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Abstract
In the past few decades, tremendous advances have been made in the understanding of catalysis at solid surfaces. Despite 
this, most discoveries of materials for improved catalytic performance are made by a slow trial and error process in an experi-
mental laboratory. Computational simulations have begun to provide a way to rationally design materials for optimizing 
catalytic performance, but due to the high computational expense of calculating transition state energies, simulations cannot 
adequately screen the phase space of materials. In this work, we attempt to mitigate this expense by using a machine learning 
approach to predict the most expensive and most important parameter in a catalyst’s affinity for a reaction: the reaction bar-
rier. Previous methods which used the step reaction energy as the only parameter in a linear regression had a mean absolute 
error (MAE) on the order of 0.4 eV, too high to be used predictively. In our work, we achieve a MAE of about 0.22 eV, a 
marked improvement towards the goal of computational prediction of catalytic activity.
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1  Introduction

Most industrial chemical processes reduce energy require-
ments by using catalysts to control reaction rate and selec-
tivity. Many research efforts are directed at accelerating 
catalyst discovery. In the past two to three decades, compu-
tational efforts have shifted the efforts from a trial-and-error 
approach to one of rational design. Kinetic models based 
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on calculated reaction energies and barriers for elementary 
reaction steps allow for the identification of promising can-
didate materials. Reaction energies can be relatively cheaply 
calculated with methods such as density functional theory 
(DFT). Transition state energies, which are critical for deter-
mining the kinetic performance of a catalyst, are far more 
expensive to calculate. In practice they are estimated with 
a variety of saddle point search methods [1–3] in a high 
dimensional reaction coordinate, in combination with DFT. 
For a given catalytic process, many transition state ener-
gies for elementary reaction steps must be calculated, since 
for all but the simplest processes, there is a wide variety of 
chemistry that can occur on the surface.

For a given overall reaction, to rigorously determine the 
performance of a catalyst, microkinetic models are created 
by using DFT to calculate the reaction and transition state 
energies for each of the many elementary steps that make up 
the overall reaction, as well as those for competing reactions. 
Hence for a given catalyst, optimization can be intractably 
high dimensional, limiting even computational screening. 
To simplify the creation of the microkinetic model, linear 
scaling relations between the reaction energies and barri-
ers of the different elementary steps can be created. Such 
relationships allow us to approximate all of the elementary 
reaction barriers after only explicitly calculating a few [4–6].

The use of the reaction energies as a descriptor for tran-
sition state energy has a meaningful basis in physics, as 
both the reaction energy and transition state energy for sim-
ple reactions correlate with the d-band center of a metal 
catalyst [7]. However, the reaction energy is not the only 
physically meaningful feature impacting the transition state 
energy. We expect that other easily determined features such 
as the geometry of the catalyst surface and the identity of 
the adsorbates involved in each reaction step could allow 
us to better describe the transition state energy without the 
need for more costly explicit DFT calculations. The question 
we set out to investigate in this paper is whether machine 
learning methods can be used to increase the accuracy of 
predictions of transition state energies for surface chemical 
reactions.

There is growing evidence that machine learning can be 
a useful tool in computational catalysis [8–11]. Research-
ers have previously used learning algorithms to reduce the 
number of DFT calculations needed for the construction of 
a surface phase diagram,[12] to predict the surface reactiv-
ity of metal alloys for carbon dioxide electro-reduction,[13] 
and to predict molecular atomization energies [14]. More 
recently, machine learning methods have been developed 
and implemented to augment and accelerate the calculation 
of energies and forces by DFT [13, 15–18].

In this work, we focus on reducing the error of transition 
state energy predictions for a range of chemical reactions. 
We use the data set generated in Ref. 5 where the plane-wave 

DFT code DACAPO was used with a kinetic energy cutoff 
of 340 eV to describe the valence electrons, while the core 
electrons were described with Vanderbilt ultrasoft pseudo-
potentials [19]. We examine and compare several predictive 
methods, including linear and nonlinear regression, random 
forest, gaussian process, gradient boosted random forest, 
and neural networks of varying size. We employ multiple 
physically relevant and cheap to determine features, includ-
ing the coordination number of the metal atom, the identity 
of the adsorbate, the number of bonds broken, the binding 
energy of the adsorbate, and polynomial combinations. Such 
a machine learning approach could significantly reduce the 
computational cost of screening for catalytic materials, 
allowing for a greatly expedited search of the vast phase 
space. The conclusion is two-fold. First, we find that the 
most important descriptor of transition state energies is 
indeed the surface bond energies of the atoms that interact 
with the surface in the transition state. Second, we find that 
the accuracy can be improved - typically the mean absolute 
error of predictions relative to the full DFT calculations can 
be reduced from from 0.4 eV to 0.25 eV by adding up to 7 
additional descriptors. Finally, we discuss the results in light 
of the inherent inaccuracies of the computational methods 
employed.

2 � Methods

2.1 � Dataset and Features

In order to develop a model to predict transition state ener-
gies, we must first have training examples where the tran-
sition state energy has already been calculated by a sad-
dle point search method. Using a database from a previous 
work,[5] we have selected 315 examples of calculated transi-
tion state energies for dissociation reactions of an assortment 
of molecules on a variety of surfaces. Our data set consists 
of 236 dehydrogenation examples, 38 N2 dissociation exam-
ples, and 41 O2 dissociation examples. The data set used in 
this work is available digitally as supplementary material.

Beyond the traditionally used feature, reaction energy, we 
considered three new features in our model: (1) coordination 
of the surface, (2) the number of bonds broken between the 
initial and final state, and (3) the identity of the surface atom 
involved in bond breaking. Figure 1 illustrates two train-
ing examples with different values for each of the included 
features.

The catalyst geometry was treated as a binary variable, 
where the variable takes on a value of 1 for an under-coordi-
nated step site, and 0 for a close-packed terrace. The identity 
of the surface atom involved in bond breaking was treated as 
a multinomial, where the variable was assigned 0 for hydro-
gen, 1 for carbon, 2 for oxygen, and 3 for nitrogen. Similarly, 
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the number of bonds broken was also multinomial, with 1 
assigned for dehydrogenation, 2 for O2 dissociation, 3 for N2 
dissociation. We note that the numerical assignments given 
here are arbitrary. All of these features can be obtained from 
the atomic coordinates files, without the need for further 
DFT calculations.

2.2 � Machine Learning Methods

First, we reserved 20% of our data at random as a test set to 
be used solely for evaluating the performance of our models. 
The remaining 80% of the data was our working data set 
used to train our models. At many points in our analysis, we 
divided the working set randomly into a training set (70% 
of the working set) and a validation set (30% of the work-
ing set). Overall, this lead to an approximately 50-30-20 
(training-validation-test) split of our data. In this work, the 
training error of a model refers to the error on the actual 
data points used to train the model. The validation error of 
a model refers to the model’s error on the validation set-data 
that was in the working set but not used for the training of 
that particular model. Test error of a model refers to the 
model’s error on the test set, which was never used at any 
point in the analysis leading to the generation of the model.

The forward search algorithm is a hold-out cross-vali-
dation “wrapper” method designed to select the best set of 
features for a particular model. It begins with all features 
in a set called the “out set.” The model is trained with each 
feature, one at a time. The feature that gives the lowest vali-
dation error is selected and moved from the out set to the 
model. The process is repeated N times, where N is the num-
ber of features. In each step, each remaining feature in the 
out set is added, and the one that gives the lowest validation 
error is selected and added to the model. At the end, the set 
of features that gives the lowest validation error is selected 
as the feature set for the model.

Inspired by the success of previous works using single 
feature linear regression, we first used the simple linear 
regression model with multiple features in an attempt to 
capture more of the information in the data set. The linear 
regression model is shown below in Eq. 1. Here y is the 
output variable (in this case transition state energy), xi is the 
value of feature i , and �i is the coefficient mapping xi to y , 
trained by linear least squares.

We do not expect the transition state energy to vary lin-
early with all of the features. For example, with all other val-
ues of features fixed, we expect the transition state energy of 
a species containing carbon, nitrogen, or oxygen to change 
non-linearly as the adsorbate is changed.

For this reason, we included non-linear (polynomial) 
terms with all second order combinations of the four fea-
tures implemented in linear regression. Non-linear features 
were selected with the forward search method. The model 
for the linear regression with non-linear terms is identical 
to linear regression shown in Eq. 1; the key difference is 
that the features list contains non-linear terms. We searched 
a broader set of possible non-linear transformations of the 
four features using the SISSO [20] package and found results 
that were similar to the other models reported in this study, 
but with features that are less interpretable.

Using the python package Scikit-learn,[21] we explore 
the effectiveness of the random forest method (both stand-
ard and gradient boosted) and gaussian process. In an effort 
to capture more complicated relationships between the 
inputs and the outputs, we fit the training data to a feed-
forward neural network using Matlab. The network used a 
sigmoid activation function, and it was trained using the 
Levenberg–Marquardt back-propagation technique. This 
training technique uses the mean square error (MSE) as the 
loss function. Assuming a gaussian error distribution, this 
is equivalent to maximizing the likelihood of observing the 
data given the model parameters. We report the MAE as 
training error (not the loss function) because it is more read-
ily interpreted.

3 � Results and Discussion

3.1 � Feature Selection

The results of the forward search algorithm (described in the 
methods section) for linear regression are found in Table 1.

As anticipated, when considered alone, the single most 
important feature was the reaction energy. However, the fact 
that the validation error decreases as additional features are 
included (with each successive row of Table 1) indicates that 

(1)y =
∑

i
xi�i

Fig. 1   (left) Illustration of an under-coordinated stepped surface with 
nitrogen atoms adsorbed to the surface, after undergoing a dissocia-
tion reaction in which three bonds were broken. (right) Illustration of 
a close-packed terrace surface with OH adsorbed
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the features added to the analysis are in fact physically mean-
ingful and improve the predictive power of the model. After 
reaction energy, the model is most improved by including 
information regarding the identity of the adsorbate, which 
lowers the validation error to about 0.3 eV. Including the 
other two features, number of bonds broken and the surface 
geometry, results in further marginal improvements on the 
validation error. In the remainder of our analysis, when train-
ing linear models, we used all four features as it gave the 
lowest validation error.

The full output of forward search for linear regression 
including non-linear (polynomial) features is summarized in 
Fig. 2, where the errors reported are the average of 25 itera-
tions of the forward-search algorithm. Here, once again, the 
most important feature was the reaction energy, as expected. 
Following the reaction energy, polynomial combinations of 
the four original features were chosen by the forward search 
algorithm within the first four iterations. This again sug-
gests that the features we added each contain unique and 
physically relevant information, since it results in a lower 
error. In the rest of our analysis, when training models with 
non-linear features, we used the eight features selected by 
forward search that gave the lowest validation error.

We repeated the forward search procedure for the neural 
network using just the original four features as well as the 
polynomial terms. As seen with linear regression, the addi-
tion of each of the four features improved the performance 
of the neural network model, with a small increase in error 
with the inclusion of the last feature. This suggests that add-
ing a fifth unique feature would be beneficial. The inclusion 
of non-linear features further reduces validation error, until 
more than 7 features are included. At this point the model 
is likely being overfit, which would cause an increase in 
validation error as seen.

3.2 � Bias‑Variance Analysis

The forward search output (Fig. 2) also provides some 
insight into the bias-variance balance. The addition of each 
feature continued to reduce the validation error of the linear 
model. The fact that the validation error did not begin to 
rise means that our linear model is still underfit even with 
all four features included. It would therefore be beneficial to 
find more physically meaningful (and cheap to determine) 
features and add them to this model.

The learning curve, Fig. 3, can give insight into the bias/
variance balance of the model. Here the shaded region sur-
rounding each line corresponds to a 95% confidence inter-
val, constructed by repeating the hold-out cross-validation 
process 1000 times. The learning curve shows that the lin-
ear model converges very quickly, in fewer than 50 training 
examples. This indicates that we achieve very little added 
performance out of training examples 50 through 250, and 
our linear model is significantly underfit (high bias). This 
further justifies the inclusion of non-linear features in the 
model.

Table 1   Forward search feature selection for linear regression

Feature Training error (eV) Validation 
error (eV)

Reaction energy 0.36 0.37
Identity of adsorbate 0.30 0.29
# Bonds broken 0.26 0.27
Surface geometry 0.26 0.27

Fig. 2   Plot of the output of the forward search algorithm for each of 
the models
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In the forward search algorithm (Fig. 2), applied to the 
linear regression with non-linear terms, the validation error 
begins to rise as the last few features are added. This indi-
cates that adding higher order terms (cubic and above) may 
not improve the performance of the model. However, it is 
possible that cubic terms in some features would be benefi-
cial even though square terms in other features were shown 
to be deleterious. The learning curve shows that the model 
with non-linear features converges after about 100 training 
examples. This is slower than the linear model converged, 
but it still indicates that we are not leveraging all of our 
data. The model including polynomial features is therefore 
likely still underfit, although it is less underfit than the lin-
ear model. The addition of some cubic terms may improve 
this model, which would be found by the forward search 
algorithm.

A hyperparameter search was performed to determine 
the best number of neurons per layer and number of layers 
for the problem. This search is summarized seen in Fig. 4. 
Networks with one through twenty neurons per layer and 
one through five layers were trained on the training set, and 
their performance was evaluated on the validation set. The 
best performing network had one hidden layer consisting 
of twelve neurons. While there is some stochasticity in the 
performance of these networks, the heat map shows that 
the simplest models, shown in the leftmost column of the 
heat map (between 3 and 13 nodes), consistently performed 
poorly on the validation set. Similarly, the most complicated 
models, shown in the bottom-right region of the heatmap, 
consistently performed poorly on the validation set. The best 
performing models had intermediate complexity: one or two 
hidden layers with five to fifteen neurons in each layer. These 
results are consistent with the bias-variance trade-off. The 
heat map indicates that one neuron is too simple of a model 
(underfit), but the nature of our regression problem and size 
of our data set does not merit using a complex network with 
many hidden layers and many neurons per layer, as these 
networks would likely be overfit.

With the neural network, the validation error begins to 
rise as soon as the non-linear features are added even though 
the training error is low. This suggests that the neural net 
trained on non-linear features is overfit. However, when 
using the same neural network and training only on the lin-
ear features, the validation error does not increase for the 
four features available. This is summarized in Table 2.

3.3 � Model Performance

Linear transition state scaling models based on just one 
feature (reaction energy) typically have a training MAE of 
roughly 0.4 eV, with slight improvements for simpler, less 
general data sets. We were able to reproduce this error by 
performing one-feature linear regression on our data set; 
the test error for the traditional BEP relation was 0.40 eV. 
Moving to the multi-feature linear regression, we were able 
to decrease the test error to 0.33 eV, adding the best non-
linear features decreased the test error to 0.25 eV. Fitting to 
the entire training set (i.e. without cross-validation), we find 
test errors for the random forest (both standard and gradient-
boosted) and the gaussian process to be comparable to the 
linear regression with polynomial features. Moving to the 
optimal neural network decreased the test error slightly, to 
0.22 eV. The results are summarized in Table 3.

Figure 5 illustrates the model performances in a parity 
plot, where it is clear that the models trained in this study 
out-perform the traditional single feature BEP relation. By 

Fig. 4   Heat map used to 
optimize the size of the neural 
network

Table 2   Training, validation, and test error for the neural network 
configurations

Training 
error (eV)

Validation 
error (eV)

Test error (eV)

Under-fit NN (1,1) 0.30 0.30 0.40
Well-fit NN (1,12) 0.17 0.23 0.22
Over-fit NN (1,12) 0.16 0.20 1.83
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using the neural network to improve the MAE from 0.40 
to 0.22 eV, we can improve the accuracy of our predicted 
reaction rates by 2–3 orders of magnitude, since reaction 
rates depend exponentially on the reaction barrier (Eq. 2). 
Here the reaction barrier is given by ΔGa.

It is interesting to note that while the performance can 
be improved further with the use of a neural network com-
pared to the linear regression with polynomial features, 
from a test MAE of 0.25 eV to 0.22 eV. This difference 
results in only a much smaller increase in confidence, less 
than one order of magnitude. Using a neural network also 
results in a vast increase in parameters required to train, 

(2)r =
kbT

h
exp

[

−
�Ga

kbT

]

and with this comes an increased computational cost and 
a loss of understanding of the model.

4 � Conclusions and Future Work

The work shown here illustrates a first step towards improv-
ing the existing single feature linear relationships used to 
predict transition state energies in complex chemical reac-
tions. By predicting transition state energies from the sim-
pler-to-determine reaction energy and other cheaply deter-
mined parameters, we can reduce the computational cost 
associated with screening a material’s catalytic activity by 
several orders of magnitude. We show that the MAE can be 
reduced from 0.40 eV in the single feature linear regression 
(BEP) to 0.25 eV with linear regression including polyno-
mial features, or 0.22 eV with a neural network. We hence 
improve the accuracy of our chemical rate calculations by 
2–3 orders of magnitude at ambient temperatures, since 
chemical rates are proportional to the exponential of the 
activation energy. This represents a significant step towards 
the rapid computational screening of materials as a way to 
guide experiments. The use of the linear regression model 
with polynomial features may be preferred since it performs 
nearly as well as the neural network, while using far fewer 
parameters and hence allowing for an increased understand-
ing of the model.

To further improve the models shown here, additional 
features could be added. This is important because we see 
that our test errors are not significantly higher than our train-
ing errors, indicating that we may still have high bias (under-
fitting) in our models. New features may include properties 
such as the adsorbate coordination number, charge delocali-
zation across the system, and change in entropy across the 
reaction coordinate. The adsorbate coordination number in 
particular has been previously shown to influence both the 
reaction and transition state energy. The addition of new fea-
tures would be especially important for the linear regression 
models, since these models were likely more underfit than 
the neural network models used in this work.

Additional data beyond just simple dissociation reactions 
could be collected to further train and test the model. These 
dissociation reactions are relatively straight-forward to cal-
culate transition state energies for, which makes them ideal 
for generating test sets. But, the real power of a predictive 
model would be in assisting the calculation of harder-to-
determine transition state energies.

Finally, the neural network model could be explored 
in greater depth. In this work, we used mostly the default 
parameters for a feed-forward neural network. It is possible 
that a feed-back neural network would have better perfor-
mance for our system. If we were able to collect more data 

Table 3   Training, validation, and test error for the models tested

Training 
error (eV)

Validation 
Error (eV)

Test error (eV)

One feature linear BEP 0.36 0.37 0.40
Multi-feature linear regres-

sion
0.26 0.27 0.33

Lin. reg. with non-linear 
features

0.20 0.22 0.25

Random forest 0.11 -- 0.31
Gaussian process 0.17 -- 0.26
Gradient boosted random 

forest
0.18 -- 0.29

Neural network 0.17 0.23 0.22

Fig. 5   Plot of predicted transition state energy versus actual transition 
state energy for the original BEP scaling relation, the multi-feature 
linear model, and the neural network. The entire dataset is shown
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on a wider variety of reactions, a more complex neural net-
work may provide the most predictive power.

The failure of the neural network to significantly improve 
upon the polynomial linear regression, despite a large 
increase in the number of trainable parameters, indicates 
that there is likely significant unphysical uncertainty in the 
data that will not be captured by such a model. Future work 
will attempt to address this uncertainty by utilizing a train-
ing data set using higher order (non-GGA DFT) methods.
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