
previously reported methods.

Scheme 3   Practicability of the 
Present methodology
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