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1  Introduction

Designing of sustainable synthetic methodologies to reduce 
the waste and hazards associated with the conventional 
synthetic procedures is the main motive of green chemistry 
[1, 2]. The use of efficient and reusable catalysts has always 
remained a tool of choice for organic synthesis [3–7]. In 
this regards metal incorporated heterogeneous catalysts 
have attracted immense attention due to their plethora of 
applications to realize green aspects such as high efficiency, 
reusability, low catalyst loading and ease of separation 
[8–11].

In the last decade, use of aqueous media in transition-
metal catalyzed reactions became popular due to creden-
tials such as nontoxicity, non-flammability, easy availabil-
ity, safety and inexpensive nature [12–15]. However, scanty 
solubility of precursors in water avoids its utility in organic 
transformations. Hence to overcome this problem, aqueous 
mixed solvent system has been found to be more effective 
for promoting organic reactions.

1,2,3-Triazoles have a wide range of applications in 
medicinal and pharmaceutical chemistry. They exhibit 
activities such as anti-HIV [16], antibacterial [17], anti-
cancer [18], antiviral [19], Histone deacetylase inhibitor, 
antifungal [20, 21], antiepileptic [22, 23], anti-allergic 
[24], antimicrobial against gram positive bacteria and 
β3-adrenergic receptor agonist [25–27]. The wide appli-
cations of 1,2,3-Triazoles have stimulated development of 
new methods for their synthesis as well as their derivatives. 
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Amongst several methods available for the synthesis of 
triazoles [28–34], 1,3-dipolar cycloaddition is one of the 
most admired protocols for the synthesis of 1,2,3-tria-
zole framework [35–43]. The maiden report on 1,3-dipo-
lar cycloaddition of azides with alkynes was put forward 
by Huisgen et. al [44]. They carried out reactions without 
using any metal catalyst however, even after long reaction 
time obtained mixture of 1,4 and 1,5-isomers of 1,2,3-Tria-
zole at high temperature. Later on Meldal [45] and Sharp-
less [46] introduced the term Click chemistry by employing 
Cu(I) salts for the reaction of azide with terminal alkynes 
to afford 1,4-disubstituted products [47, 48]. Now a days, 
numerous methods are available for 1,3-dipolar cycloaddi-
tion employing homogeneous/heterogeneous Cu complex 
as catalyst [49–53]. Though, copper salts act as a homo-
geneous catalyst, they suffer from drawbacks such as diffi-
cult separation, reusability of the catalyst, cytotoxicity and 
environmental pollution issues. Furthermore, it is difficult 
to remove trace amount of catalyst from the final product as 
metal contamination is highly regulated in the pharmaceu-
tical industry [54–56].

The green chemistry legislations insist to employ eco-
benign synthetic procedures but unfortunately most of the 
reported methods involve explosive and difficult to handle 
azides as starting materials, organic solvents as reaction 
media, prolong heating, non-reusable catalytic system and 
tedious experimental procedures used for separation of cat-
alyst [13, 57–69]. Thus, a truly green method for 1,3-dipo-
lar cycloaddition is highly warranted which could avoid 
direct use of hazardous organic azides and get catalyzed 
by eco-friendly heterogeneous copper catalyst which we 

achieved by in situ generated azides from aryl/ alkyl halides 
using [bis-(MIM)](CuBr2)] as a reusable, eco-friendly het-
erogeneous catalyst in ethanol: water system (Scheme 1).

2 � Results and Discussion

Initially, we focused our attention towards design and syn-
thesis of copper containing reusable and heterogeneous 
catalyst viz 1,3-bis(1-methyl-1H-imidazol-3-ium) propane 
copper(I) dibromate [bis-(MIM)](CuBr2)]. The synthesis 
of [bis-(MIM)](CuBr2)] is carried out in two steps. In the 
first step, reaction of 1-methyl imidazole and 1,3-dibromo-
propane in toluene at 80 °C for 24 h resulted into 83% of 
dicationic 1,3-bis(1-methyl-1H-imidazol-3-ium) propane 
dibromide [bis-(MIM)](Br2)]. In the second step the result-
ant dicationic ionic liquid (IL) was refluxed at 60 °C with 
CuBr in methanol for 4  h to afford desired amorphous 
powder of [bis-(MIM)](CuBr2)] (4.56 g, 97%) (Scheme 2). 
Analysis of synthesized catalyst was done by IR, NMR, 
SEM, EDS and XPS techniques. Figure 1 displays the over-
lay FTIR spectra of CuBr(a), [bis-(MIM)](Br2)](b) and 
[bis-(MIM)](CuBr2)] (c). The absorption bands at 3069 
and 3010  cm−1 shows presence of saturated C–H stretch-
ing vibrations. The characteristic absorption bands at 1560 
and 1466 cm− 1 attributed to C–N stretching vibrations of 
the imidazole ring [70]. The disappearance of absorption 
band at 3438 cm−1 in [bis-(MIM)](CuBr2)](c) indicates the 
formation of desired catalyst.

The SEM analysis (Fig.  2) of the catalyst, before (a) 
and after use (b) exhibits no significant change in its 

Scheme 1   Synthesis of 
1,4-disubstituted 1,2,3-triazoles 
by using [bis-(MIM)](CuBr2)] 
catalyst R1 H + NaN3
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morphology. The thermal stability of the catalyst was 

studied by using the thermogravimetric analysis (TGA) 
and differential thermogravimetry (DTG) analysis in 
the range of 25–800 °C in an air atmosphere at 10 °C /
min. The TGA analysis of the catalyst is depicted in 
Fig. 3. The TGA profile reflects that the catalyst is highly 
thermo stable. At the beginning, the catalyst showed a 
slight weight loss due to the physically adsorbed water 
molecules upto 200 °C, and had a weight loss of 4.403% 
at 294.82 °C [70]. The further weight loss in the range of 
264.82–385.79 °C is attributed to loss and decomposi-
tion of copper(I) dibromate anion. The largest weight loss 
48.41% is due to decomposition of cation and formation 
of metal oxides at 632.68 °C. The total residual weight 
(24.5%) after thermal degradation of catalyst is in accord-
ance with the theoretical residual weight of the CuO. The 
presence of copper in [bis-(MIM)](CuBr2)] catalyst is 
supported by its EDS analysis (Fig.  4) which illustrates 

Fig. 1   IR spectra of CuBr (a), [bis-(MIM)](Br2)] (b) and [bis-
(MIM)](CuBr2)] (c)

Fig. 2   SEM analysis of catalyst 
[bis-(MIM)](CuBr2)] before use 
(a), after use (b)

Fig. 3   TGA analysis of catalyst 
[bis-(MIM)](CuBr2)]
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incorporation of copper with [bis-(MIM)](Br2)] during 
reaction.

To investigate the oxidation state of copper in catalyst, 
XPS analysis was carried out (Fig. 5). The values of bind-
ing energy (Fig.  5c) at 932.93 and 953.32  eV correspond 
to the Cu2p3/2 and Cu2p1/2, respectively. The Auger spec-
tra (Fig.  5d) of catalyst exhibits a characteristic peak at 
570.65 eV, which is close to the reported value of 569.9 eV 
and 570.0 eV for Cu2O [71–73]. The data of binding energy 

is in good agreement with the literature value of binding 
energy of Cu(I) [74, 75] revealing that copper integrated in 
the catalyst is in the form of Cu(I).

In Huisgen 1,3-dipolar cycloaddition, aromatic azides 
are generally used as precursors. These organic azides 
are stable against most reaction conditions but their low 
molecular weight derivatives are explosive and high tem-
perature lead to the decomposition [46]. Recently, scien-
tists explored in situ generation of aryl azides and thus put 

Fig. 4   EDS data of catalyst 
[bis-(MIM)](CuBr2)

Fig. 5   XPS data of catalyst [bis-(MIM)](CuBr2)



305Dicationic 1,3-Bis(1-methyl-1H-imidazol-3-ium) Propane Copper(I) Dibromate : Novel…

1 3

forward a remedy to overcome drawbacks caused by the 
direct use of aryl azides [47, 48]. In this perspective, we 
have initially reacted aryl/alkyl halides with sodium azides 
for in situ generation of the corresponding azides.

Initially, model reaction for the 1,3-dipolar cycloaddi-
tion of benzyl chloride, sodium azide and phenyl acety-
lene was carried out in presence of catalytic amount of 
[bis-(MIM)](CuBr2)] at room temperature using ethanol as 
a solvent, however no progress was observed. Hence, the 
model reaction was carried out at reflux condition. Pleasur-
ably, the corresponding 1,2,3-triazole was obtained in good 
yield within short time. The formation of 1,4-disubstituted 
1,2,3-triazole instead of 1,5-disubstituted 1,2,3-triazole was 
confirmed on the basis of spectral data of product in the 
literature [58, 76, 77].

In order to optimize the reaction conditions for 1,3-dipo-
lar cycloaddition, initially screening of catalyst was car-
ried out for the model reaction (Table  1, entry 1–7). The 
product was obtained in excellent yield with 5  mol% 
(0.032 g) of catalyst at 80 °C in ethanol (Table 1, entry 3). 
No significant change in reaction time and yield of prod-
uct was observed even though increasing catalyst load-
ing up to 10 mol% (0.064 g) (Table 1, Entry 4). However, 
when the catalyst loading was reduced to 4 mol% (0.025 g) 
and 2 mol% (0.012 g), increase in time for completion of 
reaction and decrease in yield of product was observed 
(Table 1, entries 1 and 2). To investigate the effect of cop-
per in the catalyst, model reaction was performed in pres-
ence of 5 mol% [bis-(MIM)](Br2)] but, no progress in the 
reaction was observed (Table 1, entry 5). When the same 
reaction was carried out in the presence of 5 and 10 mol% 
of CuBr, afforded lower yield of product with increased 

reaction time (Table  1, entries 6 and 7) as compared to 
[bis-(MIM)](CuBr2)]. Afterwards, in order to investigate 
combinatorial effect of both the subparts of catalyst, the 
model reaction was carried out utilizing CuBr in combina-
tion with [bis-(MIM)](Br2)] 5 mol% each (Table 1, entry 8) 
then there was no significant change in the yield and reac-
tion time.

After screening of the catalyst, we investigated the sol-
vent effect for model reaction. In light of the principles of 
green chemistry, initially model reaction was carried out 
in water; however, no product formation was observed 
(Table  2, entry 1). From our earlier experience in mixed 
solvent system, we envisaged that mixed solvent system 
may reinforce the reaction towards completion [78]. Hence, 
we focused our attention towards screening of ethanol: 
water system for model reaction (Table  2, entries 2–10). 
Satisfyingly, we observed the formation of desired product 
in excellent yield [91%] with 60% ethanol (Table 2, entry 
7).

With the optimized reaction conditions in hand, the gen-
erality of protocol was evaluated by reactions of various 
halides with terminal alkynes and NaN3 under optimized 
reaction conditions and observed that all reactions pro-
ceed smoothly furnishing desired product in good yields 
(Table 3, entries 1–13).

The reusability of catalyst is a prominent feature in case 
of heterogeneous catalysts. The recovery and reusability of 
catalyst was performed with model reaction of benzyl bro-
mide, sodium azide and phenyl acetylene. Due to heteroge-
neous nature, catalyst was separated just by filtration. The 
filtrate was analyzed using atomic absorption spectroscopy 
(AAS) and satisfyingly, no copper metal was detected in 

Table 1   Screening of catalyst 
for 1,3-dipolar cycloaddition

Reaction condition: Reaction between benzyl chloride (1 mmol), sodium azide (1.1 mmol), phenyl acety-
lene (1 mmol) solvent : ethanol, Reaction condition : 80 °C

+

NaN3

N

N N
[Bis-(MIM)](CuBr2)]

Ethanol 80 ºC
Cl

CH

Sr. No Catalyst Mol% Time (h) Yield (%)

1 [Bis-(MIM)](CuBr2)] 2 3 76
2 [Bis-(MIM)](CuBr2)] 4 2 85
3 [Bis-(MIM)](CuBr2)] 5 1.45 91
4 [Bis-(MIM)](CuBr2)] 10 1.4 91
5 [Bis-(MIM)](Br2)] 5 – –
6 CuBr 5 4 77
7 CuBr 10 3 81
8 [Bis-(MIM)](Br2)] and CuBr 5 4 78



306	 N. C. Dige et al.

1 3

filtrate which is in support of ionic liquid binds with copper 
to minimize deterioration and metal leaching results into 
efficient catalyst recycling. The filtered catalyst was washed 
with ethyl acetate and chloroform, dried and reused for new 
reaction. Noticeably, the recovered catalyst was success-
fully used for four cycles without any remarkable loss in 
efficiency in terms of time and the yield of desired 1,4-dis-
ubstituted 1,2,3-triazole (Fig. 6).

Table  4 encompassed comparison of catalytic system 
and highlights merits as well as demerits of the litera-
ture methods. It is noteworthy that the use of 1,3-bis(1-
methyl-1H-imidazol-3-ium) propane copper(I) dibromate 
[bis-(MIM)](CuBr2)] as new heterogeneous and reusable 
catalyst for 1,3-dipolar cycloaddition has a comparable/ 
excellent activity as compared to reported copper catalytic 
systems. The use of water: ethanol as solvent system, low 
cost, easy isolation of product from the reaction mixture, 
operational simplicity, and re-usability are the merits of 
present method.

3 � Conclusion

We have synthesized [bis-(MIM)](CuBr2)] as a novel effi-
cient heterogeneous catalyst in 1,3-dipolar cycloaddition 
for one-pot multicomponent synthesis of 1,4-disubstituted 
1,2,3-triazoles in ethanol: water mixed system at 80 °C. 
Noticeable advantages of this protocol include operational 
simplicity, reusability of catalyst, mild reaction conditions 

along with ambient temperature, regioselectivity and wide 
substrate scope.

4 � Experimental

4.1 � General

Various Halides (Sigma Aldrich/Alfa Aesar), Alkynes 
(Sigma Aldrich/Alfa Aesar), sodium azide (Spectrochem, 
Mumbai), N-Methyl imidazole (Spectrochem, Mum-
bai), 1,3-Dibromopropane (Spectrochem, Mumbai) and 
copper(I) Bromide (Spectrochem, Mumbai) were used as 
received. All reactions were carried out in aerobic condi-
tions. Melting points were recorded using open capillary 
method. Infrared spectra were measured with an Agi-
lent Cary (IR-630) spectrophotometer. 1H NMR and 13C 
NMR spectra were recorded on a Brucker AC spectrom-
eter (300 MHz for 1H NMR and 75 MHz for 13C NMR), 
using CDCl3 and DMSO-D6 as solvent and tetramethylsi-
lane (TMS) as an internal standard. Chemical shifts (δ) are 
expressed in parts per million (ppm) and coupling constants 
are expressed in hertz (Hz). Mass spectra were recorded on 
a Shimadzu QP2010 GCMS and GC-HRMS from SAIF, 
IIT Bombay. The morphology of [bis-(MIM)](CuBr2)] was 
assessed by scanning electron microscope (SEM) (JEON-
6360 Japan), operated at an accelerating voltage of 20 kV. 

Table 2   Screening of 
solvent for the synthesis of 
1,4-disubstituted 1,2,3-triazoles

Reaction condition: Reaction between benzyl chloride (1 mmol), sodium azide (1.1 mmol), phenyl acety-
lene (1 mmol), Catalyst : 5 mol%. Temperature : 80 °C

+

NaN3

N

N N
[Bis-(MIM)](CuBr 2)] (5 mol%)

Solvent 80 ºC
Cl

CH

Sr. No Solvent Time (h) Yield (%)

1 Water 3.0 –
2 Water:ethanol (9:1) 3.0 71
3 Water:ethanol (8:2) 3.0 83
4 Water:ethanol (7:3) 2.5 81
5 Water:ethanol (6:4) 2.0 84
6 Water:ethanol (5:5) 1.45 88
7 Water:ethanol (4:6) 1.45 91
8 Water:ethanol (3:7) 1.40 86
9 Water:ethanol (2:8) 1.40 76
10 Water:ethanol (1:9) 1.40 85
11 Ethanol 1.40 91
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EDS were determined using Energy Dispersive X-ray anal-
ysis (EDX) was done using ‘Bruker 129 ev’ with ‘Espirit 

software. X-ray photoelectron (XPS) was measured using 
monochromatic Al Kα (1486.6 eV) source.

4.2 � Typical Procedure for Preparation of Dicationic 
1,3‑Bis(1‑methyl‑1H‑imidazol‑3‑ium) Propane 
Copper(I) Dibromate Catalyst [Bis‑(MIM)](CuBr2)

4.2.1 � Preparation of Dicationic 
1,3‑Bis(1‑methyl‑1H‑imidazol‑3‑ium) Propane 
Dibromide [Bis‑(MIM)](Br2)

In a 100  mL round-bottom flask, 1-methylimidazole (1) 
(5.0  g, 60.90  mmol) was mixed with 1,3-dibromopro-
pane (6.14  g, 30.45  mmol) in toluene at 80 °C for 12h. 
After the completion of reaction, the reaction mixture was 
cooled to room temperature and filtered. The obtained 
residue was then washed with toluene (10  mL), ethyl 
acetate (20  mL) and diethyl ether (20  mL) to remove 
traces of starting materials. Further it was dried under 
reduced pressure to afford white crystals of dicationic 

Table 3   Synthesis of 1,4-disubstituted 1,2,3-triazole by using dicationic 1,3-bis(1-methyl-1H-imidazol-3-ium)propane copper(I) dibromate cat-
alyst [bis-(MIM)](CuBr2)]

Reaction condition: Reaction between various alkyl halide (1 mmol), sodium azide (1.1 mmol), alkynes (1 mmol) solvent: ethanol: water (60: 
40%), catalyst: 5 mol% [bis-(MIM)](CuBr2)], Temp: 80 °C

CH

OH

CH

1a 1b

CH3 BrCl

CH3 Br

3a 3b 3c

3d
3f3e

Br
F

OCH 3
O2N

Br

NC

Br

O

O CH3

Cl

3g

Sr. No Alkynes (1) Halides (3) Product (5) Time (h) Yield (%) M. P. (°C) Reported 
M. P. 
(°C)Ref

1 1a 3a 5aa 2–3 91 130 12858

2 1a 3b 5ab 2.15 93 190 –58

3 1a 3c 5ac 2.0 87 42 42–4476

4 1a 3d 5ad 3.0 75 74 74–7577

5 1a 3e 5ae 2.0 96 136–138 –
6 1a 3f 5af 2.10 99 248–250 –
7 1a 3g 5ag 1.30 70 100–102 9976

8 1b 3a 5ba 1.30 63 170–175 –
9 1b 3b 5bb 2.30 87 135–140 –
10 1b 3c 5bc 2.0 99 250 –
11 1b 3d 5bd 3.0 72 95–98 –
12 1b 3e 5be 2.10 98 165–168 –
13 1b 3f 5bf 2.15 98 270 –

Fig. 6   Reusability study of [bis-(MIM)](CuBr2)]
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1,3-bis(1-methyl-1H-imidazol-3-ium) propane dibromide 
[bis-(MIM)](Br2)] with 83% yield.

4.2.2 � Preparation of Dicationic 
1,3‑Bis(1‑methyl‑1H‑imidazol‑3‑ium) Propane 
Copper(I) Dibromate Catalyst [Bis‑(MIM)](CuBr2)

The 100 mL round bottom flask is charged with dicationic 
1,3-bis(1-methyl-1H-imidazol-3-ium) propane dibromide 
[bis-(MIM)](Br2) (3.0 g, 7.34 mmol) in methanol (20 mL). 
Then powdered CuBr (2.109 g, 14.69 mmol) was added in 
it with constant stirring. The mixture was then stirred at 
40 °C for 4h. On completion, the reaction mixture was fil-
tered and washed with MeOH (10 mL × 5) and diethyl ether 
(20 mL) sequentially dried under reduced pressure to afford 
95% amorphous powder of dicationic 1,3-bis(1-methyl-
1H-imidazol-3-ium) propane copper(I) dibromate catalyst 
[bis-(MIM)](CuBr2) .

4.3 � General Procedure for Synthesis 
of 1,4‑Disubstituted 1,2,3‑triazoles

25 mL of round bottom flask was charged with Aryl/alkyl 
halides (1  mmol), NaN3 (1.2  mmol), and terminal alkyne 
(1  mmol) in ethanol: water (60: 40%) (5mL). Then [bis-
(MIM)](CuBr2)] (5 mol%) was added to the above solution. 
The reaction mixture was stirred at 80 °C for time men-
tioned in Table  3. The completion of reaction was moni-
tored by TLC. Work-up of reaction is done by adding ice 

water. The solid obtained was extracted with ethyl acetate 
over anhydrous sodium sulphate. The structure of the prod-
uct was confirmed by using IR, 1H NMR, 13C NMR and 
MS (EI) analysis.
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