

MgO Modifying Al₂O₃ to Load Cobalt Oxide for Catalytic N₂O Decomposition

Ye Li1 · Xinping Wang1

Received: 27 February 2019 / Accepted: 8 April 2019 / Published online: 22 April 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Alumina modified by MgO as the catalyst support loading $Co₃O₄$ for the N₂O decomposition were investigated. It was found that MgAl₂O₄ was formed over the alumina surface by the MgO reacting with Al₂O₃ after calcination at 900 °C and using the composited support containing 30 wt% MgO loading Co_3O_4 can effectively suppress undesired $CoAl_2O_4$ formation under 700 °C. In the 20Co/30Mg–Al catalyst, it was found that about half of the cobalt is present as (Co,Mg)O solid solution and the rest exists as $Co₃O₄$, as characterized by Raman spectroscopy and H₂-TPR. The catalyst exhibited much higher and stable activity for the N_2O decomposition compared with the 20Co/Al without MgO modification.

Graphical Abstract

Keywords MgO · Modification · Al_2O_3 support · Co_3O_4 · N_2O decomposition

 \boxtimes Xinping Wang dllgwxp@dlut.edu.cn

1 Introduction

Nitrous oxide (N_2O) is the third most significant anthropogenic greenhouse gas and the largest stratospheric-ozonedepleting substance [\[1](#page-7-0), [2](#page-7-1)]. Nitric and adipic acids plants are the primary industrial contributors emitting this pollutant gas [\[3](#page-7-2)]. Several after-treatment technologies to control of $N₂O$ emission was developed, in which catalytic decomposition of the N_2O is most promising, due to its simplicity, high efficiency, and low energy requirements $[1, 2]$ $[1, 2]$ $[1, 2]$.

State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China

To eliminate the N_2O emitted from nitric acid plants in this approach, a large number of catalysts have been investigated, such as simple and mixed oxides [[4–](#page-7-3)[7](#page-7-4)], spinels $[8-10]$ $[8-10]$, perovskites $[11, 12]$ $[11, 12]$ $[11, 12]$ $[11, 12]$ $[11, 12]$, zeolites $[13, 14]$ $[13, 14]$ $[13, 14]$ $[13, 14]$ as well as supported oxides [\[15](#page-7-11)–[19\]](#page-7-12). In recent years, spinel-type oxides with the chemical formula AB_2O_4 (where $A = Mg$, Ca, Mn, Co, Ni, Cu, Cr, Fe, Zn and $B = Cr$, Fe, Co) as the N₂O decomposition catalyst have attracted increasing interest, due to their adequate thermal stability and catalytic activity [\[20\]](#page-7-13). Among the spinel-type oxides, cobalt spinels are the most promising generic materials for catalyzing the reac-tion [[8\]](#page-7-5). Russo et al. [[20\]](#page-7-13) found that the spinels, $MgCo₂O₄$, $ZnCo₂O₄$ and $Co₃O₄$, with Co at the B sites exhibit high catalytic activity. Stelmachowski et al. [[21](#page-7-14)] explored the impact arisen from the replacement of both the $Co²⁺$ cation at the tetrahedral A site and the Co^{3+} cations at the octahedral B sites in Co_3O_4 by non-redox Mg^{2+} and Al^{3+} cations by means of experimental and theoretical studies, further proposed that the $N₂O$ decomposition is primarily catalyzed by the octahedral Co^{3+} ions, whereas the tetrahedral Co^{2+} ion is essentially less active to the reaction.

Despite the high catalytic activity, the $Co₃O₄$ in the bulk form is limited for practical applications due to its insuffcient mechanical stability and high cost. These drawbacks may be overcome by the dispersion of the spinel over a cheap and mechanically robust carrier. In this regard, there are several investigations in literature concerning the dispersion of the cobalt spinel on alumina [[15](#page-7-11)], zirconia [[16\]](#page-7-15), ceria [\[17\]](#page-7-16) or even on metallic monoliths [\[19](#page-7-12)].

Although alumina was widely known to be one of the industrial catalysts supports due to its easy availability, large surface, advantageous mechanical properties, facile processing and shaping [[22\]](#page-7-17), its strong interaction with the cobalt oxides is much undesirable. As the interaction at high temperature leads to Co ions occupying the inactive A sites i.e. results in the formation of $CoAl₂O₄$ [\[23](#page-7-18)] that is less active for the N_2O decomposition, how to maintain the active state of $Co₃O₄$ on the alumina support become a challenging topic. Jongsomjit et al. found that co-impregnation of ruthenium and cobalt on Al_2O_3 could inhibit the interaction of cobalt oxide with alumina [[24\]](#page-7-19), and zirconia is more effective for blocking the cobalt aluminate formation $[25]$ $[25]$. Based on the studies with and without BaO in the CoO*x*/ Al_2O_3 –BaO catalysts, Liotta et al. reported that BaO has the function of stabilizing the γ-Al₂O₃ phase and suppressing solid state diffusion of $Co²⁺$ ions into alumina bulk phase [\[26](#page-7-21), [27](#page-7-22)]. Grzybek et al. have found that $Co(NO_3)$ ₂ precursor is more favorable than $CoCl₂$ for the cobalt maintaining the active state, $Co₃O₄$, when supported on alumina and calcined at 600 $^{\circ}$ C [[28](#page-7-23)]. They have also found that for the cobalt oxide, using α -Al₂O₃ as support is beneficial to maintain its active state, though the alumina in other phases (γ-, δand θ -Al₂O₃) give rise to high dispersion of the cobalt [\[22](#page-7-17)]. However, in the case of α -Al₂O₃ loading cobalt oxide, the catalyst surface is greatly sacrifced.

The problem that the strong interaction between active species and the support made the activity of the catalyst largely decrease is also exist in the case of alumina loading other transitional oxides. For instance, the NiO/ γ -Al₂O₃ catalyst used for methane combustion is sufered from the inactive NiAl₂O₄ formation. Gayán found that when γ -Al₂O₃ support was coated with MgO and calcined at 800 °C, a stable $MgAl₂O₄$ spinel layer can be produced on the support surface. Using the composited support loading NiO, can efectively minimize the interaction of NiO with the support [[29\]](#page-7-24). In light of this report, we suppose that the MgAl₂O₄ spinel layer on Al_2O_3 support would be able to protect the active $Co₃O₄$ from the strong interaction with support. Hence, this paper investigates the physical and chemical structure as well as the catalytic activity of the Co/Mg–Al catalyst for $N₂O$ decomposition, so as to develop a possible industrial meaning catalyst working at higher temperature.

2 Experimental

2.1 Catalyst Preparation

Al(OH)₃ was prepared by adding $NH₃·H₂O$ to $Al(NO₃)₃·9H₂O$ aqueous solution under drastic stirring, washing the precipitate with distilled water and drying the gel at 110 °C overnight. Based on the $Al(OH)_{3}$, the following diferent materials that were used as supports for loading cobalt oxide were respectively obtained. Alumina was obtained by calcining the $Al(OH)$ ₃ in air at 900 °C for 3 h. The bimetal oxide $xMgO-Al₂O₃$, which is denoted as *x*Mg–Al with MgO weight percent *x*%, were prepared by adding $NH₃·H₂O$ in dropwise into $Al(OH)₃$ slurry that containing desired amount of $Mg(NO₃)₂·6H₂O$ under stirring at 30 °C until the pH of mother liquor reached about 11. The resulting material was then aged for 1 h, washed, dried, and calcined in the same way as that for obtaining the alumina. For a purpose of comparison, magnesium aluminate spinel (MgAl₂O₄) was prepared by adding NH₃·H₂O into an aqueous solution containing stoichiometric amount of $Mg(NO_3)$ ²·6H₂O and Al(NO₃)²·9H₂O, washing, drying and calcining the resulted material in the same way.

 Co_3O_4/Al_2O_3 , $Co_3O_4/MgO-Al_2O_3$ and Co_3O_4/MgO catalysts with desired $Co₃O₄$ weight percent ($y\%$) were respectively prepared by impregnating $Co(NO₃)₂·6H₂O$ on the above mentioned alumina, $xMgO-Al₂O₃$ and a commercial MgO (purchased from Dunhuang chemical plant) at room temperature for 24 h, drying and calcining the resulted material respectively at 110 °C overnight and 700 °C for 3 h. The obtained catalysts were represented as *y*Co/Al, *y*Co/*x*Mg–Al and *y*Co/Mg respectively. For instance, the 3Co/10Mg–Al denotes the catalyst prepared by loading 3 wt% Co_3O_4 on the 10 wt%MgO–Al₂O₃ support. For comparision, pure $Co₃O₄$ was prepared by precipitation method and calcined at 700 °C for 3 h, according to our previous work [\[8](#page-7-5)].

2.2 Catalyst Characterization

X-ray powder difraction (XRD) of the catalysts was carried out on a Rigaku Smartlab 9 X-ray difractometer with Cu Kα radiation (λ =1.5406 Å) at 45 kV and 200 mA. The diffractograms were recorded with step of 0.02° and a speed of 8°/min. BET surface area of each sample was measured on Micromeritics ASAP 2020 through the nitrogen adsorption at −196 °C. Before the measurement, the sample was degassed at 300 °C under vacuum for 10 h. Micro-Raman spectra of the samples were recorded at room temperature using a Thermo Fisher DXR Microscope Raman spectrometer with an excitation wavelength of 532 nm. Diffuse reflectance UV–vis spectra of the samples were recorded on a JASCO V-550 spectrophotometer using $BaSO₄$ as a reference in ambient conditions. Temperature programmed reduction $(H_2$ -TPR) was performed on a ChemBET TPR/TPD Chemisorption Analyzer. 0.050 g sample (with the sieve fraction of 40–60 mesh) was pretreated in 30 vol% O₂/Ar flow at 500 °C for 10 min and cooled to 100 °C. After that, the H₂-TPR profiles were recorded in the 5 vol% H_2 / Ar flow of 100 mL/min at temperature ramp 10 \degree C/min.

2.3 N₂O Decomposition Tests

N₂O decomposition were conducted in a fixed-bed quartz flow reactor loading 0.200 g of catalyst (40–60 mesh). The catalyst was pretreated in Ar at 700 °C for 30 min and then the gas mixture composed of 2000 ppmv N_2O , O_2 (5 vol%, when present), $H₂O$ (2 vol. when present), NO (100 ppmv, when present) in Ar was fed into the reactor with a total flow rate of 50 mL/min. The gas composition was analyzed by gas chromatography equipped with porapak Q column (4 m in length and 3 mm in inner diameter) using TCD as detector. Steady-state activity data were recorded at each temperature descending from 700 to 450 °C or at a constant temperature (for measuring the catalyst durability). N_2O conversion was calculated according to the equation

Conv.% =
$$
\frac{c(N_2O)_{in} - c(N_2O)_{out}}{c(N_2O)_{in}} \times 100\%
$$

3 Results and Discussion

3.1 Alumina Modifed with Diferent Amount of Magnesium Oxide

Figure [1](#page-2-0) shows XRD patterns of the Al_2O_3 , the bimetal oxide 10Mg–Al and 30Mg–Al calcined at 900 °C for 3 h.

For the Al_2O_3 , which give a small specific surface area of 18.06 m²/g, it exhibited sharp peaks due to α -Al₂O₃ and lower peaks arisen from $θ$ -Al₂O₃. Whereas, in the case of 10Mg–Al, which gave a specific surface area of 50.79 m^2/g , no peaks ascribed to $α$ -Al₂O₃ could be observed. Instead, strong peaks due to $MgAl₂O₄$ phase (JCPDS 21-1152) appeared on the sample. Clearly, it is the $MgAl₂O₄$ formation which suppressed the phase transformation from $θ$ - to α -Al₂O₃, though the atomic ratio of Mg/Al is about 0.14 that is much less than the stoichiometric ratio (0.5) of $MgAl₂O₄$. On the 30Mg–Al, the diffraction of $MgAl₂O₄$ became more intensive and besides which some difraction peaks belong to MgO (JCPDS 43-1022) were appeared. It means that 30 wt% of MgO is enough to produce $MgAl₂O₄$ covering the Al_2O_3 surface.

3.2 Chemical State of Cobalt in the 3Co/*x***Mg–Al Infuenced by the Magnesium Oxide Amount**

Figure [2](#page-3-0) shows Raman spectra of 3Co/Al, 3Co/10Mg–Al and 3Co/30Mg–Al in comparison with that of $Co₃O₄$. On the $Co₃O₄$, five Raman peaks at 189, 467, 511, 609 and 672 cm⁻¹ corresponding to the E_g , 3x F_{2g} and A_{1g} vibrational modes of the crystalline [[30](#page-7-25)] appeared. On the 3Co/Al, although the first three peaks belong to the Co_3O_4 crystalline with a slight blue shift could be confrmed, a splitting band of A_{1g} at about 690 cm⁻¹ being associated with the Al³⁺ substituting octahedral Co^{3+} in the spinel structure [\[28](#page-7-23)] clearly appeared. It indicates that both of $Co₃O₄$ and $CoAl₃O₄$ exist in the 3Co/Al. Unexpectedly, the band splitting is more evident for the 3Co/10Mg–Al compared with that of the 3Co/ Al, which indicates that the transformation of the Co_3O_4 to $CoAl₂O₄$ due to the calcination is even more severe for the 3Co/10Mg–Al compared with the 3Co/Al. The same

Fig. 1 XRD patterns of the diferent supports (the data at the brackets corresponding to the BET surface areas)

Fig. 2 Raman spectra of the MgAl₂O₄ (a), Co₃O₄ (b), 3Co/Al (c), 3Co/10Mg–Al (**d**) and 3Co/30Mg–Al (**e**)

conclusion could be obtained from optical difuse refectance spectra of the two samples. As shown in the Fig. [3,](#page-3-1) the characteristic triplet absorption at 1.97, 2.13 and 2.28 eV due to the spin-forbidden ${}^4A_2(F) \rightarrow {}^2T_1(G)$, ${}^2E(G)$, spin-allowed ${}^4A_2(F) \rightarrow {}^4T_1(P)$, and spin-forbidden ${}^4A_2(F) \rightarrow {}^2T_2(G)$ transitions for the tetracoordinated Co^{2+} [\[31](#page-7-26)] is more remarkable for the 3Co/10Mg–Al compared with that of the 3Co/ Al, indicating that there are more $CoAl₂O₄$ existing in the 3Co/10Mg–Al with respect to the 3Co/Al. The more θ -Al₂O₃ phase of the 10Mg–Al compared with the Al_2O_3 should be responsible for the undesired results. In the case of the Al_2O_3 loading $Co₃O₄$ after the calcination, as discussed in the Sect. [3.1](#page-2-1), as the alumina primarily exists as α -Al₂O₃, it properly inhibited the transformation of the $Co₃O₄$ to $CoAl₂O₄$

Fig. 3 The optical difuse refectance spectra of the 3Co/Al and 3Co/10Mg–Al

[[22](#page-7-17)]. Considering that although all of magnesium in the $10Mg-Al$ exist as $MgAl₂O₄$, it could not effectively protect the cobalt from transforming to the $CoAl₂O₄$, 30Mg–Al was investigated as the support to load cobalt oxide. As shown in the Fig. [2](#page-3-0), no Raman bands belong to either $CoAl₂O₄$ or $Co₃O₄$ were observed on the 3Co/30Mg–Al, and instead, two broad absorption bands respectively appeared at about 398 cm−1 and 594 cm−1. The former band can be ascribed to that of $MgAl₂O₄$, because the $MgAl₂O₄$ gave the same band at 398 cm⁻¹ (a, in Fig. [2\)](#page-3-0). Furthermore, it is strongly sup-ported by the literature [\[32](#page-7-27)]. For the band at about 594 cm^{-1} , it can be ascribed to solid solution of (Co,Mg)O, which will be discussed in details below.

It has been reported that the solid solution (Co,Mg)O (JCPDS 02-1201) can be formed from solid-state reaction of cobalt oxide with magnesium oxide [\[33\]](#page-7-28). It was confrmed by the XRD of the MgO and 20Co/Mg samples, as shown in the Fig. [4](#page-3-2). On the 20Co/Mg, the difraction peaks arisen from MgO (or composite metal oxides) clearly shifted to lower angles compared with that of the pure MgO (refer to the insert). For instance, the strongest peak arising from the $(2\ 0\ 0)$ reflection for the pure MgO at 42.90° shifted to 42.83 \textdegree for the 20Co/Mg, corresponding to the Co²⁺ with larger radius (74 pm) replacing the Mg^{2+} with smaller radius (65 pm). Figure [5](#page-4-0) shows the Raman spectra of the 3Co/ Mg and 20Co/Mg samples. It can be seen that the broad band similar to that of the 3Co/30Mg–Al but centered at 579 cm−1 appeared on the both samples and that the intensity of the peak increased with the Co content increasing. These results clearly confrmed that the broad band at about 579 cm⁻¹ is characteristic of the cobalt in the (C_0, Mg) O phase. Hence, the broad band at about 594 cm−1 observed on the 3Co/30Mg–Al can be reasonably assigned to the cobalt in (Co,Mg)O solid solution.

Fig. 4 XRD patterns of the MgO and 20Co/Mg. The insert magnifes the most intensive difraction peak of the two samples

Fig. 5 Raman spectra of the 3Co/Mg and 20Co/Mg

The catalytic activities of the $3Co/xMg-A1$ ($x=0$, 10, 20, 30) with the same cobalt loading amount (3 wt) $Co₃O₄$) are compared (Fig. [6\)](#page-4-1). It generates the activity order 3Co/30Mg–Al>3Co/20Mg–Al>3Co/Al>3Co/10Mg–Al. Clearly, the order can be interpreted well by the primary chemical state of cobalt in the catalysts. The small amount (10 wt%) of MgO addition to the Al_2O_3 support led to marked decrease of the activity, which is associated with the more inactive $CoAl₂O₄$ formation in the 3Co/10Mg–Al. Interestingly, 30 wt% of MgO addition to the Al_2O_3 support made the activity of the corresponding catalyst signifcantly increased. It is in line with the formation of (Co,Mg) O instead of that of $CoAl₂O₄$ in the catalyst, as discussed afore (in Raman spectroscopy). No further activity increasing was observed when the more MgO was used for modifying the Al_2O_3 support, which may be resulted from the large surface area losing of the corresponding catalysts.

Fig. 6 N₂O conversion over the 3Co/*xMg–Al:* (multiple sign) $x=0$, (open triangle) $x = 10$, (open square) $x = 20$, (open circle) $x = 30$

Herein, a recent report given by Klegová et al. [\[18](#page-7-29)] should be noticed, who compared $70\%MgO/30\%Al_2O_3$ and $30\%MgO/70\%Al_2O_3$ loading definite amount of Co_3O_4 (25.2 wt% accounted in Co), in which the Al_2O_3 was used as binder to beneft the support shaping, and found that the $Co_3O_4/70\%MgO/30\%Al_2O_3$ catalyst is more active than the counterpart for the N_2O decomposition. Their results also signifcantly indicate that the cobalt on the MgO surface is more active than that on the Al_2O_3 surface.

3.3 Impact of the Magnesium Oxide on the Activity of the 20Co/30Mg–Al

Figure [7](#page-4-2)a shows the activity variation of the catalysts with the Co_3O_4 loading amount change on the 30Mg–Al. With the $Co₃O₄$ loading amount increase in the range of 3–20 wt%, the N_2O conversion over the catalysts at each reaction temperature greatly increased. However, no significant increase in the N_2O conversion could be observed when the $Co₃O₄$ loading amount was further increased to 30 wt%, which may be resulted from the surface area losing of the 30Co/30Mg-Al $(42.75 \text{ m}^2/\text{g})$ with respect to the 20Co/30Mg-Al (52.93 m^2/g). Based on the results, specific reaction rates of the N_2O decomposition over the

Fig. 7 a N₂O conversion over the *y*Co/30Mg–Al: (plus sign) $y=3$, (open circle) $y=7$, (open triangle) $y=10$, (open square) $y=15$, (open diamond) $y=20$, (filled triangle) $y=30$; **b** The specific reaction rates of the N2O decomposition over the *y*Co/30Mg–Al catalysts at 550 °C in unit amount of Co (r_{Co})

*y*Co/30Mg–Al catalysts at 550 °C in unit amount of Co were calculated (Fig. [7](#page-4-2)b), from which it is can be known that the $20Co/30Mg-A1$ gives an outstanding large N₂O decomposition specifc reaction rate in the unit amount of Co among the catalysts with different $Co₃O₄$ loadings. It indicates that the cobalt component in the 20Co/30Mg–Al works in the highest effectiveness for catalyzing the reaction among the catalysts. From the Raman spectrum (Fig. [8](#page-5-0)), it can be known that part of cobalt exists as (Co,Mg)O solid solution, as discussed in the Sect. [3.2](#page-2-2), and the rest exists as $Co₃O₄$ phase in the 20Co/30Mg–Al. Thus, for the *y*Co/30Mg–Al catalysts, the $N₂O$ decomposition specific reaction rates over them changed with the $Co₃O₄$ loading amount could be explained as follows. When the cobalt oxide loading amount increased in the *y*Co/30Mg–Al in the percent *y*=3–10, the cobalt is primarily present in (Co,Mg)O solid solution, and the average depth of the cobalt location in the solid solution increases, which negatively infuences the specifc reaction rate. Whereas, when the $Co₃O₄$ loading amount further increased, for instance, from 10 wt% to 20 wt%, the $Co₃O₄$ species that is more active than the $(Co, Mg)O$ for the reaction begins to be produced, which interprets why the 20Co/30Mg–Al gives the much higher specifc reaction rate compared to the $yCo/30Mg-Al$ with lower $Co₃O₄$ loading amounts. Based on the above discussion, the chemical structure of the 20Co/30Mg–Al can be schematically represented in Fig. [9.](#page-5-1)

Figure [10](#page-5-2) shows H_2 -TPR profiles of the 20Co/30Mg–Al comparing with those of 20Co/Al and the bulk Co_3O_4 sample. Two hydrogen consumption peaks at 401 and 440 °C appeared on the bulk $Co₃O₄$ sample, which could be respectively ascribed to the reduction of Co^{3+} to Co^{2+} and Co^{2+} to $Co⁰$ [[17\]](#page-7-16). However, on the 20Co/Al, the peaks markedly

Fig. 8 Raman spectra of the *y*Co/30Mg–Al (*y*=3–20), 20Co/Al and $Co₃O₄$

shifted to about 486 and 563 °C and the hydrogen consumption below 440 °C was almost negligible. It reveals that the cobalt in the 20Co/Al is predominantly present as $CoAl₂O₄$ [[23\]](#page-7-18), which is in agreement with that measured by Raman spectroscopy (Fig. [8\)](#page-5-0). Interestingly, it can be found from the fgure, that the primary hydrogen consumption peak over the 20Co/30Mg–Al appeared at 395 °C that is even lower than those on the bulk Co_3O_4 sample. The result indicates that the oxygen ions of the $Co₃O₄$ species in the 20Co/30Mg–Al are more active towards reduction, i.e. Co–O bond in the $Co₃O₄$ species is weaker in somewhat compared with that in the bulk $Co₃O₄$ sample. For the transitional based catalysts, it has been documented that their active sites regeneration concerning the Co–O bond rupture controls $N₂O$ decomposition over the catalysts [\[2](#page-7-1)]. Thus, the activity of the active sites must be refected by temperature of the reduction peak in the H_2 -TPR. In Fig. [10](#page-5-2), it can be also found that the area of the reduction peak for the 20Co/30Mg–Al below 470 °C is about half of the bulk Co_3O_4 . The results indicate that the corresponding portion of the cobalt is present as Co_3O_4 species in the 20Co/30Mg–Al while the rest exists in the state that hardly reduced by H_2 , which is in good consistent with that measured by Raman spectroscopy (Fig. [8](#page-5-0)) and supports the chemical structure of the 20Co/30Mg–Al catalyst illustrated in Fig. [9.](#page-5-1)

Fig. 9 The scheme of the chemical structure of the 20Co/30Mg–Al

Fig. 10 H_2 -TPR profiles of the 20Co/30Mg–Al, 20Co/Al and Co₃O₄ (calcined at 700 °C) normalized in cobalt amount

Fig. 11 N₂O conversion over the 20Co/30Mg–Al (open diamond) and the 20Co/Al (multiple sign)

As expected, the 20Co/30Mg–Al exhibited much higher activity at each reaction temperature compared with the 20Co/Al (Fig. [11](#page-6-0)). For instance, the 20Co/30Mg–Al at 550 °C gave the N₂O conversion of 76% that is about 5 times as high as that of the 20Co/Al under the same reaction conditions.

3.4 Catalytic Performance of the 20Co/30Mg–Al

Figure [12](#page-6-1) shows the N_2O decomposition results of 2000 ppmv $N₂O$ in the presence of some impurities over the 20Co/30Mg–Al catalyst. For the 2000 ppmv N_2O in Ar, the N₂O was completely decomposed at 600 °C. 100 ppmv NO and 5% O₂ existing in the gas stream just made the temperature for the complete N_2O decomposition over the catalyst

Fig. 12 N_2O conversion over the 20Co/30Mg–Al for the feed gas 2000 ppmv N_2O/Ar (multiple sign) in the presence of 100 ppmv NO (open triangle), 5 vol% O_2 (plus sign), 100 ppmv NO+5 vol% O_2 (open square), 2 vol% H_2O (open diamond), 2 vol% $H_2O + 5$ vol% O_2 (open circle) or 2 vol% H_2O+100 ppmv NO+5 vol% O₂ (filled triangle)

Fig. 13 N₂O conversion over the $20Co/30Mg-A1$ at 550 °C changed with time on stream of 2000 ppmv N_2O/Ar

shifted from 600 to 650 °C. In the figure, it can be found that, the impurity gas giving the largest impact on the catalytic activity among the 100 ppmv NO, 5 vol% O_2 and 2 vol% $H₂O$ is the 2 vol% $H₂O$. Nevertheless, the 20Co/30Mg–Al catalyst still completely eliminated the N₂O at 700 $^{\circ}$ C under the most severe condition of the three impurity gases coexisting in the gas stream.

To estimate the industrial potential of using the 20Co/30Mg–Al catalyst processes the $N₂O$ by decomposition, the durability of the catalyst was tested at 550 °C. As shown in Fig. [13](#page-6-2), there was no obvious evidence of catalytic activity lost in the time on stream of 22 h for the catalyst in the 2000 ppmv $N₂O/Ar$, thereby demonstrated that the catalyst has stable catalytic activity for the N_2O decomposition.

4 Conclusions

Using the support of alumina modifed with MgO to load $Co₃O₄$, can effectively avoid undesired $CoAl₂O₄$ formation at high temperature (700 °C) as long as the adequate amount of MgO (ca. 30 wt%) was used in the modifcation. The modification was realized by depositing $Mg(OH)$ ₂ on $Al(OH)$ ₃ and calcining the resulted material at 900 °C. For the 20Co/30Mg–Al catalyst, which was prepared by modifying alumina with 30 wt% MgO and loading 20 wt% Co_3O_4 on the composited support, about half of the cobalt exists as (Co, Mg) O solid solution and the rest exists as $Co₃O₄$ in the catalyst. Almost no $CoAl₂O₄$ was produced even though the catalyst had been subjected to the calcination at 700 °C for 3 h. Hence, the catalyst has much higher and stable activity for the N_2O decomposition compared with the 20Co/ Al that contains the same amount of cobalt with that of the 20Co/30Mg–Al but without MgO modifying the alumina.

Acknowledgements This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21277019 and 21777015).

References

- 1. Pérez-Ramı́rez J, Kapteijn F, Schöfel K, Moulijn JA (2003) Appl Catal B 44:117–151
- 2. Konsolakis M (2015) Acs Catal 5:6397–6421
- 3. Lee SJ, Ryu IS, Kim BM, Moon SH (2011) Int J Greenh Gas Con 5:167–176
- 4. Ohnishi C, Asano K, Iwamoto S, Chikama K, Inoue M (2007) Catal Today 120:145–150
- 5. Stelmachowski P, Zasada F, Piskorz W, Kotarba A, Paul JF, Sojka Z (2008) Catal Today 137:423–428
- 6. Zhang FF, Wang XP, Zhang XX, Turxun M, Yu HB, Zhao JJ (2014) Chem Eng J 256:365–371
- 7. Zabilskiy M, Erjavec B, Djinović P, Pintar A (2014) Chem Eng J 254:153–162
- 8. Yu HB, Tursun M, Wang XP, Wu XX (2016) Appl Catal B 185:110–118
- 9. Abu-Zied BM, Soliman SA, Abdellah SE (2015) J Ind Eng Chem 21:814–821
- 10. Yu HB, Wang XP, Wu XX, Chen Y (2018) Chem Eng J 334:800–806
- 11. Ivanov DV, Sadovskaya EM, Pinaeva LG, Isupova LA (2009) J Catal 267:5–13
- 12. Wu Y, Ni X, Beaurain A, Dujardin C, Granger P (2012) Appl Catal B 125:149–157
- 13. Ates A (2014) Catal Sci Technol 4:2031–2041
- 14. da Cruz RS, Mascarenhas AJS, Andrade HMC (1998) Appl Catal B 18:223–231
- 15. Gudyka S, Grzybek G, Grybos J, Indyka P, Leszczynski B, Kotarba A, Sojka Z (2017) Appl Catal B 201:339–347
- 16. Pietrogiacomi D, Campa MC, Carbone LR, Tuti S, Occhiuzzi M (2016) Appl Catal B 187:218–227
- 17. Grzybek G, Stelmachowski P, Gudyka S, Indyka P, Sojka Z, Guillén-Hurtado N, Rico-Pérez V, Bueno-López A, Kotarba A (2016) Appl Catal B 180:622–629
- 18. Klegová A, Pacultová K, Fridrichová D, Volodarskaja A, Kovanda F, Jirátová K (2017) Chem Eng Technol 40:981–990
- 19. Boissel V, Tahir S, Koh CA (2006) Appl Catal B 64:234–242
- 20. Russo N, Fino D, Saracco G, Specchia V (2007) Catal Today 119:228–232
- 21. Stelmachowski P, Maniak G, Kaczmarczyk J, Zasada F, Piskorz W, Kotarba A, Sojka Z (2014) Appl Catal B 146:105–111
- 22. Grzybek G, Ciura K, Wójcik S, Gryboś J, Indyka P, Inger M, Antoniak-Jurak K, Kowalik P, Kotarba A, Sojka Z (2017) Catal Sci Technol 7:5723–5732
- 23. Ji YG, Zhao Z, Duan AJ, Jiang GY, Liu J (2009) J Phys Chem C 113:7186–7199
- 24. Jongsomjit B, Panpranot J, Goodwin JG Jr (2001) J Catal 204:98–109
- 25. Jongsomjit B, Panpranot J, Goodwin JG Jr (2003) J Catal 215:66–77
- 26. Liotta LF, Pantaleo G, Macaluso A, Di Carlo G, Deganello G (2003) Appl Catal A 245:167–177
- 27. Liotta LF, Pantaleo G, Di Carlo G, Marcı̀ G, Deganello G (2004) Appl Catal B 52:1–10
- 28. Grzybek G, Wójcik S, Ciura K, Gryboś J, Indyka P, Oszajca M, Stelmachowski P, Witkowski S, Inger M, Kotarba A, Sojka Z (2017) Appl Catal B 210:34–44
- 29. Gayán P, de Diego LF, García-Labiano F, Adánez J, Abad A, Dueso C (2008) Fuel 87:2641–2650
- 30. Hadjiev VG, Iliev MN, Vergilov IV (1988) J Phys C 21:L199–L201
- 31. Keppler H, Bagdassarov N (1999) Chem Geol 158:105–115
- 32. Kushwaha AK (2010) Phys B 405:2795–2798
- 33. Wang HY, Ruckenstein E (2001) Appl Catal A 209:207–215

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations.