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Abstract
The biosynthesis of Pt-nanoparticles (Pt NPs) supported on bovine bone powder was conducted by an environmentally 
friendly method that consists on immersing bovine bone powder into a Pt4+ metal ion solution at room temperature, atmos-
pheric pressure and subsequent reduction by Heterotheca inuloides. It is worth pointing out that a calcination process is not 
required for the synthesis of this catalyst by the method reported herein. The nanocomposite was characterized by transmis-
sion electron microscopy (TEM), which revealed uniformly dispersed platinum nanoparticles with quasi-spherical form and 
average particle size of 7.1 nm. The XPS studies exhibited the presence of 47.62% Pt° and 51.84% PtO. The catalyst activity 
was tested in the selective hydrogenation of 2-butyne-1,4-diol towards 2-butene-1,4-diol. The nanocomposite exhibits a 
reasonable catalytic performance with nearly 100% conversion of the alkyne and 96% selectivity towards 2-butene-1,4-diol.
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1  Introduction

In the last decades, the study of nanostructured systems 
has been conducted by different research groups. This is 
because such systems exhibit unique properties that allow 
them to be applied in different areas like catalysis, health 
care and others [1–4].

In the context of nanoparticles synthesis, special atten-
tion has been given to the use of environmentally friendly 
reagents and materials in order to increase the sustainabil-
ity of the synthesis process [4]. Actually, it can be said that 
green chemistry is the goal of many researchers around the 
globe [1, 3–10]. It is of special interest the supports where 
nanoparticles are dispersed [5, 11–17]. Support materials 
such as silica [14], amorphous titania, cellulose [2], nylon, 
hexylamine and calcite (CaCO3), among others, have been 
used [2, 11, 13]. The use of bio-supports such as cork [15], 
cotton [11, 16], bone [12] and shells, results in a rela-
tively low-cost, renewable and environmentally friendly 
way of supporting metal nanoparticles [12–16]. For exam-
ple, the one-step synthesis of platinum nanoparticles sup-
ported on wood has been reported. This was conducted 
by using hydroxyl groups (OH−) as reducing agent. The 
synthesized nanomaterial exhibited a high and relatively 
stable activity in the catalytic reduction of p-nitrophenol 
[17]. In the present investigation, bovine bone powder was 
used as support. This material is constituted by 60–70% 
hydroxyapatite [Ca10(PO4)6(OH)2]. This is advantageous 
since the OH− and PO4

3− groups work as binding sites for 
the metal nanoparticles. In addition, bovine bone powder 
is a low-cost, easy-to-treat, biodegradable and renewable 
material. Furthermore, hydroxyapatite importantly con-
tributes to the mechanical strength, chemical stability at 
extreme pH and thermal stability of the synthesized com-
posite. At the same time, hydroxyapatite works as a nano-
reactor and provides of stability to nanoparticles, improv-
ing the catalytic effect.

Different methods (laser ablation or chemical meth-
ods) have been used to obtain metal nanoparticles. In 
this sense, several investigations have reported biological 
methods to reduce metal nanoparticles using bioreducers 
such as honey [18], saffron [19], tannins [20], nopal [21], 
caliandra [21], Camellia sinenses [22], fruits [23], chili, 
bacteria, alfalfa, among many others [4, 18, 19, 22–24]. 
In this sense, plant extracts containing bioactive particles 
such as alkaloids, phenolic acids, polyphenols, benzoic 
acid, coffeic acid and proteins, have been reported [11, 
20, 21, 25–27] to play an important role in reducing and 
stabilizing metallic ions. It is also well known that the use 
of typical chemical methods leads to toxic products for 
both, environment and humans [4, 28]. On the other hand, 
the known advantages of biosynthesis or green synthesis 

are economic viability, environmentally friendly, easily 
scalable, and that can be performed at room temperature 
and atmospheric pressure. In this research, Heterotheca 
inuloides (Mexican arnica) was assessed as reducing agent 
to synthesize platinum nanoparticles on bovine bone in 
order to prove that this biosynthesis is low-cost, sim-
ple, friendly to the environment (the only used solvent 
is water and strong reducing agents are not required). In 
addition, the catalytic activity of the as-prepared material 
was assessed in the hydrogenation of 2-butyne-1,4-diol 
towards 2-butene-1,4-diol.

2 � Materials and Methods

2.1 � Pt/Bovine Bone Biosynthesis

The precursor compound of platinum nanoparticles was 
PtCl4. A 1 mM solution was prepared with 50 mL of deion-
ized water (solution 1). Solution 2 was prepared by boiling 
during 5 min in an Erlenmeyer flask, 1 g of dried H. inu-
loides with 100 mL of distilled water. In order to prepare the 
support, a bovine femur was washed, cleaned and immersed 
in a 0.01 M HCl solution. Later, the support was dried in an 
oven at 40 °C for 24 h, then it was crushed and sieved by 
using a 170 mesh. 975 mg of the so obtained powder was 
added to solution 1 and after 30 s, the powder was filtered. 
The reduction of Pt(IV) ions was carried out with solution 
2 during 1 h and then filtered. The resulting material was 
dried at room temperature overnight. Calcination is a com-
mon practice in the synthesis of heterogeneous catalysts, in 
this case, however, it is worth noticing that the synthesized 
composite was not calcined at any time. A micellar activity 
might also be expected since the micelle formation of sepia 
cartilage collagen solutions has been previously reported 
[29].

2.2 � Characterization

Transmission electronic microscopy (TEM) and selected 
area electron diffraction (SAED) studies were carried out 
using a JEOL JEM-2100 microscope operating at 200 kV 
accelerating voltage. The platinum-impregnated bovine bone 
powder was suspended in 2-propanol and then ultrasonically 
dispersed for 5 h at room temperature. A drop of this suspen-
sion was then placed on a Cu-grid coated with a holey car-
bon film. Also, the supported platinum nanoparticles were 
analyzed by SEM technique.

The X-ray photoelectronic spectroscopy (XPS) analy-
sis was carried out in a JEOL JPS-9200 equipped with a 
Mg source (1253.5 eV), operating at 200 W and vacuum of 
1 × 10−8 Torr. For all samples, the analysis area was 1 mm2. 
The specsurf™ software was used to analyze the results. 
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Charge correction was done based on the adventitious car-
bon signal (C 1s) at 284.5 eV. Shirley method was used for 
background adjustment, whereas Gauss-Lorentz method was 
used for curve fitting.

2.3 � Hydrogenation of 2‑Butyne‑1,4‑diol

The hydrogenation of 2-butyne-1,4-diol was carried out in a 
300 mL stainless-steel Parr reactor equipped with a tempera-
ture control system, a mechanical stirrer, pressure indicator, 
an inner heating/cooling coil system and sampling valve. A 
reservoir for H2 gas was used along with a constant pres-
sure regulator to supply hydrogen at a constant pressure to 
the reactor.

In a typical hydrogenation experiment, 150 mL of 20% 
w/w aqueous 2-butyne-1,4-diol solution and 0.215 g of Pt-
supported catalyst were loaded into the reactor. The initial 
concentration of the alkyne was 0.1 mol/L. The reactor was 
first flushed with nitrogen and then with hydrogen. After the 
desired temperature (328 K) was reached, the system was 
pressurized with hydrogen at the required pressure (6 bar) 
and a 550 rpm stirring speed was set at all experiments. 
Samples were obtained every 30 min.

Samples were analyzed by gas chromatography with 
a flame ionization detector using a 456 SCION GC (DB-
WAX 52 column, length 32 m, inner diameter = 0.3 mm) 
and helium (30 mL/min) as a carrier gas, according to previ-
ously reported analysis methods [30–33]. Reaction samples 
were injected into the GC and analyzed under the following 
conditions: temperature detector was set at 518 K, injector 
temperature at 513 K, the initial oven temperature was 353 K 
and this was raised up to 493 K at a rate of 10 K/min. This 
final oven temperature was kept constant for 3 min.

3 � Results and Discussion

3.1 � Characterization

3.1.1 � Transmission Electron Microscopy (TEM) Analysis

Figure 1a–c shows BF-STEM images where the platinum 
nanoparticles supported on bovine bone dust are clearly 
observed. The difference in electronic density allows to 
differentiate the platinum from the support that is consti-
tuted by hydroxyapatite (carbon, calcium, phosphorus and 

Fig. 1   a–c BF-STEM images of 
Pt nanoparticles on bovine bone 
powder, at different magnifica-
tions, d size distribution of 
platinum nanoparticles
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oxygen), BFSTEM shows metallic particles in a darker color. 
The particle size is in the range of 3 to 40 nm, with few 
exemptions that are out of the particle size distribution. The 
images reveal that quasi-spherical Pt NPs with low size and 
low polydispersity are obtained into the bovine bone sur-
face. These images correspond to a randomly chosen part 
of the substrate and can be considered as representative of 
the overall size and shapes of the particles.

These images correspond to Pt nanoparticles on the 
bovine bone powder after 5 h of ultrasonication. The aver-
age diameter of synthesized nanoparticles was found to be 
7.1 nm, taking into account 600 nanoparticles approximately 
(Fig. 1).

The use of bovine bone as catalytic support and H. inu-
loides as reducer is rather novel. This synthesis method is 
relatively low-cost and environmentally friendly since the 
reducer and the support are easily biodegradable, the solvent 
is water and the calcination step followed by reduction with 
hydrogen is eliminated. Moreover, the chemical structure 
of hydroxyapatite can form stable compounds and anchor 
the metal ions.

Figure 2 shows two images of HRTEM where two parti-
cles of platinum supported on bovine bone powder can be 
observed, one of the platinum particles has an interplanar 
distance of 2.25 Å which corresponds to the plane (111) 
for metallic platinum FCC. In the other micrograph, two 
interplanar distances are identified, one with 2.25 Å that 
corresponds to the plane (111) of FCC metallic platinum 
(JCPDS card 00-004-0802) and the other with 2.66 Å that 
corresponds to the plane (101) of tetragonal platinum oxide 
(JCPDS card 00-043-1100). Therefore, it can be concluded 
that the platinum nanoparticles are polycrystalline.

By observing the shape and chemical composition of nan-
oparticles, a fast reduction appears to rule the synthesis of 
platinum nanoparticles with H. inuloides as reducing agent 
since polycrystalline isotropic particles are obtained [34].

In addition, XPS was used to determine the oxidation 
state of the platinum nanoparticles. The narrow spectra in 
the Pt 4f region and its curve fitting, show two oxidation 
states for platinum (Fig. 3). The components at 70.9 eV 
(4f7/2) and 74.4 eV (4f5/2) can be attributed to metallic 
platinum in around 47.62% of the total platinum, the energy 
separation of 4f7/2 and 4f5/2 is 3.5 eV corresponding to 
that reported for platinum, the ratio proportion intensity of 
the orbitals 4f7/2 with respect to 4f5/2 is 4:3 as it could be 
corroborated. The signals at 72.5 eV (4f7/2) and 76.7 eV 
(4f5/2) correspond to 51.84% of the total platinum and can 
be ascribed to platinum oxide. The energy separation of 
4f7/2 and 4f5/2 is 3.1 eV corresponding to that reported 
for platinum, the ratio proportion intensity of the orbitals 
4f7/2 with respect to 4f5/2 is 4:3 as it could be corroborated. 

Fig. 2   HRTEM micrograph Pt-
nanobiocomposite

Fig. 3   XPS spectra corresponding to the 4f5/2 (pink line) and Pt 
4f7/2 (dark green line) regions of the platinum nanoparticles sup-
ported on bovine bone dust
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These results indicate that the reduction of Pt(IV) to Pt° 
indeed took place and that Pt nanoparticles were supported 
onto the bovine bond powder in controlled size and shape.

3.2 � Catalytic Activity

The catalytic activity of the synthesized powder was estab-
lished in the hydrogenation of 2-butyne-1,4-diol. This reac-
tion has been reported to be catalyzed by metallic Pt or Pd 
[32, 33, 35]. Therefore, the exhibited catalytic activity can 
be taken as an additional proof of the presence of metal-
lic nanoparticles obtained by employing the bio-reducer H. 
inuloides. Nevertheless, the XPS results shows the presence 
of oxidized Pt and the catalytic contribution of this specie 
should not be discarded [36]. The referenced reaction has 
been reported to proceed as depicted in Scheme 1. Accord-
ing to this scheme, the consumption of the first hydrogen 
mole leads to the production of the usually desired inter-
mediary, 2-butene-1,4-diol. The further consumption of H2 
produces the saturated diol (butanediol) and by-products like 
crotyl alcohol and/or butanol. Thus, in the context of this 
reaction, achieving a high selectivity towards 2-butene-1,4-
diol, represents a challenge that has been usually addressed 
by adding chemical bases or by modifying the reactor hydro-
dynamics [32]. Figure 4 is the evidence that the synthesized 
material not only exhibits catalytic activity but also a high 
selectivity (0.96) towards the alkene.

The kinetics of the 2-butyne-1,4-diol hydrogenation 
was established by the integral method. A linear relation-
ship between 2-butyne-1,4-diol concentration and reac-
tion time was found when plotting the former versus the 
latter. By doing this, the specific rate constant was found 
to be ko = 0.001 mol/dm3 min. Thus, it can be concluded 
that under the studied conditions, the hydrogenation rate is 
independent of the alkyne concentration (zero order reac-
tion regarding 2-butyne-1,4-diol). This reaction has been 
reported to follow a Langmuir–Hinshelwood mechanism 
when using Pd as active phase [32, 33, 37].

This mechanism suggests that both H2 and the alkyne, are 
chemisorbed and compete for the same type of sites. It has 
been demonstrated [32] though, that the alkyne chemisorbs 
stronger than hydrogen and that olefins. This implies that 
the adsorption equilibrium constant for the alkyne is much 
higher than that of the other compounds. Therefore, the 
adsorption of hydrogen and the products can be neglected 

when the surface coverage by the alkyne is relatively high. 
This results in the zero-order kinetic equation regarding 
2-butyne-1,4-diol [37].

Finally, it is worth noticing that the synthesized catalyst 
consisting on platinum nanoparticles supported on bovine 
bone powder, eliminates the use of base addition to obtain a 
selectivity above 90% in the hydrogenation of 2-butyne-1,4-
diol. For the same reaction, Telkar et al. indicate that with 
1% Pt/CaCO3 they obtained a selectivity of 83% and when 
adding ammonia in the hydrogenation reaction, 100% selec-
tivity is obtained [35]. This suggests that the attained high 
selectivity in this work might be ascribed to an enhanced 
basicity of the biosynthesized catalyst. A heterogeneous 
catalyst selectivity, however, might be influenced by other 
factors like particle size and shape [38]. In this case, as 
we are dealing with nanoparticles, it is very likely that the 
observed high selectivity might also be related to the aver-
age nanoparticle size (7.1 nm). In this regard, it has been 
demonstrated [38] that nanoparticle size might change the 
activation energy of a specific reaction and thus selectivity. 
In the same work [38], it was shown that platinum nano-
particles shape (cubes or cuboctahedra) leads to complete 
different products distribution in the hydrogenation of ben-
zene. Therefore, the fact of having obtained semi-spherical 

Scheme 1   2-butyne-1,4-diol 
hydrogenation scheme [33]. A: 
2-butyne-1,4-diol, B: 2-butene-
1,4-diol, C: butane-1,4-diol, D: 
crotyl alcohol, E: n-butanol

Fig. 4   Concentration and selectivity profiles for the hydrogenation of 
2-butyne-1,4-diol. Reaction conditions: temperature, 328 K; pressure, 
6  bar; initial concentration, 20% aqueous solution of 2-butyne-1,4-
diol; active concentration of the catalyst, 0.215  mg; stirring speed, 
550 rpm; total volume, 1.5 × 10−4 m3
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Pt nanoparticles in this work, might also be influencing the 
selectivity towards the alkene. At the end, it can be said that 
the observed high selectivity is the result of the combined 
effect of support, Pt nanoparticle size and shape. A special 
research work should be dedicated to establishing which of 
these factors affects selectivity the most.

4 � Conclusions

Metallic platinum nanoparticles supported on bovine bone 
powder were synthesized by using as reducing agent H. 
inuloides (Mexican arnica). The average diameter of syn-
thesized nanoparticles was found to be 7.1 nm. The result-
ing bio-nanocomposite exhibits catalytic activity to con-
duct hydrogenation reactions with high selectivity (96.5%) 
towards the intermediary in a consecutive hydrogenation 
reaction.

In addition, it can also be concluded that bovine bone 
powder is an efficient, low-cost support of platinum 
nanoparticles.

This synthesis method presented here is relatively low-
cost and environmentally friendly since the support is a 
waste material, the solvent is water, the calcination step 
is eliminated and the reducing agent is environmentally 
friendly.
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