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Abstract
The advanced oxygen evolution catalysts in alkaline solution play a growing role in alternative energy devices due to the need 
for clean and sustainable energy. In this paper, we report the cobalt phosphate nanoparticles embedded in N-doped carbon 
(Co3(PO4)2@N-C) using N,N′-piperazinebis (methylene-phosphonic acid) as both phosphate and carbon sources by two-
step, hydrothermal method. The prepared Co3(PO4)2@N-C annealed at 600 °C exhibits advanced OER performance, with 
a current density of 10 mA cm−2 at a lower overpotential of 290 mV, a Tafel slope of 82 mV dec−1 and superior durability 
in 1.0 M KOH solution. This kind of material with MOF as precursor has wide application prospect in electro-chemistry 
field, especially for OER.
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1  Introduction

The oxygen evolution reaction (OER) and the hydrogen 
evolution reaction (HER) are important for the water 
splitting [1]. The HER is a relatively simple reaction that 
is easily prone to many materials in a low potential [2]. 
Nevertheless, the OER is a more complicated reaction 
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with higher overpotential, because there are four succes-
sive electron transfer procedures and low kinetics [3–5]. 
Generally, in the OER, the thermodynamic potential value 
is 1.23 V at about 25 °C (vs RHE) [6]. However, for the 
presence of the extra potential (also called overpotential), 
we must adopt to a higher potential to promote the elec-
trocatalytic OER reaction. Thus, significant efforts have 
been made to explore highly efficient electrocatalysts for 
the OER.

Metal–organic frameworks (MOFs), as the supe-
rior electrocatalysts in aqueous alkaline solutions, have 
received notable attention in recent years due to the struc-
tural and chemical multiformity [7–9]. MOFs have become 
popular as pyrolytic precursors for synthesis of porous 
electrocatalysts [10–13]. MOFs are easily prepared with 
metal@N-C components that are well scattered within the 
frameworks and can be transformed into active metal@N-
C structures for OER/ORR by an annealing procedure 
[14–17]. For instance, Zhang et  al. reported a porous 
Co3O4/C nanowire prepared through thermally annealing 
a Co-based MOF, which can be used as catalysts for OER 
[18]. Lin et al. synthesized Co9S8@CoS@CoO@C nano-
particles using MOF as the precursor, which possessed 
excellent catalytic activity for the OER [19].

To date, transition metal phosphides have aroused 
widespread concern, owing to their plentiful reserves, 
environmental-friendly property [20–23]. In recent years, 
in order to enhance the electrocatalytic activity of tran-
sition metal phosphides electrocatalysts, various cobalt-
containing phosphides have been prepared. Meanwhile, 
a number of cobalt phosphides or cobalt phosphates have 
been investigated as the OER electrocatalysts [21, 24, 25]. 
For example, Li et al. reported the Co-Pi electrocatalyst 
modified TiO2 nanowire with co-catalytic effect, which 
had excellent catalytic properties [26].

Herein, we prepared the cobalt phosphate nanoparticles 
embedded in N-doped carbon (Co3(PO4)2@N-C) through 
hydrothermal method. During the synthesis process, 
Co(NO3)2·6H2O reacted with N,N′′-piperazinebis(methylene-
phosphonic acid) (PMP) in water by hydrothermal method, 
then the obtained precipitate was annealed at 600, 700, 800, 
900 °C for 3 h in air to get Co3(PO4)2@N-C catalysts. The 
PMP not only acted as the phosphate source, but also was 
thermally decomposed into N doped carbon (N-C) coat-
ing on cobalt phosphate nanoparticles during the pyrolysis 
process, which enhanced the electrocatalytic performance. 
The prepared Co3(PO4)2@N-C annealed at 600 °C exhibits 
a current density of 10 mA cm−2 at a lower overpotential 
of 290 mV in 1.0 M KOH solution. Besides, the catalysts 
have good catalytic stability over continuous 1000 cycles 
with negligible drops of the current density, and little decay 
(5.7%) in OER activity up to 8 h of continuous operation at 
1.52 V versus RHE.

2 � Experimental

2.1 � Chemicals

All reagents were used without further purification. Cobalt 
nitrate hexahydrate (Co(NO3)2·6H2O, Shanghai Titanchem 
Co. Ltd., ≥ 99.8%), PMP was prepared by the method 
reported by Alhendawi et al. [27]. Potassium hydroxide 
(KOH, Shanghai Titanchem Co. Ltd., ≥ 85.0%). Distilled 
water was utilized in all experimental procedures.

2.2 � Synthesis of Cobalt Phosphate Catalysts

Generally, 2.46 mmol (0.716 g) of Co(NO3)2·6H2O was 
dissolved in 20  mL of distilled water under magnetic 
stirring, then 1.23 mmol (0.337 g) of PMP was added. 
1.0 M KOH solution was added dropwise to the mixture to 
adjust a final reaction pH of 7. The mixture was stirred for 
another 10 min, and transferred to Teflon-lined stainless 
steel autoclave and maintained at 200 °C for 72 h. After 
being cooled to room temperature, the purple powder was 
filtered under vacuum and washed thoroughly with dis-
tilled water. Dried at 60 °C overnight. As-prepared purple 
powder was named Co-PMP. To obtain the final product, 
the Co-PMP powder was then annealed at 600, 700, 800, 
900 °C in air at a heating rate of 5 °C min−1. After kept 
at different temperature for 3 h, the powder was cooled 
down to room temperature at a cooling rate of 5 °C min−1. 
Finally, purple Co3(PO4)2@N-C powder at different tem-
perature was obtained.

2.3 � Characterization

X-ray diffraction (XRD) patterns were performed on a 
Bruker-Axs D8 Advance X-ray diffractometer in a wide 
angle range(2θ = 5–35°) with Cu Kα radiation, operat-
ing at 40 kV and 40 mA. The morphology of the samples 
was operated on SU70 field-emission scanning electron 
microscopy (FE-SEM) instrument at 10 kV, and elemental 
mappings were obtained at 20 kV. Samples for SEM were 
gold sputtered before the analyses. The high-resolution 
transmission electron microscopy (HRTEM) characteri-
zation was carried out on a Tecnai F30 microscope at an 
accelerating voltage of 300 kV. N2 adsorption–desorp-
tion isotherms were employed on a Quantachrome NOVA 
2000e sorption analyzer (Fig. S2). The X-ray photoelectron 
spectroscopy (XPS) data was acquired on an ESCALAB 
250Xi X-ray photoelectron spectrometer (Thermo Scien-
tific) using Al Kα radiation. TG were performed in Netzsch 
STA449 F3 Jupiter (Fig. S3).
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2.4 � Evaluation of the Electrocatalytic Activity 
Toward OER

Cyclic voltammetry (CV) and linear sweep voltammetry 
(LSV) measurements were carried out on an Autolab elec-
trochemical workstation (NOVA 2.1). The catalytic activity 
for OER was evaluated at room temperature in a conven-
tional three-electrode system with electrochemical worksta-
tion in 1.0 M KOH solution. The electrode of glassy carbon 
(5 mm diameter, 0.196 cm2) was used as the working elec-
trode. The Pt foil and an Ag/AgCl-saturated electrode were 
used as the counter electrode and reference electrode. In 
order to prepare the working electrode, 5 mg of catalysts 
were dispersed in a mixture of 950 μL ethanol and 50 μL 
5 wt% Nafion solution with sonication for 60 min. After this 
process, the catalysts (20 μL) were dropped onto a glassy 
carbon electrode and then fully dried at room temperature 
for 12 h before measurements (loading ~ 0.510 mg cm−2). 
Linear sweep voltammetry was carried out at a scan rate 
of 10 mV S−1 for the polarization curves from 1.0 to 1.7 V. 
All the measured potentials were referred to RHE with the 
following equation: E (RHE) = EAg/AgCl + 0.197 + 0.059pH.

3 � Results and Discussion

To obtain the final products, the Co-PMP powder was 
then annealed at different temperature. Because the elec-
trochemical reaction of the amorphous products calcined 
at below 600 °C was very complex, in which both anode 
and cathode reaction were included, we chose samples of 
other temperatures for the OER test. Figure 1 presented 
the PXRD pattern of Co3(PO4)2@N-C powder annealed 
at different temperature (600, 700, 800 and 900  °C). 
The diffraction pattern exhibits peak at 20.52°, 21.91°, 

25.65°, 27.68° and 36.78°, corresponding to (011), (101), 
(210), (021) and (031) planes of Co3(PO4)2 (JCPDS No. 
77-0225), respectively. No peaks from carbon and nitrogen 
are observed, because of the low concentration; In addi-
tion, peaks appearing in 29.62°, 30.14° can be indexed to 
Co2P2O7 (JCPDS No. 34-1378), indicating that a small 
amount of Co2P2O7 was doped in the Co3(PO4)2@N-C. 
This phenomenon increases the number of active coordi-
nated sites and can be beneficial to electrocatalytic appli-
cation for OER. Obviously, with the increase of pyrolysis 
temperature, the crystallinity was getting better. With the 
increase of the thermal treatment temperature, the internal 
defects of the material gradually decreased, and the carbon 
element gradually disappeared (Table S2 see Supporting 
Information).

The electrocatalytic activity of Co3(PO4)2@N-C cata-
lysts at different temperature (600, 700, 800 and 900 °C) 
for OER was also evaluated (Fig. 2). The Tafel slope can be 
fitted to an equation: η = blog(J) + a, where η presents the 
overpotential and current density is indicated by J, b is the 
Tafel slope. As shown in Fig. 2a, b, the overpotential at a 
current density of 10 mA cm−2 were 290, 300, 320, 340 mV, 
respectively; Besides, the corresponding Tafel slope were 
82, 97, 126, 101 mV dec−1, respectively. The overpoten-
tial at a current density of 10 mA cm−2 and Tafel slope 
are important metrics, a good OER electrocatalyst should 
possess a low overpotential and Tafel slope, therefore, the 
Co3(PO4)2@N-C products annealed at 600 °C were much 
superior to others. To summarize, according to the results 
of PXRD (Fig. 1) and N2 adsorption–desorption isotherms 
(Fig. S2 see Supporting Information), we surmised that 
there are three reasons for the good OER performance of 
the Co3(PO4)2@N-C catalysts annealed at 600 °C. Firstly, 
the Co3(PO4)2@N-C catalysts annealed at 600 °C belong 
to poor crystallinity material, which also were doped with 
Co2P2O7. Compared with the better crystalline materials, 
there will be more active sites because of the presence of the 
small clusters caused by the internal defects [28, 29]; Then, 
the Co3(PO4)2@N-C catalysts annealed at 600 °C possess 
the larger specific surface areas, which could increase the 
density of the surface reactive sites and the contact areas 
[30]. Finally, the N-doped carbon layers act as a bridge link-
ing nanoparticles, which can enhance the electrochemical 
performance [31]. The stability of Co3(PO4)2@N-C cata-
lysts for OER was measured by the i–t tests at a constant 
potential of 1.52 V versus RHE, it can be clearly seen that 
Co3(PO4)2@N-C catalysts annealed at 600 °C exhibit supe-
rior durability, with little decay (5.7%) in OER activity up 
to 8 h of continuous operation (Fig. 2c). Further stability 
test showed that the Co3(PO4)2@N-C catalysts annealed at 
600 °C almost consistent with the OER polarization curves 
as initial catalyst after 1000 cycles, only with negligible 
increases of the overpotential (Fig. 2d).

Fig. 1   PXRD pattern of Co3(PO4)2@N-C annealed at 600, 700, 800 
and 900 °C
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To get an in-depth understanding of the morphology and 
element composition of the top OER performance cata-
lysts, which are Co3(PO4)2@N-C nanoparticles annealed at 
600 °C, scanning electron microscopy (SEM) and transmis-
sion electron microscopy (TEM) were obtained (in Fig. 3). 
As shown in Fig. 3a–c, it can be observed that the sample 
contains a great number of nanoparticles with diameter 
about 200 nm. In addition, SEM images and the correspond-
ing elemental mappings of the Co3(PO4)2@N-C catalysts 
annealed at 600 °C are shown in Fig. 3d–i, which present 
Co3(PO4)2@N-C composites were mainly comprised of 
cobalt, phosphorus and oxygen with trace amounts of car-
bon and nitrogen elements, inferring that pyrolysis process 
from Co-PMP can obtain nitrogen-doped carbon scaffold 
encapsulated in  situ with Co3(PO4)2 nanoparticles. The 
N-doped carbon layers act as a network connection structure, 
which may enhance the electrochemical kinetics and further 
improve the OER performance.

The XPS was used to characterize the elements state 
of the Co3(PO4)2@N-C catalysts annealed at 600 °C (Fig. 
S4 see Supporting Information). The full XPS spectra 

provided evidence for presence of Co, P, O, and N as 
well as C (Fig. S4a). As shown in Fig. S4b, for the Co 2p 
XPS spectrum, two major peaks of 2p3/2 and 2p1/2 (result-
ing from the spin–orbit splitting), located at 781.7 and 
797.8 eV, respectively, which can be assigned to Co2+ [32, 
33]. The P 2p spectrum (Fig. S4c) clearly demonstrates the 
existence of phosphorus atoms in two chemical environ-
ment. The P 2p XPS displays two peaks, the 2p3/2 and 2p1/2 
peaks were observed at 133.4 and 134.4 eV binding ener-
gies [34, 35]. The O 1s spectrum can be discovered by two 
sub-peaks (Fig. S4d), centred at 531.5 and 533 eV, which 
are characteristics of O2− ions in oxygen-deficient regions 
within the matrix of Co3(PO4)2 nanoparticles. Two peaks 
at 400.1 and 403.7 eV in the N 1s spectrum can be attrib-
uted to the presence of pyrrolic-type nitrogen atoms and 
the oxidized nitrogen, respectively (Fig. S4e) [36]. There 
are three resolved peaks in the C 1s spectrum. The first 
peak present at 284.7 eV, which is characteristic of C–C 
peak; The other two peaks centered at 285.8 and 287.8 eV 
were assigned to carbon binding with surface nitrogen and 
oxygen groups (C–N, C=O) respectively [37–40].

Fig. 2   a OER polarization curves of Co3(PO4)2@N-C annealed at 
600, 700, 800 and 900  °C, sweep rate: 10 mV S−1 in 1 M KOH. b 
Corresponding Tafel slope plots. c The i–t curve of Co3(PO4)2@N-C 

annealed at 600 °C at 1.52 V versus RHE. d OER polarization curves 
of Co3(PO4)2@N-C annealed at 600 °C before and after 1000 cycles
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4 � Conclusion

In summary, we prepared cobalt phosphate nanoparticles 
embedded in N-doped carbon (Co3(PO4)2@N-C annealed 
at 600 °C), which are prepared via a simple hydrothermal 
process using PMP as both the phosphate source and carbon 
source. The obtained materials display superior electrocata-
lytic activity for OER. Firstly, the N-doped carbon layers act 
as a bridge linking nanoparticles, which can enhance the 
electrochemical performance. Then, small amounts of dop-
ing of Co2P2O7, the poor crystallinity and larger specific sur-
face areas contribute to more active sites and contact areas, 
improving the catalytic activity and stability efficiently.
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