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Abstract
Keggin heteropolyacids (i.e.  H3PW12O40,  H3PMo12O40 and  H4SiW12O40) were converted to potassium lacunary salts and 
afterwards their vacancy were filled by metal cations (i.e.  Cu2+,  Co2+,  Fe3+,  Ni2+ or  Al3+). These solid catalysts were assessed 
on oxidation of benzaldehyde to benzoic acid by hydrogen peroxide. Remarkably, among heteropoly salts investigated, the 
 K6SiW11CoO39 was the most active catalyst. High conversion (ca. 90%) and benzoic acid selectivity (ca. 90%) were achieved. 
The activity of solid catalyst remained unaltered after successive cycles of reuse. Effect of catalyst nature, temperature, 
reactants concentration on conversion and selectivity were assessed.
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1 Introduction

Benzoic acid has been also widely used as raw material 
to industrial production of cosmetics, fibers, plasticiz‑
ers, dyestuffs [1]. At an industrial scale, benzoic acid has 
been produced through toluene oxidation in liquid or vapor 
phase, in a one pot‑process that involves expensive stoichi‑
ometric oxidant and high reaction temperature; however, 
only low yields are achieved [2].

Aldehyde oxidation to carboxylic acids is one key 
step for synthesis of manifold fine chemicals useful for 
pharmaceutical and fragrances industries, material sci‑
ence or bioorganic chemistry, and has been traditionally 

accomplished by hazardous strong stoichiometric metal 
oxidants that are toxic and unfriendly environmentally 
[3–6].

To overcome the drawbacks of stoichiometric oxidation 
processes, the use of green oxidants together with recyclable 
solid catalysts may effectively make the production of ben‑
zoic acid from benzaldehyde more economic and benign to 
the environment. Indeed, in last decades the homogeneous or 
heterogeneous catalysts besides clean oxidants have gradu‑
ally replaced stoichiometric oxidation reagents.

Different than molecular oxygen, hydrogen peroxide 
is liquid, nonflammable, and atom efficient [7]. In addi‑
tion, it is also inexpensive and a green acceptable oxi‑
dant, because produces only water as a by‑product. In 
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particular, hydrogen peroxide has been successfully used 
to oxidizing aldehydes, but it always requires the pres‑
ence of metallic salts or oxides in order to allow that the 
oxygen‑transfer reactions to proceed [8–11]. Neverthe‑
less, some of based peroxide methods require additives to 
a rigorous pH control, the use of phase transfer catalysts 
or even toxic solvents [12, 13].

Solid supported catalysts with a high surface area are 
able to activate hydrogen peroxide in solution, and are an 
attractive option to oxidizing of alcohols and aldehydes 
[14–16]. Among the different supported catalysts used to 
activate hydrogen peroxide, Keggin‑type polyoxometa‑
lates have received significant attention due to their ver‑
satility and diversity structural, and have been anchored 
or impregnated in a variety of supports [17–19]. Although 
the immobilization of homogeneous catalyst on solid sup‑
port remains an area extensively explored, there are disad‑
vantages that motivate the search for alternatives.

Recently, Farina et al. pointed some drawbacks of sup‑
ported catalysts, which deserves be highlighted herein; 
the first one is that several dopants commonly supported 
on solids are unstable under the reaction conditions, and 
suffer leaching or deactivation during the reactions [20]. 
Secondly, in some cases, occurs a decreasing on the rate 
and selectivity of solid‑catalyzed reactions, if it is com‑
pared the reactions with the soluble catalyst. The last and 
more important issue is that the immobilization process 
generates an extra‑cost that is added to the process, in 
addition to time spent to synthesize both support and 
solid‑supported catalyst.

An alternative to the supported catalysts is use of insol‑
uble lacunary heteropoly salts as solid catalysts [21–23]. 
In special, when transition metal are included in the struc‑
ture of these lacunary salts, the activity of Keggin‑type 
polyoxometalates can be significantly improved, result‑
ing in active and selective solid catalysts, which can be 
effectively recovered and reused [24–26].

In present study, we have used metal substituted Keg‑
gin‑type heteropoly salts as catalysts to oxidizing ben‑
zaldehyde to benzoic acid with hydrogen peroxide. The 
main feature of this manuscript is correlating the activity 
of potassium salts of metal substituted Keggin HPAs sub‑
stituted with their structural properties and chemical com‑
position. To do it, we have assessed the effects of main 
reaction parameters on conversion and reaction selectiv‑
ity. In addition, the issues of leaching and reusability of 
catalyst were also assessed.

2  Experimental Section

2.1  Chemicals

All the reagents and chemicals were acquired from commer‑
cial sources (Sigma Aldrich) and used without any further 
purification.

2.2  Synthesis of Catalysts

K8−xSiW11Mx+O39  (Mx+ = Cu2+,  Fe3+,  Co2+,  Ni2+ and  Al3+) 
HPAs salts were prepared in according with the modified 
method described in the literature [21, 27]. A scheme of cata‑
lysts synthesis starting from precursor metal nitrate and silico‑
tungstic heteropolyacid is depicted in Scheme 1.

To an aqueous solution containing  H4SiW12O40·n⋅H2O (ca. 
6.29 mmol; 100 mL), it was added KCl (ca. 13.4 mmol) with 
vigorous stirring. The slow addition of an aqueous solution 
of  KHCO3 (ca. 1  molL−1) adjusted the pH to 5.5. The result‑
ing solution was filtered to take out insoluble material (when 
required) and then it was concentrated on a rotary evapo‑
rator at 313 K to give a white precipitate. The white solid 
 (K8SiW11O39·nH2O) was separated by filtration and then it 
was dried under ambient conditions [28].

The metal cation was directly incorporate into the frame‑
work of lacunar heteropolyanion (i.e.,  SiW11O39

8−). To do it, 
5 g of  K8SiW11O39 salt was dissolved in 30 ml of deionized 
water (ca. 353 K). Afterward, it was slowly added an appro‑
priate amount of aqueous solution containing metal precur‑
sor and vigorously stirred during 1 h. The resulting transpar‑
ent solution was cooled to room temperature. Upon adding 
the transparent solution to the 100 ml of methanol–ethanol 
mixture (1:1 volume ratio), a precipitate was immediately 
formed. The solid product was filtered, washed with methanol 
and dried in vacuum oven overnight at 353 K, providing the 
 K8−xSiW11Mx+O39 solid catalyst  (Mx+ = Cu2+,  Fe3+,  Co2+, 
 Ni2+ and  Al3+).

All the catalysts were heated to 473 K for 3 h in air prior the 
characterization steps and catalytic tests. The same procedure 
was used to synthesizing others metal substituted catalysts 
(i.e.,  K7−xPW11Mx+O39 or  K7−xPMo11Mx+O39).

2.3  Catalysts Characterization

X‑rays diffraction pattern of the powdered catalysts was 
recorded with a X‑ray Diffraction System model D8‑Discover 
Bruker using Ni filtered Cu‑kα radiation (λ = 1.5418 Å), 

Scheme 1  Synthesis metal 
substituted lacunary Keggin 
heteropolyacid catalysts H4SiW12O40(aq) K4SiW12O40(s) K8SiW11O39(s) K8-xSiW11M

+xO39(s)

KCl KHCO3

pH = 5

M(NO3)x(aq)
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operating at 40 kV and 40 mA. The measurements were per‑
formed in step of 0.05° with a counting time of 1.0 s in the 2θ 
range of 5°–80°.

FT‑IR/ATR spectra of the heteropolyacid salt catalysts 
were recorded on an FT‑IR Varian 660 spectrometer with 
reflectance accessory utilizing KBr plates under ambient 
conditions.

Catalysts acidity was measured by potentiometric titration 
in a potentiometer Bel, model W3B, in accordance with the 
procedure reported by Pizzio et al. [29]. Typically, an ade‑
quate amount of HPA was suspended in  CH3CN and stirred 
by 24 h. The amount of acid sites was determined by titration 
with n‑butylamine solution in toluene (ca. 0.025 molL−1).

The textural properties of salts were studied by  H2 
desorption/adsorption using NOVA 1200e High Speed, 
Automated Surface Area and Pore Size Analyzer Quan‑
tachrome Instruments. The samples were previously 
degassed by 1 h. The specific surface area was calculated 
by Brunauer–Emmett–Teller equation applied to the desorp‑
tion/adsorption isotherms.

Scanning electron microscopy (SEM) images were 
obtained using a JEOL JSM‑6010/LA microscope. The SEM 
equipment was equipped with an energy dispersive spec‑
trometry system (EDS) for analysis of the sample chemical 
composition.

2.4  Catalytic Tests

Typically, a 25 mL three‑necked glass flask, equipped with 
a sampling system and a reflux condenser was charged with 
 CH3CN (ca. 10 mL), benzaldehyde (ca. 6.0 mmol), and an 
adequate amount of HPA salt catalyst. The reaction was car‑
ried out using magnetic stirring and heating to 333 K tem‑
perature for over 8 h.

The effects of main reaction parameters (i.e. reactants 
stoichiometry, temperature, type and catalyst load) were 
investigated. Blank‑reactions were performed for each molar 

proportion. The activity of the most active metal exchanged 
lacunar HPA salt was compared to the precursors.

The reaction progress was followed by GC analysis of 
samples periodically collected (GC Shimadzu, capillary 
column, FID). To recycling the catalyst, after the end of the 
reaction, the suspension was centrifuged and solid removed 
by filtration, three times washed with  CH3OH, dried in an 
oven at 373 K, and reused in another catalytic run.

3  Results and Discussion

3.1  Catalysts Characterization

3.1.1  FT‑IR Spectroscopy Analyses

The FT‑IR study was performed to assess whether ok Keg‑
gin anion structure is retained or not during the course of the 
removal of tungsten atom and the introduction of metal cat‑
ion into heteropolyacid. So, the FT‑IR spectra of silicotung‑
stic Keggin heteropolyacid, intermediate salts and cobalt(II) 
substituted lacunar heteropoly salt are shown in the Fig. 1.

The fingerprint region of FT‑IR spectrum of the 
 H4SiW12O40 heteropolyacid shows four main bands at 1010, 
980 and 920 and 790 cm−1. In general, literature describes 
five typical bands for silicotungstic anion [30]. For instance, 
Pizzio and Blanco have found that FT‑IR spectrum of 
 H4SiW12O40 displayed the absorption bands at 1020, 982, 
926, 884 and 778 cm−1 [31]. Holclajtner‑Antunonovi et al. 
found the following vibration frequencies for these bands 
characteristic for the Keggin anion of silicotungstic acid: 
1017, 981, 928, 880 and 785 cm−1. Those authors attrib‑
uted these bands to the vibrations υas(W=Od), υas(Si–Oa), 
υas(W–Ob–W) and υas (W–Oc–W), respectively [32]. 
The absorption peak at 982 cm−1 (vas W=O) shifting to 
976 cm−1 was probably attributed to the effect of stannous 
ion at a larger radius [33].
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Fig. 1  FT‑IR spectra of silicotungstic acid and potassium salt (a) and lacunar and cobalt potassium salts (b)
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The first intermediate (i.e.,  K4SiW12O40) presents these 
bands at the same wavenumber. However, as can be seen 
in Fig. 1a, there was a shift to the region of higher energy. 
When the pH was adjusted to 5.5, one unit of WO was 
removed from Keggin anion, and the lacunary salt became 
majority in the equilibrium.

When lacunary salts are synthesized from phosphotung‑
stic or phosphomolybdic heteropolyacids, a splitting occur 
for absorption band corresponding to the vibration of the 
P–O bond, generating absorption bands at wavenumber 1081 
and 1037 cm−1 [34]. However, the same it was not observed 
when lacunar silicotungstic salts were synthesized.

After the insertion of Co(II) cation into Keggin anion 
structure, we realize a shifting of stretching frequencies 
toward lower wavenumber in relation to the precursor lacu‑
nary potassium salt. Patel et al. have attributed this shifting 
to the introduction of transition metal into octahedral lacuna 
[24]. The presence of nitrate anions may be also confirmed 
by characteristic absorption bands of this anion around 
1350 cm−1 [35].

To comparison, the FT‑IR spectra of cobalt substituted 
HPAs  (K5PW11CoO39,  K6SiW11CoO39), as well as their pre‑
cursor heteropolyacid are displayed in Fig. 2. Spectral data 
of  K6PMo11CoO39 were similar to the  K6PW11CoO39 and 
were omitted by simplification.

The spectrum of the bulk  H3PW12O40 shows the follow‑
ing characteristic absorption bands: νas(P–Oa) at 1080 cm−1, 
νas(W=Od) at 960 cm−1 an νas(W–Ob–W inter octahedral) 
at 886 cm−1. Herein, the  vasW–O–W intra‑octahedral that 
generally is observed close to 810 cm−1 was not observed. 
In a Keggin type unit,  Oa refers to the oxygen atom com‑
mon to  PO4 tetrahedron and one group  W3O13; conversely, 
 Ob links two  W3O13 groups;  Oc binds two octahedral  WO6 
inside a  W3O13 group and  Od is the terminal oxygen of Keg‑
gin anion [36].

The splitting of absorption bands corresponding to the 
stretching of P–O bond was observed at frequencies of 
900 and 1050 cm−1, endorsing thus the formation of lacu‑
nary potassium salts [37, 38]. This splitting is attributed 
to the decreasing on symmetry of group  PO4, resulting 
from removal of unit WO [39]. The presence of bands at 
frequency below the 500 cm−1 in both cobalt substituted 
potassium salts as well as the band at wavenumber around 
1350 cm−1 indicates the presence of  Co2+ and nitrate ions, 
respectively.

The Fig. 3 shows that all the FT‑IR spectra of metal 
substituted potassium salts presented the absorption bands 
characteristic for  NO3

− anions. In addition, similarly to the 
observed in FT‑IR of cobalt salts, the presence of bands at 
frequency below the 500 cm−1 suggest that metal cation was 
included into Keggin anion.

3.1.2  Analyses of X‑ray Diffraction Patterns

First of all, it noteworthy that water molecules number per 
unitary cell strongly affects the XRD patterns of heteropo‑
lyacids. For instance, Derrick et al. recorded data from sili‑
cotungstic acid and showed the existence of stable phases 
of composition  H4SiW12O40⋅n  H2O where n = 24, 14, 6 and 
0 [40]. We prepared  H4SiW12O40·6H2O heteropolyacid to 
150 °C and through direct comparison of DRX spectrum 
conclude that their data fits well with those recorded by us. 
It means that when we heated the  H4SiW12O40 to 200 °C no 
significant changes happened into their structure.

The powder X‑ray diffraction patterns of  K4SiW12O40, 
 K8SiW11O39, and  K6SiW11CoO39 indicates that the synthe‑
sized salts were crystalline in nature (Fig. 4). Heteropoly‑
acid  H4SiW12O40 shows main XRD peaks in the region of 
5° < 2θ < 30° corresponds to the Keggin anion.
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Fig. 2  FT‑IR spectra of silicon and phosphotungstic heteropolyacids (a) and their cobalt substituted potassium salts (b)
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Comparing diffraction patterns of synthesized salt 
 K8SiW11O39 with literature data (JCPD file no. 34‑0205) 
we have found that they perfectly correspond to the cubic 
phase [41].

From Fig. 4, it is clear that, all the three synthesized mate‑
rials show similar peaks pattern as their parent  H4SiW12O40. 
It is suggestive that the Keggin anion is present in their 
framework. Nonetheless, the introduction of potassium 
cations into anions structure, made appear new diffraction 
lines along all spectra in the range of angles between 5° 
and 60°. The potassium derivative lacunar salt as well as 
the cobalt substituted salt displayed a number of diffraction 
peaks greater than both precursor acid and saturated potas‑
sium salt (Fig. 4).

The shifting in 2θ value for Co(II) substituted lacunar 
salt compare to the other salts and the appearance of strong 
diffraction peak at 2θ equal to 28° may be due to the intro‑
duction of cobalt cation into lacuna [24]. This shifting to 
high angle (i.e. 2 θ) is an evidence that distance between 
crystal planes was decrease; it means that unitary cell was 
also decreased.

The Fig. 5a, b present the powder DRX patterns of silico‑
tungstic acid lacunary potassium salts after before and after 
the introduction of  M3+ cations (a) or  M2+ (b), respectively.

It can be observed that the introduction of  M3+ cations 
(i.e.,  Fe3+ and  Al3+) in the Keggin anion of the silicotungstic 
potassium salts reduced both the number and the intensity of 
diffraction lines if compared to the precursor (i.e. lacunary 
potassium salt).

On the other hand, regardless  M2+ cation introduced in 
the Keggin anion structure, all the lacunar salts synthesized 
were highly crystalline and presented the characteristics 
peaks of silicotungstic Keggin anion. The number of dif‑
fraction peaks was higher than that observed for acid or 
non‑lacunar potassium salt. Depending on the type of metal 
cation introduced, new diffraction signals were observed. 
This effect can attributed to change of arrange of structure 
of unitary cell, for instance of cubic to hexagonal and so on.

3.1.3  Potentiometric Curves

The potentiometric curves of metal substituted silicotungstic 
Keggin heteropolyacid salts are displayed in the Fig. 2. It can 
be seen a strong decrease on initial electrode potential value, 
immediately after the addition of base minimum volume, 
indicating that the protons were virtually removed.

Moreover, after this initial period the potential remained 
practically constant. This behavior is completely distinct 
than precursor heteropolyacid ones (Fig. 6).
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Fig. 3  FT‑IR spectra of metal substituted potassium salts of silicotungstic heteropolyacid:  M3+ (a) and  M2+ cations (b)
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This fact is useful to understand because the FT‑IR spec‑
tra of potassium heteropoly salts displayed an absorption 
band at 1620 cm−1, which is attributed to the cation di‑
hydronium  (H5O2

+). It means that even after the tentative of 
replacing the protons, a minimum portion of acidity persist, 
yet. Nonetheless, this remaining acidity is so small. For this 
reason, a minimum volume of n‑butylamine was enough to 
completely neutralize Brønsted acid sites.

3.1.4  N2 Adsorption Studies

BET surface areas, size and pores volume are shown in 
Table 1. In general, the surface area of heteropolyacids 
increased after exchanges of protons by potassium cations. 
The data of surface areas and porosity of the phosphotung‑
stic and phosphomolybdic catalysts have presented the 
same trend that silicotungstic catalysts, and were omitted 
by simplification.

Although Pizzio et al. have reported that the surface 
area of potassium salts are very lower than cesium salts, for 
instance, ca. 5 m2g−1  (K3.8H0.2SiW12O40) whereas 169 m2g−1 
 (Cs3.8H0.2SiW12O40), the surface area of potassium salts 
synthesized herein was two times higher, nearly 12.5 m2g−1 
(Table 1) [31].

Table 1 shows the results of the texture parameters of 
Keggin silicotungstic potassium salts substituted or not by 
metal cations. The introduction of metal cations slightly 
reduced the surface area of potassium salts (from 12 to 
10 m2g−1), excepted in the case of iron salt. The pore volume 
(< 0.02 cm3  g−1) as well as the pore sizes showing values 
in the region between 1.10 and 1.50 nm confirm that all the 
catalysts are microporous (i.e., microporous solids < 2 nm, 
mesoporous solids between 2 and 50 nm, macroporous sol‑
ids > 50 nm). These porosity and isothermal adsorption char‑
acteristics for heteropolysalts are supported by the literature 
data [41].

The Fig. 7 displays the adsorption/desorption isotherms 
pore volume of the porous of silicotungstic catalysts. All 
have the same profile, indicating that the porosity type is 
the same for all synthesized catalysts. The isotherms reflect 
Type II characteristics, which are typical of not porous sol‑
ids, suggesting that there was physic adsorption in multilay‑
ers [41].
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Table 1  Surface area of silicotungstic catalysts

Entry Catalyst Surface 
 areaBET 
 (m2 g−1)

Porous 
volume 
 (m3 g−1)

Porous size(nm)

1 K5SiW11FeO39 12.54 0.014 1.23
2 K5SiW11AlO39 9.10 0.010 1.20
3 K6SiW11CoO39 9.66 0.010 1.47
4 K6SiW11CuO39 10.74 0.012 1.10
5 K6SiW11NiO39 10.31 0.013 1.22
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The quick initial increase corresponds to the formation 
of the first layer; so, an increase in pressure forms the 
second layer of adsorbed molecules, followed by another 
layer. It was observed the total reversibility of the adsorp‑
tion–desorption isotherm (absence of hysteresis cycle) for 
all catalysts, a condition that is present in these systems.

Thermogravimetric analysis of metal‑substituted lacu‑
nary potassium heteropolyacid salts shows two region of 
loss weight; the first one before 200 °C assigned to loss of 
all water molecules (Fig. 8). The second one, attributed 
to decomposition of Si–O–W framework followed by the 
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noticeable peak in DSC curves around 620–635 °C. The 
final products are oxides mixture.

The introduction of metal into Keggin anion resulted 
in a decreasing of temperature related to the lacunary salt 
framework decomposition, probably consequence of loss 
symmetry resulting from exchange of tungsten atom by a 
lower radium metal cation.

The data obtained via EDS analysis confirmed the sam‑
ples chemical composition of all the catalysts synthesized. 
In general, only a slight difference between theoretical and 
experimental values was observed, regardless the metal sub‑
stituted lacunary potassium silicotungstic salt. So, we omit‑
ted these data for simplification.

3.2  Catalytic Tests

In order to select the most active catalyst an initial screening 
of metal substituted lacunary potassium salt was done and 
the main results are displayed in Table 2.

Although oxidant excess, blank‑reactions had a poor con‑
version (ca. 10%). Conversely, in the presence of silicotung‑
stic catalysts the conversion and selectivity of reactions were 
dependent of catalyst nature. When catalysed by the precur‑
sor heteropolyacid, the reaction was highly selective to ben‑
zoic acid (ca. 96%), however, only a conversion of ca. 24% 
was reached. On the other hand, the introduction of metal in 
the Keggin anion structure improved the conversions, mainly 
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Fig. 8  TG‑DSC curves of samples of lacunary catalysts:  M3+ (a) and  M2+ cations (b)
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when  Ni2+ and more remarkably  Co2+ were the cations intro‑
duced. Notwithstanding, different than  H4SiW12O40, all the 
metal substituted lacunary catalysts were insoluble in the 
reaction solution.

Among the HPAs salts assessed, the  K6SiW11CoO40 was 
the most active and selective (Entry 7, Table 2). Literature 
has described the activity of cobalt complexes in the oxida‑
tion of alcohol [40, 41].

Recently, Patel et al. have assessed the activity of (Co, 
Mn or Ni)‑substituted‑H3PMo12O40 lacunary salts on ben‑
zyl alcohol oxidation with hydrogen peroxide [25]. Those 
authors found that cobalt salt was the most active catalyst. 
Nonetheless, to achieve conversions around ca. 74%, a long 
reaction time was required (ca. 24 h), in reactions carried 
out at temperature of ca. 383 K and 1:3 alcohol: hydrogen 
peroxide proportion [25].

Due to higher efficiency of cobalt lacunary salt, we have 
decided investigate the effect of heteropolyanion on activ‑
ity of cobalt catalysts. Thus, we carried out reactions in the 
presence of different cobalt lacunary salts and their respec‑
tive precursor heteropolyacids (Fig. 9).

Heteropolyacids had a different behaviour in terms of con‑
version and selectivity on reactions of oxidation assessed. 
Although the  H3PMo12O40 or  H3PW12O40‑catalyzed reac‑
tions have achieved conversions higher than that in the pres‑
ence of  H4SiW12O40, this late was the most selective catalyst 
for benzoic acid (Table 3). On the other hand, among the 
cobalt lacunar salts that containing the silicotungstic Keggin 
anion was the most active and selective.

An important observation is that if we compared the reac‑
tions catalysed by the cobalt lacunar salt and their precursors 
(i.e., Co(NO3)2 and  H4SiW12O40) we can conclude that there 
was a synergism between Keggin anion and the  Co2+ cation, 
which resulted in a very active catalyst.

To better understand the effects of modification on the 
heteropolyacid catalysts structure we carried out reactions 

with the all the precursor and synthesis intermediate of 
cobalt lacunar salt (Fig. 10).

The Fig. 8 show that the conversion of silicotungstic 
heteropolyacid into potassium salt (i.e.  K4SiW12O40) fol‑
lowed by the conversion of this late into lacunar salt (i.e. 
 K8SiW11O39) improved the conversion of oxidation reac‑
tions of benzaldehyde to benzoic acid. Tungsten catalysts 
have been active catalysts in oxidation reactions with hydro‑
gen peroxide, where “peroxotungstate” intermediates are 
responsible by removal of proton or incorporation of the 
oxygen atom into substrates [40]. Thus, seems reasonable 
suppose that opening a vacancy into heteropolyanion struc‑
ture enhance the activity of lacunar catalyst, favouring the 
oxidation of benzaldehyde.

Table 2  Conversion and selectivity of oxidation reactions of benza‑
ldehyde by  H2O2 in the absence or presence of silicotungstic heter‑
opoly catalysts

Reaction conditions: catalyst load (2  mol%); temperature (333  K); 
benzaldehyde:  H2O2 proportion (1: 2);  CH3CN (10 mL); time (4 h)
a Conversion and selectivity determined by GC analysis

Entry Catalyst State Conver‑
sion (%)a

Benzoic acid 
 selectivitya (%)

1 – – 10 90
2 H4SiW12O40 Soluble 29 96
3 K5SiW11AlO39 Solid 41 51
4 K5SiW11FeO39 Solid 34 54
5 K6PW11CuO39 Solid 41 51
6 K6PMo11NiO39 Solid 64 80
7 K6SiW11CoO39 Solid 91 100
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Fig. 9  Oxidation reactions of benzaldehyde by  H2O2 in the presence 
of heteropolyacids or their cobalt substituted lacunary salts. Reaction 
conditions: catalyst load (2  mol%); temperature (373  K); benzalde‑
hyde:  H2O2 proportion (1: 2);  CH3CN (10 mL)

Table 3  Conversion and selectivity of reactions catalyzed by precur‑
sors (i.e. Co(NO3)2 or heteropolyacids) and cobalt substituted lacunar 
salts

Reaction conditions: catalyst load (2  mol%); temperature (333  K); 
molar ratio  H2O2: benzaldehyde (2:1), time (4 h)
a Conversion and selectivity determined by GC analysis

Run Catalyst State Conver‑
sion (%)a

Benzoic acid 
 selectivitya (%)

1 Co(NO3)2 Soluble 15 98
2 H3PW12O40 Soluble 69 57
3 H3PMo12O40 Soluble 59 54
4 H4SiW12O40 Soluble 29 98
5 K5PW11CoO39 Solid 32 56
6 K5PMo11CoO39 Solid 35 63
7 K6SiW11CoO39 Solid 91 100
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The Co(NO3)2‑catalyzed reaction achieved the lowest 
conversion (ca. 15%), although has been highly selective 
(entry 1, Table 3). However, the Fig. 10 shows clearly that 
the introduction of Co(II) cation into structure of lacunary 
Keggin anion improved notably its activity, without com‑
promise the selectivity (Entry 7,  K6SiW11CoO39, Table 3). 
This fact once more reinforce that possibly exists a synergic 
effect between  Co2+ cation and Keggin silicotungstic anion.

Because the  K6SiW11CoO39 catalyst was the most active 
and selective, it was selected to investigate the effect of main 
reaction parameters. Figure 11 show kinetic curves of reac‑
tions with different load of catalyst.

An increasing on catalyst load from 0.33 to 2 mol% 
resulted in an increase on both initial rate and final conver‑
sion of reactions. Nonetheless, above this load no beneficial 
effect was observed because the reactions carried out with 
2.0 or 2.6 mol% had equal conversion rates and selectivity 
(Fig. 12).

The rate initial of reaction was increased by the increase 
on temperature, while the reaction selectivity toward benzoic 
acid varied of 85–100% (Fig. 13).

While the use of higher load oxidant did not affect the 
benzoic acid selectivity, the opposite happened with the 
conversion; a benzaldehyde:  H2O2 proportion higher than 
1:8 triggered a strong decreasing on conversion. Possibly, a 
leaching of active specie due to higher water amount gener‑
ated increasing on aqueous hydrogen peroxide concentration 
in the reaction solution may be provoked this lowering.

The reuse and recycle of  K6SiW11CoO39 catalyst 
was assessed (Table  4). The catalyst was successfully 

recovered and reused for three times without loser activity 
or selectivity.

Although high catalyst recovery rate, one other experi‑
ment was carried out in order to assure the heterogeneity of 
the reaction. The reaction was carried during 30 min; the 
catalyst was filtered and washed with heated  CH3CN. After 
removal the catalyst, we monitored the reaction progress 
until complete 4 h (Fig. 14).
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After the removal of catalyst, no significant conversion 
was observed, an indicative that it is a genuinely heterogene‑
ous reaction.

4  Conclusions

In this paper, the oxidation of benzaldehyde by hydrogen 
peroxide was performed in the presence of a class of solid 
catalysts even little explored: cobalt(II) substituted silico‑
tungstic heteropolyacid lacunary potassium salt. This solid 
Lewis acid‑catalyzed reaction, benzaldehyde was selectively 
converted to benzoic acid (ca. 98%) with high conversion 
(ca. 90%), in reactions faster than those promoted by solid 
supported catalysts. This selective process is an attractive 
alternative to the solid supported‑catalyzed process because 
avoid the laborious synthesis of both support and metal cata‑
lyst doped‑support. Among metal exchanged heteropolyacid 
lacunar salts evaluated,  K6SiW11CoO39 was the most active 
and selective. The lacunary catalysts containing metal cati‑
ons were easily synthesized through stoichiometric reaction 
between precursor heteropolyacid and metal nitrate. These 
catalysts have addition advantages of being a solid and reus‑
able without lost activity.
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