

Ultrathin Hexagonal SnS₂ Nanosheets Coupled with Tetragonal CuInS₂ Nanosheets as 2D/2D Heterojunction Photocatalysts Toward High Visible-Light Photocatalytic Activity and Stability

Kai Zhang¹ · Yunhai Zhang² · WanJu Zhang¹

Received: 4 March 2018 / Accepted: 14 May 2018 / Published online: 19 May 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

A kind of 2D/2D heterojunction photocatalysts was constructed by a facile in situ hydrothermal method that a tetragonal $CuInS_2$ nanosheets was horizontal loaded in ultrathin hexagonal SnS_2 nanosheets. Contrasted to pure $CuInS_2$ and SnS_2 nanosheets, the $CuInS_2/SnS_2$ nano-heterojunctions revealed a noteworthy improvement photocatalytic activity under visible light irradiation for the degradation of organic dyes, which should be attributed to the narrowest band gap and the efficient charge separation and transfer improving the contact region in heterojunction interface. Especially, with 0.5 wt% addition of $CuInS_2$, the heterojunction nanosheets shows a supreme visible-light photocatalytic activity and a superb degradation efficiency which reached 99% in 60 min with the solution of methyl orange. Moreover, $CuInS_2/SnS_2$ nano-heterojunctions deliver excellent reusability in five degradation–regeneration cycles. The results indicated that $CuInS_2/SnS_2$ has a promising prospect in organic pollutant treatment due to high efficiency and excellent stability.

Graphical Abstract

Keywords CuInS₂/SnS₂ · Heterojunction · In situ hydrothermal method · Visible-light photocatalysis

⊠ Yunhai Zhang wszhyhai@foxmail.com

WanJu Zhang 28813470@qq.com

Extended author information available on the last page of the article

1 Introduction

A new wave of research activities, the efficient utilization of solar energy, has stimulated by the ever-increasing global demand for energy. Visible-light-driven semiconductor photocatalysts, a promising prospective application in the treatment of environmental pollutants in water, have created widespread interest in the scientific and technology communities [1–5]. However, solar energy conversion efficiency still requires much improvement, although various strategies including bandgap engineering, crystal phase control, and microstructure construction have been employed [6, 7]. Recently, developing heterostructured materials by carefully selecting and coupling two different semiconductors has yielded novel photocatalysts with high activity [8–11].

Metal sulfides are considered promising materials for coupling with other semiconductors, due to their relatively narrow band gap. Among them, tin sulfide (SnS_2) has been attracting increasing attention for its cheap, abundant, and its low band gap (1.91-2.35 eV) as well as it can be designed as an environmental friendly visible-light photocatalyst [12–15]. However, reports showed that its photodegradation performance should be improved [14, 15]. In contrast with single semiconductor, the photocatalysts performance of the two different semiconductors composite can be successful and higher improved, which owns to the narrowest band gap and the efficient charge separation and transfer improving the contact region in heterojunction interface [16-18]. For example, SnS₂/BiOBr heterojunction nanoplates showed higher photocatalytic activity than BiOBr and SnS₂ for the degradation of rhodamine B under visible light irradiation [18]. Recently, Gao et al. achievement illustrated that the photocatalytic activity of SnS₂-based heterojunction could be obviously enhanced by way of extending the photoresponding range and increasing the charge separation efficiency [19]. Besides, Zhang et al. demonstrated that it is the RhB photodegradation apparent rate constant that under visible light is higher than that of pure $g-C_3N_4$ and SnS_2 nanosheets by a factor of 4 and 8, respectively [20].

The remarkable properties of narrow band gap, high stability, and strong visible-light absorption made ternary chalcogenide compounds gained tremendous attraction, and a notable candidate for the application of photocatalyst in recent years [21]. Taking Copper indium disulfide (CuInS₂) for example, it is an universal ternary chalcogenide semiconductor that exhibits an excellent photocatalytic property [22–24]. However, the small specific surface area and fast electron-hole recombination have brought a huge obstacle to single CuInS₂ semiconductors for the application of photocatalyst. Besides, the truth that subdued photocatalytic activity would incredible decrease its photocatalytic efficiency during recycling process. Moreover, it can be observed that, among those SnS₂ and copper indium disulfide (CuInS₂), the energy levels of the valence band (VB) and conduction band (CB) can match well between the two, which plays a synergistic effect on and benefits to the transmission of photoinduced charge carriers. Therefore, it can be theoretically find out that the CuInS₂/SnS₂ heterostructure composites can exhibit excellent photocatalytic activity to remove organic pollutant under visible light.

Herein, a 2D/2D heterojunction photocatalysts was constructed by a facile and simple one-step in situ hydrothermal method, through coupling the tetragonal CuInS₂ nanosheets with ultrathin hexagonal SnS₂ nanosheets. As such, the asfabricated CuInS₂/SnS₂ heterojunction nanosheets exhibit significant enhancement on the photocatalytic activities for the degradation of organic dyes under visible light irradiation as compared to pure CuInS₂ and SnS₂ nanosheets. The morphology, structure, optical and electrochemical properties were characterized, and the photocatalytic activity of CuInS₂/SnS₂ heterojunctions was tested by photodegrading methyl orange under visible-light irradiation, and the reusability of CuInS₂/SnS₂ was evaluated by five consecutive photocatalytic runs. The relationship between its structure and performance, and the possible photocatalytic mechanism were also proposed.

2 Experimental

2.1 Materials and Chemicals

Tin(IV) chloride pentahydrate (SnCl₄·5H₂O) was purchased from Shanghai Fengxian Chemistry Co., Ltd. (Shanghai, China). Thioacetamide (TAA) and cuprous chloride (CuCl) were attained from Tianjin Chemical Reagent Plant (Tianjin, China). Indium chloride (InCl₃·4H₂O) and methyl orange (MO) were received from Aladdin Chemistry Co. Ltd. (Shanghai, China). Anhydrous ethanol, sodium sulfate (Na₂SO₄) and iso-propyl alcohol (IPA) were obtained from Shantou Xilong Chemical Co., Ltd. (Shantou, China). p-Benzoquinone (BQ) was supplied by Shanghai Crystal Pure Reagent Co., Ltd. (Shanghai, China). Triethanolamine (TEOA) was acquired from Shanghai Chemical Reagent Co., Ltd. (Shanghai, China). All chemicals and solvents were of analytical grade and used without further purifcation.

2.2 Preparation of CulnS₂/SnS₂ Nano-heterojunction

First, the SnS₂ nanosheets were synthesized by a hydrothermal method. Briefly, 0.02 mmol of SnCl₄·5H₂O and 0.04 mol TAA were added in 40 mL of deionized water. After stirring for 30 min, the above mixture was transferred into a Teflon-lined stainless steel autoclave with a capacity of 50 mL. The autoclave was sealed and heated at heated at 180 °C for 20 h and then was naturally cooled to room temperature. The precipitate filtered and washed with distilled water and ethanol for several times, and then dried in a vacuum oven at 100 °C for 5 h.

CuInS₂/SnS₂ nano-heterojunction was fabricated. First, 0.02 mol of SnCl₄·5H₂O, 0.04 mol TAA were added in 40 mL of deionized water with magnetic stirring marked as solution (A) Then a certain amount CuInS₂ (Cu:In:S = 1:1:2) were added in 20 mL of deionized water under magnetic stirring marked as solution (B) Finally, adding the solution B to the solution A under magnetic stirring drop by drop. After stirring for 30 min, the above mixture transferred into a Teflon-lined stainless steel autoclave with a capacity of 100 mL. The autoclave was sealed and heated at heated at 180 °C for 20 h and then was naturally cooled to room temperature. After that the product was washed with deionized water and ethanol several times, and then was obtained in a vacuum oven at 100 °C for 5 h. Samples mass ratio of CuInS₂ to SnS₂ were denoted as CuInS₂/SnS₂ (0.1%), CuInS₂/SnS₂ (0.5%), CuInS₂/SnS₂ (1%), CuInS₂/SnS₂ (3%) and CuInS₂/SnS₂ (5%), respectively.

2.3 Characterization Methods

Morphologies of CuInS₂, SnS₂ and CuInS₂/SnS₂ nano-heterojunction were examined by scanning electron microscopy (SEM, KYKY-EM3900M) and transmission electron microscope (TEM, JEM-2010F) and high-resolution transmission electron microscope (HRTEM, JEM-2010F). The crystal phase of the samples was analyzed by X-ray diffraction (XRD). BET surface areas and pore structures were analyzed using a GEMINI VII 2390 surface area and porosity analyzer (Micromeritics, USA). The reflectance spectra of the samples were obtained from a U-3900H scan UV–Vis spectrophotometer (Hitachi, Japan). The photoluminescence (PL) spectra were measured using F-7000 fluorescence spectrophotometer (Hitachi, Japan) with an excitation wavelength of 325 nm, scanning speed of 1200 nm min⁻¹, and the photomultipliers voltage of 700 V.

2.4 Electrochemical Measurement

The photocurrent of pure CuInS₂, SnS₂ and 0.5% CuInS₂/SnS₂ nano-heterojunction were determined by using a Chenhua CHI660C Electrochemical Workstation (Shanghai, China) with a standard three-electrode cell. A standard three-electrode system was composed of CuInS₂, SnS₂ or CuInS₂/SnS₂ film fabricated on FTO conductive glass (an effective area of 1 cm²) as working electrode, KCI-saturated calomel electrode (SCE) as reference electrode, platinum plate as counter electrode, and 0.5 mol L⁻¹ Na₂SO₄ as supporting electrolyte. The applied voltage was 0 V for the FTO working electrode. A 300 W xenon lamp (PLS-SXE300, Beijing Trusttech Co., Ltd. China) with a 400 nm cut off filter (400 nm < λ < 780 nm) was used as the source of visible light.

The flat band potentials of pure CuInS_2 , SnS_2 and 0.5% $\text{CuInS}_2/\text{SnS}_2$ nano-heterojunction were determined by Mott–Schottky plots using the same standard three-electrode system as the photocurrent test, and the applied potential ranges between -1 and 1 V with the scan frequency of 10 kHz.

Electrochemical impedance spectroscopy (EIS) was measured as the same standard three-electrode system and electrochemical workstation as Mott–schottky test, but the electrolyte solution is the mixture of 0.5 mol L⁻¹ Na₂SO₄, 2.5 mmol L⁻¹ potassium hexacyanoferrate(III) (K₃[Fe(CN)₆]), and 2.5 mmol L⁻¹ potassium ferrocyanide (K₄Fe(CN)₆:3H₂O).

2.5 Photocatalytic Activity Measurement

In this set of experiments, 0.03 g of pure CuInS₂, SnS₂ or CuInS₂/SnS₂ nano-heterojunction were added in aqueous 100 mL of methyl orange (MO) solution (10 mg L⁻¹). Before the reaction, the suspension was magnetically stirred for 30 min in the dark to reach adsorption–desorption equilibrium. Then the suspension was irradiated by 300 W xenon lamps with a 400 nm cut off filter under magnetic stirring. Every 10 min intervals, 3 mL aliquots were collected from the suspension and immediately centrifuged, and the concentration of MO was analyzed using a 754 UV–Vis spectrometer at 465 nm.

2.6 Regeneration and Reuse of Spent CulnS₂/SnS₂ Nano-heterojunction Photocatalyst

In order to evaluate the stability of pure SnS_2 and 0.5%CuInS₂/SnS₂ nano-heterojunction catalyst, the catalytic reaction was performed for five times using the same sample. After each cycle, the catalyst separated through centrifugation and washed with deionized water and ethanol several times, then dried at about 100 °C for 4 h. The recovered photocatalyst was used in the next cycle under the same condition as above.

3 Results and Discussion

3.1 XRD Analysis

As is shown in Fig. 1, the XRD patterns demonstrated the characterization of CuInS_2 , SnS_2 and $\text{CuInS}_2/\text{SnS}_2$ composites. It can be observed that the $\text{CuInS}_2/\text{SnS}_2$ composite XRD pattern is consistent with those of pure SnS_2 (JGPDS No. 023-0677). The main diffraction peaks at about $2\theta = 15.03^\circ$, 28.20°, 32.12°, 49.96° and 52.50° could be indexed to the (001), (100), (101), (110) and (111) crystalline planes of tetragonal phase of SnS_2 respectively. While, observing no typical diffraction peak of CuInS_2 in the XRD pattern of $\text{CuInS}_2/\text{SnS}_2$ composite, it is possibly owe to the low loading content of CuInS_2 .

Fig. 1 XRD patterns of pure $CuInS_2$, pure SnS_2 and $CuInS_2/SnS_2$ heterojunctions with different $CuInS_2$ content

3.2 Morphology of Samples

The morphologies of pure SnS_2 and 0.5% $\text{CuInS}_2/\text{SnS}_2$ nano-heterojunction were characterized by SEM (Fig. 2). Pure SnS_2 was composed of hierarchically porous and flower-like spheres, and these spheres are constructed by many bending 2D sheets which are densely interconnected with each other to form an entangled architecture with a quantity of pores. Non-uniform network-like spheres with an average diameter of 5–8 µm were clearly observed from the low-magnification SEM image of pure SnS_2 (Fig. 2a). The CuInS₂/SnS₂ composite shows a rough surface and regular hexahedral shape with a size of 50–70 nm (Fig. 2b).

TEM and HRTEM measurements were performed to further characterize the morphology of 0.5% CuInS₂/SnS₂. As shown in Fig. 3a, b, the hexagonal SnS₂ and tetragonal CuInS₂ nano-materials were observed. In addition, as can be seen in Fig. 3c, the measured interplanar spacing is 0.32 nm, it maybe belong to the CuInS₂ (112) plane or SnS₂ (100) plane. Besides, the SnS₂ (100) and (001) plane interplanar spacing is 0.32 and 0.59 nm, respectively, which is corresponded to the XRD results.

3.3 XPS Analysis

XPS is an important technique for the detection of variations in chemical composition and oxidation state for materials. Figure 4a shows the survey spectrum of 0.5%CuInS₂/SnS₂ heterojunction. Cu, In, Sn and S elements are present in the survey spectrum of CuInS₂/SnS₂. In addition, the element O (O 1s, 533.14 eV) and C (C 1s, 285 eV) were also obverved in the survey spectrum of CuInS₂/SnS₂ due to the organic sulfur precursor and the adventitious hydrocarbon from the XPS instrument itself. Figure 4b–e presented the spectra of Sn 3d, S 2p, Cu 2p and In 3d for CuInS₂/SnS₂ heterojunction. In contrast, the Sn 3d_{5/2} and Sn 3d_{3/2} peaks of SnS₂ nanosheets which appeared at 486.9 and 495.4 eV [25, 26] respectively, are higher than the corresponding binding energy of CuInS₂/ SnS₂ heterojunction (Fig. 4b). And, two weak peaks which attributed to the Sn-In bonds are found at the Sn 3d corelevel of heterojunction nanosheets [27, 28], further indicating the possible bondin configuration of Sn-In on the heterojunction interface. Meanwhile, the S 2p peaks of SnS₂ nanosheets, reflecting to S–Sn bond [25, 26], are also changed to the high binding energy side, when coupling with CuInS₂ nanosheets. Compared with pure SnS₂, the Sn 3d states of CuInS₂/SnS₂ heterojunction shifted to lowerenergy region (Fig. 4b), and the S 2p states of CuInS₂/SnS₂ heterojunction shifted to higher-energy region (Fig. 4c), which indicated the migration of electrons from CuInS₂ to SnS_2 in the CuInS₂/SnS₂ heterojunction [29, 30]. In the $CuInS_2/SnS_2$ heterojunction, the binding energy of Cu $2p_{3/2}$, Cu $2p_{1/2}$, In $3d_{5/2}$ and In $3d_{3/2}$ located at 932.1, 952.1, 445.1 and 452.5 eV, indicating that the oxidation state of copper and indium are + I and + III, respectively (Fig. 4d, e) [31, 32]. According to the XPS analysis, it can be concluded that CuInS₂/SnS₂ heterojunctions have been successfully fabricated.

Fig. 2 SEM images of a pure SnS_2 , b 0.5% CuInS₂/SnS₂ heterojunctions

Fig. 3 TEM (a, b) and HRTEM (c, d) images of 0.5% CuInS₂/SnS₂ heterojunctions

Fig. 4 XPS of a survey spectrum, b Sn 3d, c S 2p, d Cu 2p and e In 3d of pure SnS₂ and 0.5% CuInS₂/SnS₂ heterojunction

3.4 Brunauer–Emmett–Teller Surface Area and Pore Structure

As is depicted in Fig. 5, it was characterized that the N₂ adsorption–desorption isotherms curves of pure SnS₂, CuInS₂ and CuInS₂/SnS₂ nano-heterojunction with different CuInS₂ content. The results demonstrates that it belongs to type IV and H3 hysteresis loop, indicating the existence of mesopores and macro-porous in nano-heterojunction. All the samples showed broad and bimodal pore size distribution with small mesopores (2–4 nm) and larger ones (5–35 nm), further confirming the existence of mesopores. The BET surface area of SnS₂ is 67.9 m² g⁻¹. With increasing CuInS₂ content from 0.1 to 5%, the specific surface area was greatly increased, the BET surface area of CuInS₂/SnS₂ is much higher than that of SnS₂. The main parameters of the samples were listed in Table 1.

3.5 UV–Vis Diffuse Reflectance Spectra

As is shown in Fig. 6, the UV–Vis diffuse reflectance spectra of pure CuInS_2 , pure SnS_2 and $\text{CuInS}_2/\text{SnS}_2$ heterojunctions with different mass ratio are depicted. Contrasted with pure CuInS_2 and pure SnS_2 , the $\text{CuInS}_2/\text{SnS}_2$ heterojunctions absorption intensity was enhanced, with the absorption edge shifting to longer wavelength. Moreover, the band gap energies (E_g) of pure CuInS_2 , pure SnS_2 , and $\text{CuInS}_2/\text{SnS}_2$ heterojunctions were calculated by Tauc's equation:

$$(\alpha hv)^2 = A(hv - E_g)^n \tag{1}$$

where α is absorption coefficient, *h* is planck's constant, ν is light frequency, *A* is a constant and E_g is band gap energy, and n = 2 for direct-band-gap semiconductor and n = 1/2 for indirect-band-gap semiconductor. The plots of $(\alpha hv)^2$ versus hv were shown in Fig. 6b, and E_g values were obtained by

Table 1 Physical properties of pure SnS_2 , pure $CuInS_2$ and $CuInS_2/SnS_2$ heterojunctions

Samples	$S_{BET} (m^2 g^{-1})$	Pore volume $(cm^3 g^{-1})$	Average pore size (nm)
SnS ₂	67.9	0.17	10.49
CuInS ₂	32.8	0.18	20.82
0.1% CuInS ₂ /SnS ₂	83.7	0.21	9.27
0.5% CuInS ₂ /SnS ₂	87.5	0.23	10.70
1% CuInS ₂ /SnS ₂	92.7	0.22	9.64
3% CuInS ₂ /SnS ₂	96.6	0.26	10.94
5% CuInS ₂ /SnS ₂	101.3	0.27	10.92

estimating the intercept of the tangent to the plots. The E_g of pure CuInS₂, pure SnS₂, 0.1% CuInS₂/SnS₂, 0.5% CuInS₂/SnS₂, 1% CuInS₂/SnS₂, 3% CuInS₂/SnS₂, and 5% CuInS₂/SnS₂ heterojunctions were estimated to be about 1.57, 2.1, 1.85, 1.91, 1.81, 1.83 and 1.87 eV, respectively.

3.6 Mott–Schottky Analysis

The flat band potentials (V_{fb}) of CuInS₂, SnS₂ and CuInS₂/SnS₂ were calculated according to the Mott–Schottky equation (Fig. 7).

$$\frac{1}{C^2} = \frac{2}{A^2 e \epsilon \epsilon_0 N_A} \left(E - V_{fb} - \frac{k_B T}{e} \right) \tag{2}$$

where C = interfacial capacitance, A = the electrode surface, E = applied potential, $\varepsilon =$ dielectric constant of the semiconductor, $\varepsilon_0 =$ permittivity of free space, T = absolute temperature, e = electronic charge, $k_B =$ Boltzmann constant, and $N_A =$ carrier concentration [33]. Hence, V_{fb} values can be obtained when a plot of $1/C^2$ against potential yields a

Fig. 5 a Nitrogen adsorption-desorption isotherms curves and b pore-size distribution curves of pure $CuInS_2$, pure SnS_2 and $CuInS_2/SnS_2$ heterojunctions with different $CuInS_2$ content

Fig. 6 a UV–Vis diffuse reflectance spectra of pure pure CuInS₂, pure SnS₂ and CuInS₂/SnS₂ heterojunctions with different CuInS₂ content and **b** curves of $(\alpha h\nu)^2$ versus $h\nu$

Fig.7 Mott–Schottky curve of pure CuInS $_2$, pure SnS $_2$ and 0.5% CuInS $_2/\text{SnS}_2$ heterojunction

straight line. The V_{fb} values of CuInS₂, SnS₂, 0.5% CuInS₂/ SnS₂ are -0.538, -0.48, and -0.43 eV versus the saturated calomel electrode (SCE), respectively. The positive shift of the flat band potentials is consistent with their photocatalytic activities. Moreover, the slope of Mott–Schottky lines is positive, indicating CuInS₂, SnS₂ and CuInS₂/SnS₂ heterojunctions with n-type semiconductor properties.

3.7 Photocurrent Transient and PL Emission Spectra Analysis

The photocurrent transient response test of pure CuInS₂, pure SnS₂ and 0.5% CuInS₂/SnS₂ heterojunction upon visible-light irradiation was further carried out and the result is shown in Fig. 8. From the Fig. 8a, with light switching on and off, the photocurrent density exhibits a rise and decrease promptly, respectively. Obviously, the photocurrent density of 0.5 wt% CuInS₂/SnS₂ heterojunction was higher than that of pure SnS₂ and CuInS₂, which suggests that the CuInS₂/SnS₂ heterojunction is contribute to rapid separation of photogenerated electrons and holes and agreements with its highest photocatalytic activity. For further detecting the photogenerated electrons and holes recombination, PL emission spectra is usually employed. As Fig. 8b manifested, The PL intensity of 0.5 wt% CuInS₂/SnS₂ heterojunction was lower than that of pure SnS₂ and pure CuInS₂. The lowest PL intensity of 0.5 wt% $CuInS_2/SnS_2$ indicates the most efficient separation of photogenerated electrons and holes. Both PL and photocurrent results confirmed that the outstanding improvement of charge separation in CuInS₂/SnS₂ heterojunction photocatalysts.

3.8 Nyquist Impedance Analysis

To evaluate the probability photogenic electron and holes compound, Nyquist impedance analysis was further carried out (Fig. 9). The alternating current (AC) impedance spectra are obtained by equivalent circuit simulation as shown in Fig. 9b, where C = electric double layer capacitor, Zw = Warburg impedance, Rct = charge transfer resistance and Rs = electrolyte resistance, respectively. The total resistance of pure CuInS₂ and SnS₂ is 50 and 296 Ohm, respectively. The total resistance of CuInS₂/SnS₂ is only 37 Ohm. It is clear to see that the formation of CuInS₂/SnS₂ heterojunction is able to lead to dramatic decrease in the semicycle arc as compared to pure CuInS₂ and SnS₂, suggesting a higher charge transfer rate occurred in CuInS₂/SnS₂ heterojunction electrode. It is consistent with the PL analysis and photocurrent orders.

Fig.8 a Photocurrent of pure $CuInS_2$ pure SnS_2 and 0.5% $CuInS_2/SnS_2$ heterojunction under visible-light irradiation, **b** PL spectra of pure $CuInS_2$, SnS_2 and 0.5% $CuInS_2/SnS_2$ heterojunction

played in Fig. 10. It was clearly to see from Fig. 10 that the photocatalytic activity of $CuInS_2/SnS_2$ heterojunction was higher than that of pure $CuInS_2$. As the amount of $CuInS_2$ increases, the photocatalytic activity increases gradually and then decreases, the order of degradation rate is 0.5 wt% $CuInS_2/SnS_2 > 0.1$ wt% $CuInS_2/SnS_2 > 1$ wt% $CuInS_2/SnS_2 > 3$ wt% $CuInS_2/SnS_2 > SnS_2 > 5$ wt% $CuInS_2/SnS_2 > CuInS_2$. The 0.5% $CuInS_2/SnS_2$ exhibits the highest photocatalytic activity, which could be attributed to the optimum $CuInS_2$ content resulting in more efficient generation and transfer of photo-generated electrons and holes at interfaces, but excess $CuInS_2$ can result in the recombination of photo-generated electrons and holes as well as hinder light absorption.

20

30

Time (min)

40

50

60

3.9.2 Photocatalytic Mechanism

10

0.0

0

In this part, a tentative photocatalytic reaction mechanism was explored, with IPA (OH quencher), TEOA (h⁺ quencher) and BQ (O_2^- quencher) beening used and added to the MO solution as scavengers during the MO photodegration process (Fig. 11). As no quenchers added, the MO degradation efficiency reached 99%; while adding TEOA and BQ separately, the degradation efficiency significantly decreased to 23.38% and 15.68%, respectively. Therefore, it can be concluded that the active species (O_2^- and h^+) have a vital influence on the degradation of MO based on the above results, and the possible photocatalytic mechanism of CuInS₂/SnS₂ heterojunction is illustrated in Scheme 1. Under visible-light irradiation, both SnS₂ and CuInS₂ can be excited to generate photogenerated electrons (e⁻) and holes (h⁺). The electrons that excited form CuInS₂ conduction band (CB) can inject into CB of SnS₂; besides, the photogenerated holes in VB of SnS2 have access to transfer easily to the valence band (VB) of CuInS₂. Therefore, the separation efficiency of photoinduced charge carriers was remarkably improved by the photosynergistic effect of CuInS₂/SnS₂ heterojunction through the photoinduced interfacial charge transfer reducing the recombination of photogenerated e⁻ and h⁺. Since the CB levels of CuInS₂ and SnS₂ were more negative than the reduction potential of oxygen E (O_2/O_2^{-}) (-0.046 V vs. NHE) [34, 35], thus, the photo-generated e⁻ can react with adsorbed O₂ on the surface of the catalyst to produce O_2^- radicals. Compared with the potential of OH/H₂O (2.68 V vs. NHE) and OH/ OH⁻ (1.99 V vs. NHE) [36], the remained h⁺ on the VB of CuInS₂ could not react with OH⁻ or H₂O generating OH radicals because of the lower VB level of CuInS₂ (1.28 V vs. NHE). Subsequently, the highly reactive radical species of O_2^- and h⁺ participated in the photodegration of the MO aqueous solution. The active species trapping experiment results also confirmed that O₂⁻ and h⁺ were the main reactive species, with OH beening the less critical one for the degradation of MO.

Fig. 11 Effect of different scavengers on the MO photodegradation by 0.5% CuInS₂/SnS₂ heterojunction

 $\label{eq:scheme1} \begin{array}{l} \mbox{Scheme1} & \mbox{scheme1}$

3.10 Photostability of CulnS₂/SnS₂

The reusability is an important property for practical application. Hence, the photostability of 0.5% CuInS₂/SnS₂ heterojunction was tested by recycling the photocatalyst for the degradation of MO under visible-light irradiation (Fig. 12). For comparison, the photostability of SnS₂ was also investigated. There is no obviously decline in the photocatalytic degradation efficiency of MO after five degradation–regeneration cycles.

4 Conclusions

 $CuInS_2/SnS_2$ heterojunctions were constructed by a facile in situ one step hydrothermal method. The visible-light photocatalytic activity of $CuInS_2/SnS_2$ heterojunctions was influenced by different $CuInS_2$ mass ratio. The optimal

Fig. 12 Reustability of pure ${\rm SnS}_2$ and 0.5% ${\rm CuInS}_2/{\rm SnS}_2$ heterojunction

0.5% CuInS₂/SnS₂ heterojunctions demonstrated the highest visible-light photocatalytic activity, which is almost two times of pure CuInS₂. The 0.5% CuInS₂/SnS₂ showed the most efficient charge separation and transfer, leading to the highest visible-light photocatalytic activity with 99% degradation efficiency of MO in 60 min. Moreover, CuInS₂/SnS₂ heterojunctions show high catalytic stability after five consecutive cycles, which indicating it has a promising prospect in degradation organic pollutant.

Acknowledgements This work supported by the scientific research key project item of Hubei province education office, China (No. D20172904).

References

- Pulkka S, Martikainen M, Bhatnagar A, Sillanpää M (2014) Electrochemical methods for the removal of anionic contaminants from water-a review. Sep Purif Technol 132:252–271
- Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027
- Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B 39:75–90
- 4. Yao Y, Qin J, Chen H, Wei F, Liu X, Wang J, Wang S (2015) Graphitic carbon nitride based nanoheterojunctions: a review, one-pot approach for synthesis of N-doped TiO₂/ZnFe₂O₄ hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants. J Hazard Mater 291:28–37
- 5. Tian J, Hao P, Wei N, Cui H, Liu H (2015) 3D Bi_2MoO_6 nanosheet/TiO₂ nanobelt heterostructure: enhanced photocatalytic activities and photoelectochemistry performance. ACS Catal 5:4530–4536
- 6. Jin J, Yu J, Guo D, Cui C, Ho W (2015) A hierarchical Z-scheme CdS–WO₃ photocatalyst with enhanced CO₂ reduction activity. Small 11:5262–5271
- Tian J, Liu RY, Liu Z, Yu CL, Liu MC (2017) Boosting the photocatalytic performance of Ag₂CO₃ crystals in phenol degradation via coupling with trace N-CQDs. Chin J Catal 38:1999–2008
- 8. Yu CL, Zhou WQ, Zhu LH, Li G, Yang K, Jin RC (2016) Integrating plasmonic Au nanorods with dendritic like α -Bi₂O₃/Bi₂O₂CO₃ heterostructures for superior visible-light-driven photocatalysis. Appl Catal B 184:1–11
- 9. Yu CL, Zhou WQ, Yu JC, Liu H, Wei LF (2014) Design and fabrication of heterojunction photocatalysts for energy conversion and pollutant degradation. Chin J Catal 35:1609–1618
- Yu CL, Li G, Kumar S, Yang K, Jin RC (2014) Phase transformation synthesis of novel Ag₂O/Ag₂CO₃ heterostructures with high visible light efficiency in photocatalytic degradation of pollutants. Adv Mater 26:892–898
- Mao LY, Li JJ, Xie YL, Zhong YJ, Hu Y (2014) Controllable growth of SnS₂/SnO₂ heterostructured nanoplates via a hydrothermalassisted self-hydrolysis process and their visiblelight-driven photocatalytic reduction of Cr(VI). RSC Adv 4:29698–29701
- Mondal C, Ganguly M, Pal J, Roy A, Jana J, Pal T (2014) Morphology controlled synthesis of SnS₂ nanomaterial for promoting photocatalytic reduction of aqueous Cr(VI) under visible light. Langmuir 30:4157–4164

- 13. Zhang ZY, Shao CL, Li XH, Sun YY, Zhang MY, Mu JB, Zhang P, Guo ZC, Liu YC (2013) Hierarchical assembly of ultrathin hexagonal SnS₂ nanosheets onto electrospun TiO₂ nanofibers: enhanced photocatalytic activity based on photoinduced interfacial charge transfer. Nanoscale 5:606–618
- Zhang YC, Li J, Xu HY (2012) One-step in situ solvothermal synthesis of SnS₂/TiO₂ nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI), Appl Catal B 123–124:18–26
- 15. Khanchandani S, Srivastava PK, Kumar S, Ghosh S, Ganguli AK (2014) Band gap engineering of ZnO using core/shell morphology with environmentally benign Ag₂S sensitizer for efficient light harvesting and enhanced visible-light photocatalysis. Inorg Chem 53:8902–8912
- Xu QQ, Feng JT, Li LC, Xiao QS, Wang J (2015) Hollow ZnFe₂O₄/TiO₂ composites: high-performance and recyclable visible-light photocatalyst. J Alloy Compd 641:110–118
- Xu Y, Zhang WD (2015) CdS/g-C₃N₄ Hybrids with improved photostability and visible light photocatalytic activity, Eur J Inorg Chem 2015:1744–1751
- Qiu FZ, Li WJ, Wang FZ, Li HD, Liu XT, Sun JY (2017) In-situ synthesis of novel Z-scheme SnS₂/BiOBr photocatalysts with superior photocatalytic efficiency under visible light. J Colloid Interface Sci 493:1–9
- Gao XM, Huang GB, Gao HH, Pan C, Wang H, Yan J, Liu Y, Qiu HX, Ma N, Gao JP (2016) Facile fabrication of Bi₂S₃/SnS₂ heterojunction photocatalysts with efficient photocatalytic activity under visible light. J Alloy Compd 674:98–108
- 20. Zhang ZY, Huang JD, Zhang MY, Yuan Q, Dong B (2015) Ultrathin hexagonal SnS_2 nanosheets coupled with g-C₃N₄ nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity. Appl Catal B 163:298–305
- Deng F, Lu XY, Zhao LN, Luo YT, Pei XL, Luo XB, Luo SL (2016) Facile low-temperature co-precipitation method to synthesize hierarchical network-like g-C₃N₄/SnIn₄S₈ with superior photocatalytic performance. J Mater Sci 51:6998–7007
- Yu C, Zhang LL, Tian L, Liu D, Chen FL, Wang C (2014) Synthesis and formation mechanism of CuInS₂ nanocrystals with a tunable phase. CrystEngComm 16:9596–9602
- Siemer K, Klaer J, Luck IK, Bruns J, Klenk R, Bräunig D (2001) Efficient CuInS₂ solar cells from a rapid thermal process (RTP). Sol Energy Mater Sol Cells 67:159–166
- 24. Yuan YJ, Chen DQ, Huang YW, Yu ZT, Zhong JS, Chen TT, Tu WG, Guan ZJ, Cao DP, Zou ZG (2016) MoS₂ nanosheetmodified CuInS₂ photocatalyst for visible light-driven hydrogen production from water. ChemSusChem 9:1003–1009
- 25. Zhang Z, Shao C, Li X, Sun Y, Zhang M, Mu J, Zhang P, Guo Z, Liu Y (2013) Hierarchical assembly of ultrathin hexagonal SnS₂ nanosheets onto electrospun TiO₂ nanofibers: enhanced photocatalytic activity based on photoinduced interfacial charge transfer. Nanoscale 5:606–618
- 26. Zhang YC, Du ZN, Li KW, Zhang M, Dionysiou DD (2011) High-performance visible-light-driven SnS₂/SnO₂ nanocomposite photocatalyst prepared via in situ hydrothermal oxidation of SnS₂ nanoparticles. ACS Appl Mater Interfaces 3:1528–1537
- Wu Y, Liu H, Zhang J, Chen F (2009) Enhanced photocatalytic activity of nitrogen-doped titania by deposited with gold. J Phys Chem C 113:14689–14695
- Zhou B, Dong S, Zhao H, Liu Y, Wu P (2014) Ferromagnetic spin-order in p-type N-doped SnO₂ films prepared by thermal oxidation of SnNx. J Magn Magn Mater 362:14–19
- 29. Li XH, Xu HY, Zhang XT, Liu YC, Sun JW, Lu YM (2009) Local chemical states and thermal stabilities of nitrogen dopants in ZnO film studied by temperature-dependent X-ray photoelectron spectroscopy. Appl Phys Lett 95:191903(1)–191903(3)

- Zhang Z, Shao C, Li X, Wang C, Zhang M, Liu Y (2010) Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. ACS Appl Mater Interfaces 2:2915–2923
- 31. Meng WL, Zhou X, Qiu ZL, Liu CW, Chen JW, J.Yue W, Wang MT, Bi H (2016) Reduced graphene oxide-supported aggregates of CuInS₂ quantum dots as an effective hybrid electron acceptor for polymer-based solar cells. Carbon 96:532–540
- Xu FY, Zhang JJ, Zhu BC, Yu JG, Xu JS (2018) CuInS₂ sensitized TiO₂ hybrid nanofibers for improved photocatalytic CO₂ reduction. Appl Catal B 230:194–202
- 33. Lim J, Murugan P, Lakshminarasimhan N, Kim JY, Lee JS, Lee S, Choi W (2014) Synergic photocatalytic effects of nitrogen and

Affiliations

Kai Zhang¹ · Yunhai Zhang² · WanJu Zhang¹

- ¹ School of Chemistry and Chemical Engineering, Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou 438000, China
- ² Key Laboratory for Magnetism and Magnetic Materials, Key Laboratory of Special Function Materials

niobium co-doping in TiO_2 for the redox conversion of aquatic pollutants under visible light. J Catal 310:91–99

- 34. Chai B, Peng TY, Mao J, Li K, Zan L (2012) Graphitic carbon nitride $(g-C_3N_4)$ -Pt-TiO₂ nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation. Phys Chem Chem Phys 14:16745–16752
- 35. Hao RR, Wang GH, Tang H, Sun LL, Xu C, Han DY (2016) Template-free preparation of macro/mesoporous $g-C_3N_4/TiO_2$ heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl Catal B 187:47–58
- He YM, Zhang LH, Teng BT, Fan MH (2015) New application of Z-scheme Ag₃PO₄/g-C₃N₄ composite in converting CO₂ to fuel. Environ Sci Technol 49:649–656

and Structure Design of Ministry of Education, Institute of Material Science and Engineering, Lanzhou University, Lanzhou 730000, China