

Synthesis and Application of Fe-Doped WO₃ Nanoparticles for Photocatalytic Degradation of Methylparaben Using Visible–Light Radiation and H₂O₂

Eric Mwangi Ngigi1 · Philiswa Nosizo Nomngongo1 · Jane Catherine Ngila1

Received: 23 August 2018 / Accepted: 14 October 2018 / Published online: 30 October 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

Synthesis of WO₃ and Fe-doped WO₃ nanoparticles is done by use of Microwave irradiation technique. X-ray powder diffraction confirmed the formation of a monoclinic crystalline structure. The as-prepared samples are characterised by transmission electron microscope, Braunuer, Emmett and Teller, Raman spectroscopy, photoluminescence, X-ray photoelectron spectroscopy and ultraviolet diffuse reflectance spectroscopy. Confirmation of the morphology of the nanostructures showed ovoid-like form. The photocatalytic activity of WO₃ and nominal percentage of Fe-doped WO₃ (3, 5 and 10 wt%) are evaluated for the degradation of methylparaben (MeP) in aqueous solution after being irradiated with visible light. The results show that 5 wt% Fe–WO₃ is the best dopant in the photodegradation of MeP at 50.8% with H₂O₂. A chemometric model analysis is applied to estimate both individual and interaction factors that included pH, contact time, hydrogen peroxide $(H₂O₂)$ concentration and catalyst dosage. The optimal conditions at pH 3, 10 mg, 5 wt% Fe–WO₃ and 120 min are achieved.

Graphical Abstract

Keywords Methylparaben · Microwave · Nanostructures · Photodegradation · Dopant

 \boxtimes Jane Catherine Ngila jcngila2015@gmail.com; jcngila@uj.ac.za

1 Introduction

Water is a major necessity for all living organisms including human beings. Availability of clean water is of great concern due to the increased release of emerging pollutants into the

¹ Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa

environment. As a result, this poses an enormous challenge, which is expected to increase due to high levels of industrialisation. The emerging pollutants are a group of chemicals that have been found in fresh waters because of various human activities. Among these are the personal care products (PCPs) that are used daily are released to the aquatic ecosystems in very low concentrations ranging from μ g L⁻¹ to ng L−1. PCPs have not been previously considered as contaminants and they're hence required to be investigated and monitored because they are hazardous to aquatic life [\[1](#page-9-0)–[4\]](#page-9-1). Parabens, a group of PCPs known as synthetic esters of ρ-hydroxybenzoic acid, are widely used as antimicrobial and preservatives because they are very effective in protecting pharmaceuticals, beverages and cosmetic products [\[5](#page-9-2)]. Examples of parabens include methylparaben (MeP), ethylparaben, propylparaben, butylparaben and benzyl paraben. MeP, a well-known endocrine disruptive chemical (EDC), is widely used as a bactericide and antimicrobial agent in cosmetic products, singly or combined with other agents [\[6](#page-9-3), [7](#page-9-4)].

Emerging pollutants have been in existence for over a long period and have been determined and removed using conventional methods, mainly in wastewater treatment plants (WWTPs). The efficiency of treatment has been higher than 90% [\[8](#page-9-5)[–10](#page-10-0)] in reducing the initial concentrations at the inlet of WWTPs. It has been found that benzylparaben, butylparaben, and isobutyl paraben have been found to have reduced using batch-activated sludge treatment [[11](#page-10-1)] but the high instability of the main by-product ρ-hydroxybenzoic acid have been detected in high concentrations in both raw wastewater and effluents [[12\]](#page-10-2). The drawbacks of the conventional irradiation methods suffer from pollutants being detected in low concentrations (in ng L^{-1}) and partially removed. However, it has been observed that new derivatives of the parent compound are formed [\[8](#page-9-5), [13](#page-10-3), [14\]](#page-10-4). Initially, parabens were determined using separation solid phase extraction [[17](#page-10-5), [18\]](#page-10-6), and quantification techniques such as micellar electrokinetic chromatography (MERC) [\[15](#page-10-7), [16\]](#page-10-8), capillary zone electrophoresis–ultra violet [\[17](#page-10-5)] due to their simplicity and effectiveness [\[18](#page-10-6)]. However, quantification analytical techniques used ranged from the high-performance liquid chromatography [[19,](#page-10-9) [20](#page-10-10)] to the current and more advanced techniques including ultra-high performance liquid chromatography $[21]$ $[21]$ and liquid chromatography–tandem mass spectrophotometer [[22](#page-10-12), [23\]](#page-10-13) are commonly used. More so, gas chromatography–mass spectrophotometer [\[24](#page-10-14), [25](#page-10-15)] comprising of a derivatisation step was used to determine the number of parabens in cosmetics, drugs, pharmaceuticals, and food, among others.

Photocatalysis is considered as one of the most promising technique in water treatment since it has a great potential utilizing green and sustainable solar energy in removing organic pollutants and harmful bacteria present in polluted water systems [[26](#page-10-16)]. The photocatalytic technology uses light and a photocatalyst in the decomposition of organic pollutant. Semiconductors have been used in photocatalysis for decomposing the organic pollutants rapidly and in an environmentally friendly manner [[27–](#page-10-17)[30](#page-10-18)]. However, another photocatalyst such as, tungsten trioxide (WO_3) is a promising n-type semiconductor with an optical band gap $(E_{\rm o})$ of 2.8 eV that has received attention in recent times $[31, 32]$ $[31, 32]$ $[31, 32]$ $[31, 32]$ $[31, 32]$. WO₃ can be prepared using several methods such as; sol–gel [[33](#page-10-21)], precipitation [[34](#page-10-22)], hydrothermal [[35\]](#page-10-23) and glycothermal as reported by other researchers [[36](#page-10-24)]. The only limitation it possesses is that it has poor photocatalytic activity due to the versatile wide bandgap and a result, the conduction band electrons cannot be efficiently trapped by oxygen to yield superoxide radicals [[37](#page-10-25)[–39\]](#page-10-26).

Advanced oxidation processes have received significant attention in the removal of organic pollutant contaminants in aqueous solutions and wastewater [[40\]](#page-10-27). The heterogeneous process has been proposed in Fenton reactions towards the degradation of organic pollutants [[41\]](#page-11-0). Several authors have reported degradation of the phenol compound and its derivatives that includes Fenton [\[42\]](#page-11-1), photo-Fenton [[43](#page-11-2)], sono-Fenton $[44]$ and $O₃/F$ enton $[45]$ $[45]$.

Doping plays an indispensable part in tuning the band edge potential of photocatalyst by modifying its properties. The dopant ion incorporation has been employed in recent times to reduce the recombination of electrons and holes to enhance visible light absorption with the introduction of extra energy levels in doped material for better photocatalytic activity [[28,](#page-10-28) [37,](#page-10-25) [46\]](#page-11-5). Transition metal (TM) doped semiconductor nanoparticles have been used due to their excellent dopants and catalytic activities with various metals such as Zn , Nb. Mn-doped $WO₃$ has been prepared and reported $[47-49]$ $[47-49]$ $[47-49]$ on reducing the band gap of WO₃. Iron has been investigated as a dopant ion in various reports for magnetic properties [\[39](#page-10-26), [46,](#page-11-5) [50,](#page-11-8) [51](#page-11-9)] owing to its half-filled electronic configuration and can lead to conspicuous absorption in the visible light [\[52](#page-11-10), [53](#page-11-11)]. Removal of MeP has been studied using different methods such as electrochemical [\[54](#page-11-12)], ozonation [[55\]](#page-11-13), photochemical [[56\]](#page-11-14), sonochemical [\[6](#page-9-3)]. Few researchers have reported on photocatalytic degradation of MeP using different photocatalysts [\[57](#page-11-15)[–59\]](#page-11-16). Song et al. [\[60](#page-11-17)] and Zhang et al. [\[61\]](#page-11-18) reported the synthesis of Fe-doped $WO₃$ for catalysis and $NO₂$ gas sensor respectively. To the best of our knowledge, no literature has been reported on the photodegradation of MeP with Fe-doped WO_3 .

In view of the above, the aim of this study is to investigate the degradation of MeP for the first time using Fe-doped WO_3 in combination with H_2O_2 under the influence of visible light irradiation. The factors affecting (such as the addition of oxidant, sample pH, catalyst loading, degradation time and among others) the photocatalytic degradation of MeP were optimised using univariate and multivariate tools.

2 Experimental

2.1 Chemicals

Iron (III) nitrate nonahydrate ($FeN_3O_9·9H_2O$) was obtained from Riedel-de Haën in Germany, Sodium hydroxide (NaOH), tungstic acid (\geq 99.0%) and Methyl-4-hydroxybenzoate (CAS:99-76-3) were obtained from Sigma-Aldrich (USA), nitric acid (65%) obtained from MCL (South Africa), absolute ethanol (99.9%) was obtained from Minema, (South Africa) and domestic microwave LG MS 283 MC 900 W. All chemicals were used as received. Deionised water was used in all experiments.

2.2 Material Synthesis

 $WO₃$ nanoparticles were prepared by use of microwave used by Abhudhahir and Kandasamy [[48](#page-11-19)] with modifications. Typically, 1 g of H_2O_4W was dissolved in 10 mL NaOH and 5 mL concentrated $HNO₃$ was added. 10 mL of deionised water was added to the acidic solution for quick response to microwave. The solution in a beaker was covered with a watch glass and quickly transferred to a microwave at a power of 200 W for 20 min. The powder obtained was washed severally with deionised water and ethanol to neutralise the acidity and dried in air at 100 °C for 1 h to remove water and excess ethanol. Heat treatment was done in air at 500 °C for 3 h in a muffle furnace. The Fe-doped WO_3 was synthesised by adding tungstic acid and Iron (III) nitrate nonahydrate at a nominal ratio (3, 5 and 10 wt%) followed by the above procedure. The heat treatment for Fe doped WO_3 was at 500 °C in the air for 3 h. The final products for WO_3 and Fe-doped $WO₃$ were pale yellow and brown respectively.

2.3 Characterisation

The crystallographic patterns of the as-prepared samples were characterised by powder X-ray diffractometer (Phillips X'Pert-PRO PANalytical) with Cu Kα radiation $(\lambda = 1.54060 \text{ Å})$ with 2 θ the scan range of 10°–90° with a step size of 0.0170 s⁻¹ at an acceleration voltage and applied a current of 40 kV and 40 mA, respectively. Raman spectra were recorded on a Raman spectrometer (WITec) operating with a 531.5 nm diode laser. The morphologies and particle sizes were determined with scanning electron microscope (Tescan). Transmission electron microscope (TEM) and high-resolution transmission electron microscope (HRTEM) images were obtained using Jeol, JEM-2100 with an acceleration voltage of 200 kV. The surface area was evaluated using nitrogen absorption–desorption isotherms and adsorption data at −197 °C using Brunauer–Emmett–Teller (BET) method (Micrometrics ASAP 2020). X-ray photoelectron spectroscopy (XPS) measurements were performed at room temperature using a SPECS PHOIBOS 150 electron energy analyser, and a $Al-K\alpha$ monochromatized photon source $(h\nu=1486.71 \text{ eV})$. The overall energy resolution was set to 0.6 eV for all spectra presented in this work. Photoluminescence (PL) was recorded using Perkin-Elmer LS 45 Fluorescence spectrometer with an excitation wavelength of 270 nm and UV–Vis diffuse reflection spectrophotometer (UV–DRS, Shimadzu 2450) using $BaSO₄$ as a reference.

2.4 Experimental Procedure

MeP stock solution of 100 ppm was prepared using deionised water and was stored in the dark at 4 °C. The working standard solutions were prepared from the stock solutions to the desired concentrations of 10 ppm and used throughout the experiments.

The pH values of 3, 6 and 9 were adjusted by addition of 0.1 M HCl or 0.1 M NaOH throughout the experiment. A volume of 30 mL aqueous MeP solution was introduced into the vessel and required an amount of the catalyst and 10 mM H_2O_2 were introduced as per the experimental design. Before irradiation, the solution, H_2O_2 and catalyst were initially mixed in the dark for 30 min for adsorption–desorption to reach equilibrium. For the degradation experiments, aliquots of \sim 2.5 mL were sampled at different intervals, filtered and centrifuged at 7000 rpm for 10 min. The UV–Vis spectra absorbance were recorded using Shimadzu 2450 spectrophotometer.

2.5 Photoreactor and Light Source

The photocatalytic performers of both as-prepared samples of WO_3 and Fe-doped WO_3 towards degradation of MeP were evaluated using a photo-reactor equipped with Xenon lamp capable of emitting 1 SUN $(1000W/m²)$ equivalent to solar light equipped with a UV cut-off filter $(\lambda > 420 \text{ nm})$ was used in this experiment.

2.6 Experimental Data Design Analysis

The chemometric analysis was performed using a STATIS-TICA software version 13.

3 Results and Discussion

3.1 XRD Analysis

The crystallographic study of the products was characterised by X-ray diffraction (XRD), as shown in Fig. [1.](#page-3-0) The XRD spectra of pure WO_3 and Fe-doped WO_3

Fig. 1 a XRD patterns for as-prepared samples and **b** cross-section of the plane [020]

were prepared and shown in Fig. [1a](#page-3-0). From the spectra, it shows that the structure of WO_3 nanoparticles was monoclinic (ICDD 04-005-4272, space group: P*21*/*n* with lattice parameters of α = 7.2970 Å, b = 7.5390 Å and $c = 7.6880$ Å). With increasing doping of Fe, no other impurities could be detected in the spectra indicating successful incorporation of Fe into the crystal lattice with the overall crystal structure being monoclinic despite an increase of $Fe³⁺$ ions from 3 to 10%. Figure [1b](#page-3-0) shows cross sectional area of peak $[020]$ where Fe doped WO₃ shifting lower diffraction angles indicating the incorporation of Fe^{3+} into the WO₃ crystal lattice and this is due to the fact that Fe³⁺ (radius 0.064 nm) is almost equal to W^{6+} (0.062 nm) [\[49\]](#page-11-7).

The crystallite sizes D of both pure and Fe-doped $WO₃$ were calculated using Debye–Scherrer in Eq. [1](#page-3-1) with data shown in Table [1](#page-3-2) tabulated using Bragg's angle at $2\theta = 24.5$.

$$
D = \frac{0.9\lambda}{\beta \cos \theta} \tag{1}
$$

From the results obtained with Fe ions doped in WO_3 , the average crystallite sizes between the lowest (3 wt%) and highest doping concentrations (10 wt%) were marginally reduced.

Fig. 2 Nitrogen adsorption–desorption isotherms curves

3.2 B.E.T. Analysis

The isotherm of WO_3 and Fe-doped WO_3 in Fig. [2](#page-3-3) can be categorised as Type II [[62\]](#page-11-20) and H3 hysteresis loop observed in relative pressure of between 0.9 and 1.0 indicates a mesoporous material [[60\]](#page-11-17). The BET surface areas of asprepared WO₃, 3% wt, 5% wt, and 10% wt Fe-doped WO₃ were 5.7, 16.1, 15.4 and 19.8 $m^2 g^{-1}$, respectively. As from the figures indicated the surface area increases as the doping increases indicating an increase of large active sites for photocatalytic activity for doped samples.

3.3 Optical Properties

UV–Vis diffuse reflectance spectroscopy was used to study the optical properties of pristine and Fe-doped WO_3

Table 1 Crystallite size of the

prepared samples

nanoparticles, as shown in Fig. [3.](#page-4-0) Figure [3](#page-4-0)a indicates the absorbance of as-prepared samples in which it indicates a blue shift with an increase of Fe doping from 450 nm (WO₃) to 512 nm (10% Fe-doped WO₃). The optical absorption coefficient obeys the indirect-band gap, as shown in Eq. ([2](#page-4-1)):

$$
(\alpha \hbar v)^2 = A \left(\hbar v - E_g \right) \tag{2}
$$

where α is the absorption coefficient, h is the Plank's constant, ν is the frequency of light, E_{ρ} is the band gap and A is the constant. The band gap was determined from the intercept of $\alpha h\nu^2$ versus hv curves and from the calculations, the band gap of WO_3 was found to be 2.48 eV. With the increase of Fe doping from 3 to 10 wt% a decrease in band gap was observed from 2.48 to 2.08 eV, as shown in Fig. [3b](#page-4-0). The observations show that with the introduction of iron doping indicates that the iron atoms are located at the donor level above valence band of WO_3 . It could be attributed to sp–d spin interactions between band electrons and localised d electrons of the TM substituting the cation [[46,](#page-11-5) [50\]](#page-11-8).

3.4 TEM Analysis

In order to determine the actual morphologies of the asprepared samples of WO_3 and Fe-doped WO_3 samples TEM and HRTEM images, as shown in Fig. [4](#page-5-0). The TEM images showed the ovoid-like structure of undoped WO_3 due to aggregation or overlapping of small particles, as shown in Fig. [4a](#page-5-0). Figure [4b](#page-5-0) indicates smaller structures of Fe-doped $WO₃$ indicating successful incorporation of Fe ions into the crystal structure of WO_3 and from the results shown from Table [1](#page-3-2) confirming that the smaller the size the greater the surface area and in which the shape was not necessarily altered [[51\]](#page-11-9). Figure [4c](#page-5-0) shows the EDS indicating the elements W, O, and Fe. Meanwhile, Fig. [4d](#page-5-0) is HRTEM showing a well-defined crystalline structure with interplanar spacing calculated as 0.39 nm indexing to [020] equivalents to undoped WO_3 consistent with XRD results.

3.5 Raman Analysis

Figure [5](#page-5-1) shows Raman spectra of both pristine WO_3 and Fedoped WO_3 indicating the stretching and bending modes of WO₃ with no extra Fe–O bond. Frequencies 200–400 cm⁻¹ indicates O–W–O bending modes and peak at 272 cm^{-1} corresponding to the O–W–O stretching mode of the bridging oxygen while frequencies between 600 and 900 cm−1 relate to W–O stretching modes [[63](#page-11-21)]. The peaks 272,722 and 811 cm⁻¹ indicate a probable mixture of γ and δ monoclinic phases at room temperature [[63](#page-11-21)]. The characteristic peaks of $WO₃$ gradually decreased their intensity and shifted to lower wavenumbers with an increase in iron content from 3 to 10 wt% resulting in the occupation of substitutional sites of WO_3 .

3.6 Photoluminescence (PL) Studies

Figure [6](#page-5-2) shows the PL emissions of as-prepared WO_3 and Fe-doped WO_3 of different wt% at room temperature. The samples were excited at 270 nm in which they displayed emission centred at 537 nm. The small emission peak at 589 nm could be attributed to the oxygen deficiency peak. After doping with different wt% of Fe the emission displayed the same emission spectra but with reduced intensities. This phenomenon can be attributed to an increase in defects resulting in displacing W^{6+} with Fe³⁺ [[49](#page-11-7)]. In general, the lower the PL the lower the recombination of the photogenerated electrons and holes [[64\]](#page-11-22) indicating that 5 wt% Fe-doped WO_3 shows the best photocatalytic activity

Fig. 3 a UV–Vis Diffuse reflectance spectra and **b** Tauc plots for WO₃, 3 wt%, 5 wt% and 10 wt% Fe-doped WO₃ respectively

Fig. 4 TEM images of WO₃ (a), 5 wt% Fe-doped WO₃ (b), EDS of 5 wt% Fe-doped WO₃ (c) and HRTEM image of 5 wt %Fe-doped WO₃ (d)

Fig. 5 Raman spectra of pure WO_3 and Fe-doped WO_3

for degradation having lower recombination rate in comparison with the others.

3.7 X‑Ray Photoelectron Spectroscopy (XPS)

XPS spectra for the as-prepared 5 wt% Fe-doped WO_3 was presented to determine the oxidation states and elemental

Fig. 6 PL spectra of undoped WO_3 and Fe-doped WO_3 at different wt%

composition for each member of the catalyst, as shown in Fig. [7.](#page-6-0) Figure [7a](#page-6-0) depicts the presence of C, W, Fe and O elements with a small Na peak may be attributed to precursors used in synthesis. Figure [7](#page-6-0)b shows the deconvoluted Fe 2p spectrum with two peaks at \sim 712 and \sim 726 eV

Fig. 7 XPS spectra of 5% Fe–WO₃ photocatalyst obtained by microwave synthesis: **a** survey scan of 5% Fe–WO₃, **b** Fe 2p, **c** W 4f and **d** O 1 s

corresponding to Fe $2p_{3/2}$ and Fe $2p_{1/2}$ respectively resulting from Fe³⁺ ions incorporated into WO₃ matrix [\[65](#page-11-23)]. Figure [7c](#page-6-0) represents the deconvoluted W 4f spectrum which has two pronounced peaks 35.4 and 37.6 eV belongs to W $4f_{7/2}$ and W $4f_{5/2}$ indicating the presence of WO₃ in the catalyst [\[61](#page-11-18)]. It is clear from the peaks that W^{6+} is the main state on the surface. The deconvoluted O 1 s spectrum of ovoid-like $WO₃$, as shown in Fig. [7](#page-6-0)d indicates one large hump and two minor humps fitted with three sub–peaks at 530 eV representing O^2 [−], O^- , O^-_2 ions in oxygen deficient regions, while 532 eV could be assigned to either vacancies, defects or adsorbed oxygen within WO_3 matrix and 533.6 eV adsorbed water on the surface [[65](#page-11-23)].

3.8 Catalytic Results

3.8.1 Catalyst Selection

MeP is known to be resistant to either cold or hot water and in this experiment, the effect was insignificant as there was no change in degradation [[66\]](#page-11-24). The photocatalytic degradation of MeP was investigated using different catalysts at pH 6.5, as shown in Fig. [8.](#page-7-0) The preliminary experiments were

performed in the absence of a catalyst (that is, photolysis) and it can be seen in Fig. [8a](#page-7-0) that there was no significant change in the MeP. These observations verified the high photochemical resistance of MeP towards photodegradation. With the addition of H_2O_2 there was a weak degradation because the light could not produce enough hydroxyl radicals (*HO*[∙]). Figure [8](#page-7-0)b shows that the % degradation of MeP. The initial results indicated that with an increase of Fe doping the % degradation increases. From the results shown in Fig. [8](#page-7-0)b, 5 wt% Fe-doped WO₃ displayed better photocatalyst than the rest indicating a better charge separation efficiency as indicated from PL studies (Fig. [6](#page-5-2)). Therefore, was used for further investigations.

3.8.2 Effect of H₂O₂ Concentrations on Photocatalytic Activity of Fe-doped WO₃

The addition of an oxidant expected to accelerate the heterogeneous photocatalytic degradation of organic pollutants. Hydrogen peroxide as an electron acceptor is a key parameter in Fenton or Fenton-like oxidation process [[67](#page-11-25), [68](#page-11-26)]. In photocatalytic degradation system of MeP, the catalytic mechanism of H_2O_2 molecules over the surface of Fe-doped

Fig. 8 a Kinetic profiles comparison of methylparaben with photolysis, H₂O₂, WO₃ and Fe-doped WO₃ (3% wt, 5% wt and 10% wt) at pH 6.5 and **b** comparison % degradation

Fig. 9 Effects of H_2O_2 concentration on the degradation of methylparaben [initial concentration 10 ppm, pH 3 and catalyst 10 mg (5 wt% Fe-doped WO_3]

 $WO₃$ is analogous to Fenton-type mechanism. Fe³⁺ ions on the surface of Fe-doped WO₃ could react with H_2O_2 to produce HO can demonstrated using by Eqs. [3](#page-7-1) and $\overline{4}$ [\[69](#page-11-27)]:

$$
x - Fe^{3+} + H_2O_2 \to x - Fe^{2+} + HOO + H^+ \tag{3}
$$

$$
\times -Fe^{2+} + H_2O_2 + H^+ \rightarrow \times -Fe^{3+} + HO^+ + H_2O \quad (4)
$$

In which X represents the surface of WO_3 . For this reason, the effect of different concentration of H_2O_2 (2–15 mM) on the photodegradation of MeP was investigated and the results are presented in Fig. [9](#page-7-3). It can be seen from the results that concentrations below 10 mM showed slow degradation process due to less production of enough hydroxyl radicals for oxidation. However, at higher concentration of 15 mM, a decrease in degradation was observed which may be due to

Table 2 Multivariate optimisation: factorial design matrix and analytical response (% degradation)

Expt	pH	Time	Dosage	% Degradation
1	3	30	10	25.7
2	9	30	10	15.6
3	3	120	10	50.8
4	9	120	10	30.5
5	3	30	50	16.9
6	9	30	50	12.1
7	3	120	50	48.2
8	9	120	50	1.35
9	6	75	30	21.3
10	6	75	30	14.9
11	6	75	30	10.6

excess of hydroxyl radicals that may react with excess H_2O_2 thus becoming a scavenger [[1](#page-9-0)] and hence retards the degradation efficiency process according to the Eq. [5](#page-7-4). Therefore, 10 mM was used for further investigation.

$$
HO + H_2O_2 \to H_2O + H_2O \tag{5}
$$

3.8.3 Multivariate Optimisation

The effect of factors affecting the photodegradation process was investigated using two-level full factorial design with three independent variables and three central points. This resulted in a total of 11 experiments with all possible combinations of the actual values. The factorial design matrix and analytical response (% degradation) are shown in Table [2.](#page-7-5) Catalyst loading and contact time have less significance among the three factors.

Figure [10](#page-8-0) presents the Pareto chart of the standardised effects used to investigate the variables that had a significant

influence on the analytical response (% degradation). It can be observed that the bar length of the sample pH value surpassed the vertical significance line (95% confidence intervals). This means that this variable was statistically important. In addition, the other variables and the interactions were not significant at 95% at a confidence level. In this experiment, the pH range selected were 3, 6 and 9 to determine the efficiency of the photocatalyst on degradation of MeP. The dependency of pH is on the surface charge of the photocatalyst, the net charge of pollutant and a number of hydroxyl radicals produced [\[66](#page-11-24)]. Most pollutants in aquatic systems are mainly dependent on pH and their respective dissociation constants and this case MeP is no exception as is dependent on certain pH range and having pKa 8.3. If $pH < pKa$, MeP is in molecular state and vice versa. From the experimental data (Table [2\)](#page-7-5) the best pH for 5 wt% Fedoped WO_3 was 3. This is due to the fact that the surface charge of $WO₃$ is almost comparable to its point-of-zerocharge of 2.5 [\[70](#page-11-28)] in which electrons valence bands can be able to convert H_2O_2 to hydroxyl radicals that can degrade MeP. In addition, it was observed that the algebraic sign for sample pH effect was negative. This demonstrated that sample pH lower than the maximum levels should be used.

In general, dosage loading plays a critical role in the degradation of organic pollutants. The selected 5 wt% Fe-doped $WO₃$ catalyst was varied between 10 mg, 30 mg, and 50 mg respectively. From values shown on Table [2](#page-7-5) different values were obtained with pH variation, what was noticed was that at a low dosage and high contact time, the degradation was higher indicating that there were more active sites on the surface of the catalyst. Figure [9](#page-7-3) showed that the effect of time on degradation did give some semblance of the difference from the values tabulated in Table [2](#page-7-5), which indicated that long contact time increased the contact of the surface

of photocatalyst active sites for photon absorption. The optimal conditions for the highest photocatalytic efficiency of MeP estimated in Fig. [10](#page-8-0) is as follows: pH 3, 10 mg, 5 wt% Fe-doped WO₃ and 120 min with 50.8% degradation of MeP. Several studies have reported on removal of MeP using different photocatalysts where Kumar et al. [[68\]](#page-11-26) used $Fe₃O₄/BiVO₄$ with biochar and achieved 97.4% MeP removal, while Xiao et al. [[58\]](#page-11-29) achieved 66.8% mineralization when β- $Bi₂O₃$ was utilized. Few reported on use of H_2O_2 with photocatalyst in removal of MeP where Velegraki et al. [[71\]](#page-11-30) reported degradation of MeP with H_2O_2 using carbon-doped Kronos Vlp 7000 and Kronos Vlp 7001 powders. They achieved a 57% and 62% removal of MeP for the respective carbon-doped powders.

The multivariate experimental design showed more success than univariate in that it gave a reasonable model of interactions between various factors.

3.9 Photocatalytic Degradation Mechanism

To understand the roles of electrons, holes and *HO* involvement in degradation of MeP at best doping concentration under visible light irradiation. Scheme [1](#page-9-6) shows the overall photocatalytic activity performed at 5 wt% Fe-doped WO_3 photocatalyst for degradation of MeP at pH value of 3, 10 mM H_2O_2 and dosage of 10 mg.

The $Fe³⁺$ ions act as a sink in which they trap and transfer electrons and holes to minimise recombination of photoexcited holes and electrons [\[60](#page-11-17)] as can been shown by the following Eq. [5](#page-7-4) to [10](#page-9-7) in conduction band region

$$
WO_3 + hv \rightarrow e^- + h^+ \tag{6}
$$

$$
Fe^{3+} + e^- \rightarrow Fe^{2+} \tag{7}
$$

Scheme 1 Proposed charge separation and photocatalytic degradation mechanism with Fe-doped WO₃ and H₂O₂

$$
Fe^{3+} + H_2O_2 + e^- \rightarrow Fe^{2+} + H_2O
$$
 (8)

$$
Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + e^- + HO \tag{9}
$$

 $HO^+ + MeP \rightarrow$ degradation by – products (10)

In the valence band region, the $Fe³⁺$ ions are oxidised by visible light to produce Fe^{4+} ions according to Eq. [11](#page-9-8) to [13](#page-9-9)

$$
Fe^{3+} + hv \rightarrow Fe^{4+} \tag{11}
$$

$$
Fe^{4+} + HO^- \rightarrow Fe^{3+} + HO \tag{12}
$$

 $HO + \text{MeP} \rightarrow \text{degradation products}$ (13)

4 Conclusion

The as-prepared WO_3 and Fe-doped WO_3 nanostructures were successfully prepared using microwave irradiation method. From the results of XRD, Raman, XPS and TEM, Fe was successfully incorporated into WO_3 crystal lattice without formation of iron oxide impurities. In comparison with undoped WO_3 , 5 wt% Fe-doped WO_3 showed a better photocatalytic degradation of MeP. The PL spectra indicated that doping with 5 wt% showed a lower recombination rate as compared to undoped, 3 wt% and 10 wt%. A chemometric analysis method was proposed and applied successfully to the photocatalytic process where the optimal conditions were obtained through the Pareto chart. Both individual and interaction factors were taken into considerations. 10 mg, pH 3, 10 mM H_2O_2 and duration of 120 min was found as the best conditions for the degradation of MeP. According to experimental results, the mechanism of hydroxyl radical presented in the heterogeneous system revealed the efficiency and enhancement of iron doping WO_3 on visible light activity of the organic pollutant.

Acknowledgements The authors wish to acknowledge the Water Research Commission (Grant No. K5/2563) and the Department of Applied Chemistry at the University of Johannesburg for partial funding. The authors also thank the Spectra Analytical Facility, the University of Johannesburg for the availability of XRD, SEM, TEM analysis and Department of Physics for XPS analysis.

Conflict of interest The authors declare that there is no conflict of interest regarding the publication of this paper.

References

- 1. Jiang J-Q, Zhou Z, Sharma VK (2013) Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in waste water—a review from global views. Microchem J 110:292–300
- 2. Carlos L, Mártire DO, Gonzalez MC, Gomis J, Bernabeu A, Amat AM, Arques A (2012) Photochemical fate of a mixture of emerging pollutants in the presence of humic substances. Water Res 46(15):4732–4740
- 3. Muñoz I, José Gómez M, Molina-Díaz A, Huijbregts MAJ, Fernández-Alba AR, García-Calvo E (2008) Ranking potential impacts of priority and emerging pollutants in urban wastewater through life cycle impact assessment. Chemosphere 74(1):37–44
- 4. Vulliet E, Cren-Olivé C (2011) Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environ Pollut 159(10):2929–2934
- 5. Alcudia-León MC, Lucena R, Cárdenas S, Valcárcel M (2013) Determination of parabens in waters by magnetically confined hydrophobic nanoparticle microextraction coupled to gas chromatography/mass spectrometry. Microchem J 110:643–648
- 6. Sasi S, Rayaroth MP, Devadasan D, Aravind UK, Aravinda kumar CT (2015) Influence of inorganic ions and selected emerging contaminants on the degradation of methylparaben: a sonochemical approach. J Hazard Mater 300:202–209
- 7. Lam S-M, Sin J-C, Zuhairi Abdullah A, Rahman Mohamed A (2013) Green hydrothermal synthesis of ZnO nanotubes for photocatalytic degradation of methylparaben. Mater Lett 93:423–426
- 8. Trenholm RA, Vanderford BJ, Drewes JE, Snyder SA (2008) Determination of household chemicals using gas chromatography

and liquid chromatography with tandem mass spectrometry. J Chromatogr A 1190(1–2):253–262

- 9. Yu Y, Huang Q, Wang Z, Zhang K, Tang C, Cui J, Feng J, Peng X (2011) Occurrence and behavior of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in wastewater and the recipient river water of the Pearl River Delta, South China. J Environ Monit 13(4):871–878
- 10. Andersen HR, Lundsbye M, Wedel HV, Eriksson E, Ledin A (2007) Estrogenic personal care products in a greywater reuse system. Water Sci Technol 56(12):45–49
- 11. Yamamoto H, Watanabe M, Hirata Y, Nakamura Y, Nakamura Y, Kitani C, Sekizawa J, Uchida M, Nakamura H, Kagami Y, Koshio M, Hirai N, Tatarazako N (2007) Preliminary ecological risk assessment of butylparaben and benzylparaben-1. Removal efficiency in wastewater treatment, acute/chronic toxicity for aquatic organisms, and effects on medaka gene expression. Environ Sci 14(Suppl):73–87
- 12. Blanco E, Casais MdC, Mejuto MdC, Cela R (2009) Combination of off-line solid-phase extraction and on-column sample stacking for sensitive determination of parabens and p-hydroxybenzoic acid in waters by non-aqueous capillary electrophoresis. Anal Chim Acta 647(1):104–111
- 13. Haman C, Dauchy X, Rosin C, Munoz J-F (2015) Occurrence, fate and behavior of parabens in aquatic environments: a review. Water Res 68:1–11
- 14. Lee H-B, Peart TE, Svoboda ML (2005) Determination of endocrine-disrupting phenols, acidic pharmaceuticals, and personalcare products in sewage by solid-phase extraction and gas chromatography–mass spectrometry. J Chromatogr A 1094(1–2):122–129
- 15. Driouich R, Takayanagi T, Oshima M, Motomizu S (2000) Separation and determination of haloperidol, parabens and some of their degradation products by micellar electrokinetic chromatography. J Chromatogr A 903(1–2):271–278
- 16. Huang H-Y, Lai Y-C, Chiu C-W, Yeh J-M (2003) Comparing micellar electrokinetic chromatography and microemulsion electrokinetic chromatography for the analysis of preservatives in pharmaceutical and cosmetic products. J Chromatogr A 993(1–2):153–164
- 17. Dolzan MD, Spudeit DA, Azevedo MS, Costa ACO, de Oliveira MAL, Micke GA (2013) A fast method for simultaneous analysis of methyl, ethyl, propyl and butylparaben in cosmetics and pharmaceutical formulations using capillary zone electrophoresis with UV detection. Anal Methods 5(21):6023–6029
- 18. Márquez-Sillero I, Aguilera-Herrador E, Cárdenas S, Valcárcel M (2010) Determination of parabens in cosmetic products using multi-walled carbon nanotubes as solid phase extraction sorbent and corona-charged aerosol detection system. J Chromatogr A 1217(1):1–6
- 19. Noorashikin MS, Mohamad S, Abas MR (2014) Extraction and determination of parabens in water samples using an aqueous twophase system of ionic liquid and salts with beta-cyclodextrin as the modifier coupled with high performance liquid chromatography. Anal Methods 6(2):419–425
- 20. Zgola-Grzeskowiak A, Werner J, Jeszka-Skowron M, Czarczynska-Goslinska B (2016) Determination of parabens in cosmetic products using high performance liquid chromatography with fluorescence detection. Anal Methods 8(19):3903–3909
- 21. Gonzalez-Hernandez P, Pino V, Ayala JH, Afonso AM (2015) A simplified vortex-assisted emulsification microextraction method for determining personal care products in environmental water samples by ultra-high-performance liquid chromatography. Anal Methods 7(5):1825–1833
- 22. Cao S, Liu Z, Zhang L, Xi C, Li X, Wang G, Yuan R, Mu Z (2013) Development of an HPLC-MS/MS method for the simultaneous analysis of six kinds of parabens in food. Anal Methods 5(4):1016–1023
- 23. Lu L, Xiong W, Li X, Lv S, Tang X, Chen M, Zou Z, Lin Z, Qiu B, Chen G (2014) Determination of the migration of eight parabens from antibacterial plastic packaging by liquid chromatographyelectrospray ionization-tandem mass spectrometry. Anal Methods 6(7):2096–2101
- 24. Shanmugam G, Ramaswamy BR, Radhakrishnan V, Tao H (2010) GC–MS method for the determination of paraben preservatives in the human breast cancerous tissue. Microchem J 96(2):391–396
- 25. Fan X, Kubwabo C, Rasmussen P, Jones-Otazo H (2010) Simultaneous quantitation of parabens, triclosan, and methyl triclosan in indoor house dust using solid phase extraction and gas chromatography-mass spectrometry. J Environ Monit 12(10):1891–1897
- 26. Che H, Liu C, Hu W, Hu H, Li J, Dou J, Shi W, Li C, Dong H (2018) NGQD active sites as effective collectors of charge carriers for improving the photocatalytic performance of Z-scheme $g - C_3N_4/Bi_2WO_6$ heterojunctions. Catal Sci Tech 8(2):622–631
- 27. Ye L, Su Y, Jin X, Xie H, Zhang C (2014) Recent advances in $BiOX$ ($X = Cl$, Br and I) photocatalysts: synthesis, modification, facet effects and mechanisms. Environ Sci 1(2):90–112
- 28. Dong S, Feng J, Fan M, Pi Y, Hu L, Han X, Liu M, Sun J, Sun J (2015) Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv 5(19):14610–14630
- 29. Wen Z, Wu W, Liu Z, Zhang H, Li J, Chen J (2013) Ultrahighefficiency photocatalysts based on mesoporous $Pt-WO₃$ nanohybrids. Phys Chem Chem Phys 15(18):6773–6778
- 30. Che H, Che G, Dong H, Hu W, Hu H, Liu C, Li C (2018) Fabrication of Z-scheme $Bi_3O_4Cl/g-C_3N_4$ 2D/2D heterojunctions with enhanced interfacial charge separation and photocatalytic degradation various organic pollutants activity. Appl Surf Sci 455:705–716
- 31. Adhikari S, Sarkar D (2014) Hydrothermal synthesis and electrochromism of WO_3 nanocuboids. RSC Adv 4(39):20145-20153
- 32. Qian J, Zhao Z, Shen Z, Zhang G, Peng Z, Fu X (2016) Oxide vacancies enhanced visible active photocatalytic $W_{19}O_{55}$ NMRs *via* strong adsorption. RSC Adv 6(10):8061–8069
- 33. Epifani M, Arbiol J, Díaz R, Andreu T, Siciliano P, Morante JR (2010) Morphological and structural characterization of WO_3 and Cr-WO₃ thin films synthesized by sol-gel process. Thin Solid Films 518(16):4512–4514
- 34. Martínez-de la Cruz A, Martínez DS, Cuéllar EL (2010) Synthesis and characterization of WO_3 nanoparticles prepared by the precipitation method: evaluation of photocatalytic activity under vis-irradiation. Solid State Sci 12(1):88–94
- 35. Huang R, Shen Y, Zhao L, Yan M (2012) Effect of hydrothermal temperature on structure and photochromic properties of WO_3 powder. Adv Powder Technol 23(2):211–214
- 36. Chiang TH, Hsu C-C, Chen T-M, Yu B-S (2015) Synthesis and structural characterization of tungsten oxide particles by the glycothermal method. J Alloys Compd 648:297–306
- 37. Adhikari SP, Dean H, Hood ZD, Peng R, More KL, Ivanov I, Wu Z, Lachgar A (2015) Visible-light-driven Bi_2O_3/WO_3 composites with enhanced photocatalytic activity. RSC Adv 5(111):91094–91102
- 38. Wang C, Zhang X, Yuan B, Wang Y, Sun P, Wang D, Wei Y, Liu Y (2014) Multi-heterojunction photocatalysts based on $WO₃$ nanorods: Structural design and optimization for enhanced photocatalytic activity under visible light. Chem Eng J 237:29–37
- 39. Ahmed F, Kumar S, Arshi N, Anwar MS, Heun Koo B (2012) Morphological evolution between nanorods to nanosheets and room temperature ferromagnetism of Fe-doped ZnO nanostructures. CrystEngComm 14(11):4016–4026
- 40. Ahmed Y, Yaakob Z, Akhtar P (2016) Correction: degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catal Sci Tech 6(4):1233–1233
- 41. Nidheesh PV (2015) Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv 5(51):40552–40577
- 42. Yehia FZ, Eshaq G, Rabie AM, Mady AH, ElMetwally AE (2015) Phenol degradation by advanced Fenton process in combination with ultrasonic irradiation. Egypt J Pet 24(1):13–18
- 43. Ayodele OB, Lim JK, Hameed BH (2012) Degradation of phenol in photo-Fenton process by phosphoric acid modified kaolin supported ferric-oxalate catalyst: optimization and kinetic modeling. Chem Eng J 197:181–192
- 44. Segura Y, Molina R, Martínez F, Melero JA (2009) Integrated heterogeneous sono–photo Fenton processes for the degradation of phenolic aqueous solutions. Ultrason Sonochem 16(3):417–424
- 45. Zeng Z, Zou H, Li X, Arowo M, Sun B, Chen J, Chu G, Shao L (2013) Degradation of phenol by ozone in the presence of Fenton reagent in a rotating packed bed. Chem Eng J 229:404–411
- 46. Saleh R, Djaja NF (2014) UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles. Superlattices Microstruct 74:217–233
- 47. Yue C, Zhu X, Rigutto M, Hensen E (2015) Acid catalytic properties of reduced tungsten and niobium-tungsten oxides. Appl Catal B 163:370–381
- 48. Sayed Abhudhahir MH, Kandasamy J (2015) Synthesis and characterization of manganese doped tungsten oxide by microwave irradiation method. Mater Sci Semicond Process 40:695–700
- 49. Santhi K, Rani C, Dhilip Kumar R, Karuppuchamy S (2015) Synthesis of nanoporous $Zn-WO₃$ by microwave irradiation method for photocatalytic applications. J Mater Sci Mater Electron 26(12):10068–10074
- 50. Beji N, Souli M, Ajili M, Azzaza S, Alleg S, Turki NK (2015) Effect of iron doping on structural, optical and electrical properties of sprayed In_2O_3 thin films. Superlattices Microstruct 81:114–128
- 51. Silambarasan M, Saravanan S, Soga T (2015) Effect of Fe-doping on the structural, morphological and optical properties of ZnO nanoparticles synthesized by solution combustion process. Phys E 71:109–116
- 52. Husain S, Alkhtaby LA, Giorgetti E, Zoppi A, Muniz Miranda M (2016) Investigation of the role of iron doping on the structural, optical and photoluminescence properties of sol–gel derived $TiO₂$ nanoparticles. J Lumin 172:258–263
- 53. Siriwong C, Wetchakun N, Inceesungvorn B, Channei D, Samerjai T, Phanichphant S (2012) Doped-metal oxide nanoparticles for use as photocatalysts. Prog Cryst Growth Charact Mater 58(2–3):145–163
- 54. Steter JR, Rocha RS, Dionísio D, Lanza MRV, Motheo AJ (2014) Electrochemical oxidation route of methyl paraben on a borondoped diamond anode. Electrochim Acta 117:127–133
- 55. Dobrin D, Magureanu M, Bradu C, Mandache NB, Ionita P, Parvulescu VI (2014) Degradation of methylparaben in water by corona plasma coupled with ozonation. Environ Sci Pollut Res 21(21):12190–12197
- 56. Sánchez-Martín J, Beltrán-Heredia J, Domínguez JR (2013) Advanced photochemical degradation of emerging pollutants: methylparaben. Water Air Soil Pollut 224(5):1483
- 57. Doná G, Dagostin JLA, Takashina TA, de Castilhos F, Igarashi-Mafra L (2018) A comparative approach of methylparaben

photocatalytic degradation assisted by UV-C, UV-A and vis radiations. Environ Technol 39(10):1238–1249

- 58. Xiao X, Hu R, Tu S, Zheng C, Zhong H, Zuo X, Nan J (2015) One-pot synthesis of micro/nano structured β-Bi₂O₃ with tunable morphology for highly efficient photocatalytic degradation of methylparaben under visible-light irradiation. RSC Adv 5(48):38373–38381
- 59. Kumar A, Shalini, Sharma G, Naushad M, Kumar A, Kalia S, Guo C, Mola GT (2017) Facile hetero-assembly of superparamagnetic $Fe₃O/BiVO₄$ stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil. J Photochem Photobiol A 337:118–131
- 60. Song H, Li Y, Lou Z, Xiao M, Hu L, Ye Z, Zhu L (2015) Synthesis of Fe-doped WO_3 nanostructures with high visible-light-driven photocatalytic activities. Appl Catal B 166–167:112–120
- 61. Zhang Z, haq M, Wen Z, Ye Z, Zhu L (2018) Ultrasensitive ppblevel $NO₂$ gas sensor based on $WO₃$ hollow nanosphers doped with Fe. Appl Surf Sci 434:891–897
- 62. Hernandez-Uresti DB, Sánchez-Martínez D, Martínez-de la Cruz A, Sepúlveda-Guzmán S, Torres-Martínez LM (2014) Characterization and photocatalytic properties of hexagonal and monoclinic WO₃ prepared *via* microwave-assisted hydrothermal synthesis. Ceram Int 40(3):4767–4775
- 63. Baserga A, Russo V, Di Fonzo F, Bailini A, Cattaneo D, Casari CS, Li Bassi A, Bottani CE (2007) Nanostructured tungsten oxide with controlled properties: synthesis and Raman characterization. Thin Solid Films 515(16):6465–6469
- 64. Yang C, Zhu Q, Lei T, Li H, Xie C (2014) The coupled effect of oxygen vacancies and Pt on the photoelectric response of tungsten trioxide films. J Mater Chem C 2(44):9467–9477
- 65. Yin L, Chen D, Feng M, Ge L, Yang D, Song Z, Fan B, Zhang R, Shao G (2015) Hierarchical Fe₂O₃@WO₃ nanostructures with ultrahigh specific surface areas: microwave-assisted synthesis and enhanced H₂S-sensing performance. RSC Adv 5(1):328-337
- 66. Lin Y, Ferronato C, Deng N, Wu F, Chovelon J-M (2009) Photocatalytic degradation of methylparaben by $TiO₂$: multivariable experimental design and mechanism. Appl Catal B 88(1–2):32–41
- 67. Yuan W, Zhang C, Wei H, Wang Q, Li K (2017) In situ synthesis and immobilization of a Cu(II)–pyridyl complex on silica microspheres as a novel Fenton-like catalyst for RhB degradation at near-neutral pH. RSC Adv 7(37):22825–22835
- 68. Kumar A, Sharma G, Naushad M, Kumar A, Kalia S, Guo C, Mola GT (2017) Facile hetero-assembly of superparamagnetic Fe₃O₄/ BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil. J Photochem Photobiol A 337:118–131
- 69. Ahmed Y, Yaakob Z, Akhtar P (2016) Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catal Sci Tech 6(4):1222–1232
- 70. Anik M, Cansizoglu T (2006) Dissolution kinetics of WO_3 in acidic solutions. J Appl Electrochem 36(5):603–608
- 71. Velegraki T, Hapeshi E, Fatta-Kassinos D, Poulios I (2015) Solarinduced heterogeneous photocatalytic degradation of methyl-paraben. Appl Catal B 178:2–11