
PERSPECTIVES

Ab Initio Thermodynamics and First-Principles Microkinetics
for Surface Catalysis

Karsten Reuter1

Received: 14 December 2015 / Accepted: 17 December 2015 / Published online: 18 January 2016

� Springer Science+Business Media New York 2016

Abstract Ab initio thermodynamics and first-principles

microkinetic simulations have become standard tools in

research on model catalysts. Complementing dedicated

in situ experiments these techniques contribute to our

evolving mechanistic understanding, in particular of a

reaction-induced dynamical evolution of the working cata-

lyst surface. This topical review surveys the methodological

foundations and ongoing developments of both techniques,

and specifically illustrates the type of insights they provide in

the context of in situ model catalyst studies. This insight

points at substantial deviations from the standard picture that

analyzes catalytic function merely in terms of properties of

and processes at active sites as they emerge from a crystal

lattice truncation of the nominal catalyst bulk material.
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1 Introduction

An obvious target of research in heterogeneous catalysis is

to develop ‘‘better’’ catalysts. ‘‘Better’’ may thereby stand

for quite different aspects. Among others this can be higher

activity, higher selectivity, longer lifetimes or preferable

materials. Whatever the targeted improvements are

specifically though, if they are to be found by anything but

mindless trial and error, one necessarily needs ‘‘ideas’’.

One powerful source of ideas to find better catalysts is to

understand what limits the function of existing catalysts.

Generally, the better or detailed this understanding is, the

better defined are the ideas that emerge from it. This line of
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thinking is the basic motivation for catalysis research that

aims for what one refers to as mechanistic understanding.

Here, mechanistic ideally means understanding the func-

tion down to the atomistic level of the individual elemen-

tary processes that underlie the catalytic cycle. It turns out

that this is a pretty daunting goal. One possibility to make it

at least a bit more tractable is to reduce the complexity of

the problem and achieve this understanding first for model

catalysts [1, 2], i.e. typically single-crystals of the actual

catalyst material or defined nanoparticles of the material on

single-crystal supports. This dismisses many aspects of a

real catalyst, and may therefore only generate a subset of

ideas—but, one has to make a start.

One of the central, novel aspects that has recently

emerged from such mechanistic studies on model catalysts

is that an operating catalyst surface could be anything but a

static entity [3, 4]. A prevailing view of heterogeneous

catalysis often found in introductory textbooks is instead

that of impinging and reacting gas-phase species on a rigid

solid surface [5–7]. If the atomic structure of the surface is

resolved at all in such a picture, then this is the crystallo-

graphic structure as resulting from a mere surface trunca-

tion of the bulk catalyst lattice. For instance, for metal

catalysts one pictures a low-index facet like a (111) or

(100) fcc surface, flat like a tablet, at best with some steps

in between. The surface metal atoms have a reduced metal

coordination in comparison to the coordination of a bulk

atom. This makes them ‘‘active’’ and one views particular

high-symmetry adsorption sites on the lattice defined by

the position of these ‘‘active’’ surface atoms as the ones

driving the catalysis. Consequently denoted as ‘‘active

sites’’, in the example of the fcc metal surface this could

e.g. be hollow, bridge or atop adsorption sites on the ter-

races, or equivalent sites at upper or lower step edges. The

surface metal atoms around these active sites adapt their

positions slightly to the ongoing elementary processes of

the catalytic reaction, namely adsorption, diffusion, reac-

tion and desorption of the reactants and reaction interme-

diates. However, apart from such small structural

relaxations, the surface morphology is assumed to be pretty

static. As such the catalytic function is analyzed in terms of

the properties of and processes at these active sites,

thinking specifically of sites as they emerge from the

crystal lattice truncation of the nominal catalyst bulk

material.

While seductively familiar and intuitive, this picture

could fall short in capturing much of real heterogeneous

catalysis. For sure, the picture is largely correct in the

defined environment offered by controlled gas dosage in

ultra-high vacuum (UHV) and at low temperatures. Most of

what we know on an atomic level about surface catalytic

reactions derives from such environments and this is why

the above sketched picture is familiar and intuitive to us.

However, heterogeneous catalysis does not operate in

UHV. Technologically relevant gas-phase conditions

comprise ambient pressures or beyond. Under a corre-

sponding, much fiercer gas-phase impingement we at least

have to expect increased adsorbate concentrations at the

surface and concomitantly higher reaction rates, typically

measured in turnover frequencies (TOF) with units of

product molecules per catalyst surface area and time. If this

was all, it should still be possible to extrapolate from UHV

to ambient conditions and to slow things down by studying

lower temperatures. Such ‘‘thermodynamic scaling’’ (vide

infra) was the original hope or assumption of the Surface

Science approach to heterogeneous catalysis. Increasingly,

we are able to scrutinize this assumption. This is made

possible by the advent of so-called in situ studies that

investigate model catalysts at ideally similar atomic reso-

lution as in traditional UHV Surface Science, but at (near-

)ambient pressures [8, 9]. What we have learnt from such

studies so far, sketches a picture of heterogeneous catalysis

that goes far beyond a simple thermodynamic scaling.

For instance, the surface concentrations of certain

reaction intermediates can become so high that phase

transitions to new compound materials composed of the

original (nominal) catalyst material and the reaction

intermediate(s) may occur—and it is this new material that

then actuates the catalysis [4, 8, 9]. Both for thermody-

namic or kinetic reasons these new materials must fur-

thermore by no means be restricted to known bulk phases.

Instead they can exhibit completely new structures that are

(temporarily) stabilized for instance as thin surface films on

top of the bulk catalyst. A prominent example for such

surface morphological transitions is oxide formation at the

late transition metals employed in oxidation catalysis [10–

14]. Another aspect that speaks against a simple scaling

from UHV to ambient pressures is the much higher amount

of reaction energy that is released in case of exothermic

reactions at the increased reaction rates. We presently

know very little about how and how quickly this energy is

dissipated on an atomic-scale [15]. Yet, if heat transfer is

limited, scenarios like molten catalyst materials with a

surface dynamics much beyond that of rigidly lattice-

aligned active sites are well conceivable.

One needs to stress that the current understanding we

have gained through in situ studies is far from being

complete; certainly much less than what we have collected

in decades of UHV Surface Science work. At present it is

not clear whether those instances reported are exotic

oddities or the top of the iceberg. The data we already have

is nevertheless good enough to formulate a working

hypothesis opposite to the prevalent static picture: Why not

view a catalyst surface as something entirely dynamic? A

surface that while operating adapts sensitively to the

reaction conditions in everything ranging from the local
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atomic structure to overall composition and morphology?

Yes, new surface phases can form in the reactive gas-

phase, but why should they always cover the entire catalyst

surface? As a result, if the surface is then heterogeneous,

why should this surface heterogeneity not vary with time?

Maybe new active site configurations form and decay

continuously as a result of interaction with the reactants

and reaction intermediates, and maybe they even form

specifically at phase boundaries arising on the evolving

surface. Clearly, the only possibility we have to validate or

falsify such ‘‘ideas’’—and the consequences they would

suggest for the design of ‘‘better’’ catalysts—is to study the

catalyst not in UHV, not before it goes on stream, not after

it has gone out of stream, but precisely in operando, when

it is working under technologically relevant gas-phase

conditions.

This has exactly been the motivation of the aforemen-

tioned in situ studies on model catalysts that have made

their fulminant appearance over the last decade or so [8, 9].

At spatial and temporal resolution that is ever increasing

and at pressures that come closer and closer to techno-

logical conditions, such studies precisely focus on the

surface structure, composition and morphology—and try to

relate it to the catalytic activity. Aiming e.g. to extend the

use of UHV electron spectroscopies to these pressure

regimes, the experimental setups are necessarily involved.

Mass flow limitations in the resulting complex reactor

chambers together with still limited resolving powers ren-

der the measured data not always straightforward to

interpret [16–18]. As in many areas of materials and

chemical science much synergy has therefore been

achieved by complementing these measurements with

modern computational theory. To a large degree these are

the same (typically first-principles based) calculations of

thermostability, spectroscopic signals and reactivity

descriptors as they have already been successfully con-

ducted for a long time in the realm of UHV Surface Sci-

ence. In addition, however, new theoretical approaches

have been developed and advanced that have exactly the

same objectives as the in situ studies [19]: For given

reaction conditions in form of defined reactant partial

pressures pi and temperature T, what is the surface structure

and composition—and what is the corresponding catalytic

activity?

Aiming to provide this information independently, i.e.

be of predictive character, such theory necessarily has to be

based on first-principles electronic structure calculations.

In order to account for the effect of finite temperature and

pressure, as well as for the ensemble character introduced

by the ongoing surface chemical reactions, these quantum

mechanical calculations need to be combined with con-

cepts from thermodynamics and statistical mechanics.

Notably, two such approaches have been established that

have proven so powerful that they are nowadays firmly

anchored in the conceptual toolbox of everybody working

in surface catalysis: (constrained) ab initio thermodynam-

ics and first-principles microkinetics. The prior technique

provides exclusively access to the surface structure and

composition as a function of (T,pi). The theory is approx-

imate, but therefore computationally less intense and

applicable to more complex surface structures. As the name

implies, first-principles microkinetics explicitly accounts

for the kinetic effects due to the ongoing chemical reac-

tions. It is therefore intrinsically more accurate and addi-

tionally gives access to the catalytic activity. This comes at

the price of larger computational cost and, at least in its

most rigorous implementations, presently still with quite

some restrictions with respect to the complexity of the

surface structures and reaction networks it can handle. In

this topical review I will survey both techniques, yet not so

much in terms of their detailed methodological foundations

and technical implementations, nor in their general use in

the context of low-coverage rigid surface models. Extended

reviews are available for this [19–24]. Instead, I will focus

on their concepts, discuss some current frontiers and

ongoing developments, and specifically illustrate the type

of insights they provide in the context of in situ model

catalyst studies.

2 (Constrained) Ab Initio Thermodynamics

2.1 Methodology

Even though they form the basis of both techniques that

will be covered I will not at all dwell on the underlying

first-principles electronic structure calculations [25]. In the

context of in situ studies on model catalysts these calcu-

lations are at present almost exclusively performed within

density-functional theory (DFT). The central output of

these calculations that enters into the first-principles ther-

modynamics or statistical mechanics approaches is the total

energy Etot, i.e. the energy contained in the chemical bonds

for a defined structural configuration of atoms. For the

present purposes there are two aspects of these total ener-

gies that need to be highlighted: First, the total energies are

only approximate, which is primarily due to the approxi-

mate exchange–correlation (xc) functional that is employed

in the DFT calculations [25]. In fact, due to the typically

rather large system sizes computationally less demanding,

so-called lower-rung xc functionals are predominantly

applied [19, 26–28]. For metal catalysts these are largely

still semi-local generalized gradient approximation (GGA)

functionals, while for materials with more localized

bonding aspects like oxides these are increasingly hybrid

functionals [29, 30]. What this implies is that we have to
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expect an uncertainty in central quantities like binding

energies (suitable differences of total energies) or reaction

barriers (difference of binding energies at initial and tran-

sition state) that is of the order of *0.3 eV (*30 kJ/mol).

Of course, since we lack the exact xc functional this is only

a rough estimate, and for reaction barriers some error

cancelation when taking a difference from differences

might make the uncertainty a bit smaller. Notwithstanding,

the latter is more a hope than something to rely on. In any

case, we thus have to count with potential errors that are

much larger than kBT. This obviously has to be kept in

mind when attempting to make statements about temper-

ature-dependent properties or even more so about catalytic

activities where reaction barriers enter through exponential

Boltzmann-type factors.

The other aspect to highlight is to repeat that Etot =

Etot(Ni,Nj), where Ni and Nj are the number of species i and

j in the particular configuration that has been calculated. I

distinguish here and in the following between species i that

are also present in the gas phase (i.e. contained in the

reactants), and species j that are not (i.e. that are only

present in the solid catalyst). A straightforward comparison

of the stability of two configurations on the basis of DFT

total energies is therefore only possible, if both configu-

rations contain exactly the same numbers N0
i = Ni and

N0
j = Nj of all species i and j in the system. On the con-

trary, in the context of near-ambient catalysis the surface

composition is precisely one the targeted quantities, i.e.

one does a priori not know how many atoms of which kind

there are in the surface fringe. As already pointed out

before, to the very least one would expect surface cover-

ages of reaction intermediates to change with varying

pressures. In order to find out which coverage there is for

given reactant partial pressures pi, one would thus have to

compare the stability of configurations with different cov-

erages, i.e. with differing numbers Ni. This is precisely

what cannot be achieved on the basis of the Etot alone. In

order to answer such questions one would need to know the

cost of bringing the difference in species DNi = N0
i - Ni

and DNj = N0
j - Nj between two configurations either into

one of the configurations or out of the other configuration.

Thermodynamically, it would thereby not matter through

which particular (atomistic) mechanism this happens. The

only thing that would matter is where they ultimately come

from or go to.

The entire idea of ab initio thermodynamics is to pro-

vide this information by considering such reservoirs where

species go to or come from, and then work within an

appropriate thermodynamic framework to compare con-

figurations with varying numbers of species [31–39]. Since

experiments and heterogeneous catalysis are generally run

at defined temperature and reactant partial pressures, the

appropriate thermodynamic ensemble for this framework is

the Gibbs ensemble (T,pi). To assess the stability of a given

surface configuration a suitable quantity to evaluate is then

for instance the surface free energy per surface area A,

c T ; pið Þ ¼ 1

A
G T; pi;Ni;Nj

� �
� Nili � Njlj

� �
; ð1Þ

where G is the Gibbs free energy of a particular surface

configuration containing Ni species i and Nj species j, and

li and lj are the chemical potentials of the corresponding

reservoirs of species i and j. This surface free energy rep-

resents the cost of creating the particular surface configu-

ration by taking all of its constituent atoms out of their

respective reservoirs. Calculating c(T,pi) for a range of

potential surface configurations, the one that exhibits the

lowest surface free energy is this way the most stable one

that (if thermodynamics is correct) should be observed in

experiment.

In order to evaluate Eq. (1) for a given surface config-

uration one needs to know the chemical potentials. For any

gas-phase species i, the obvious reservoir that determines

this chemical potential is the gas phase environment itself.

Approximating this gas phase as an ideal gas, it is

straightforward to obtain Dli = Dli(T,pi), where Dli = -

li - Etot(i) and Etot(i) is the DFT total energy of the iso-

lated gas-phase species i. For atoms and small molecules

this can even be calculated analytically [40, 41]. For others,

values can be found in thermodynamic tables [42]. For the

other species j that are not present in the gas phase, e.g.

species constituting the actual catalyst material, alternative

reservoirs need to be found. This can often be facilitated by

choosing a suitable reference configuration and evaluating

only the excess surface free energy with respect to this

reference

c T ;pið Þ� co T ;pið Þ¼ 1

A
G T;pi;Ni;Nj

� ��

�Go T ;pi;N0i;N0j
� �

�DNili�DNjlj
�
;

ð2Þ

where co and Go are the surface free energy and Gibbs free

energy of the reference configuration, respectively. This

has the advantage that one only needs to define reservoirs

for non-gas-phase species j, for which DNj = 0. If we are

for instance interested in evaluating the relative stability of

different surface coverages of a given reactant on the sur-

face of a solid catalyst, then the clean surface at zero

reactant coverage is obviously a useful such reference

configuration. In this case we would only need to determine

a suitable reservoir for species constituting the catalyst and

not being present in the gas phase, if the changing con-

centration of adsorbed reactants would actually affect the

density of catalyst species in the surface fringe. In the case

of compound materials, such a density change could

thereby for example proceed via precipitation of another
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(bulk) phase. In this case, this other phase, say for instance

pure metal droplets at the surface of metal oxide catalysts,

is in turn a suitable reservoir defining the chemical

potential of the substrate species involved in the density

change.

What is thus left to get hard numbers out of Eqs. (1) or

(2) is to compute the solid-state Gibbs free energies (and

equivalently the chemical potentials of the non-gas-phase

reservoirs). Similar to the procedure for the gas-phase

species, it is thereby useful to separate off the DFT total

energy, which in terms of thermodynamic potentials

amounts to the Helmholtz free energy minus the zero

point energies. We thus have G = Etot ? DG(T,pi), where
the zero point energies are now considered to be con-

tained in the temperature and pressure dependent free

energy part DG(T,pi). In comparison to the ideal gas sit-

uation, calculating this free energy part is more involved

for solids, and, unfortunately, the term itself is also gen-

erally not negligible [43–45]. Fortunately, however, it is

not this absolute free energy part that matters for calcu-

lating in particular the excess surface free energy. As

apparent from Eq. (2) it is only the difference of two

solid-state Gibbs free energies and additional chemical

potentials that enters, and in this difference many contri-

butions can cancel. Since the predominant contribution to

solid-state DG(T,pi) comes from vibrational free energy, it

is thus not the absolute vibrations that enter. Instead it is

only changes of these vibrations (phonon spectrum, to be

precise) with respect to the reference configuration that

matter, and these changes can often be neglected for a

first assessment. In the difference of Eq. (2)—and only

there—we can then write

c T ; pið Þ � co T ; pið Þ � 1

A
DEtot � DNiDli T ; pið Þ½ � ð3Þ

with

DEtot¼Etot Ni;Nj

� �
�Etot

o N0i;N0j
� �

�DNiE
totðiÞ�DNjE

totðjÞ

and Etot(j) the DFT total energy of the solid-state reservoir

chosen for species j. In this approximation, the computa-

tional demand to evaluate the excess surface free energy of

a given configuration is therefore reduced to DFT calcu-

lations of the surface configuration, the reference surface

configuration, as well as of all isolated gas-phase species

and the chosen additional solid-state reservoirs. The entire

temperature and pressure dependence is instead exclusively

contained in the terms DNiDli T; pið Þ, where Dli T; pið Þ is a
look-up quantity that is generic for the species and not for

the particular systems studied.

It is this low computational demand that makes this

formulation of ab initio thermodynamics so appealing. One

has to stress that this holds only within this prevalent

approximation though. The neglected terms DG(T,pi) are

more involved. This refers thereby less to the predominant

vibrational contribution to these terms, which can be and

needs to be at least approximately calculated in many cases

[42, 44]. The more elusive contribution comes instead from

the configurational entropy [20]. Fortunately, for not too

high temperatures this entropy is not large and for hitherto

typically studied systems neglecting it affects the results

only in a predictable way that I will further discuss below.

There is, however, a much more critical aspect than the

neglect of these individual solid-state free energy contri-

butions. This is the way how the configurational sampling

is performed in present applications of this theory. What is

generally done is to consider a given number of configu-

rations that are presumed to be of relevance for the problem

at hand. Computing the excess surface free energies for

every one of them, one of these configurations will exhibit

the lowest value for given gas-phase conditions (T,pi). This

configuration is then declared to be most stable for these

conditions, but obviously this statement can only refer to

relative stability within the group of configurations that has

actually been tested. If a configuration that was not con-

sidered was to exhibit an even lower excess surface free

energy, it would not be identified. There is also no warning

mechanism of such cases in any form in the present for-

mulation of ab initio thermodynamics: The results obtained

would simply be wrong. This limitation with respect to the

considered configurations must always be born in mind

when assessing the results of present-day ab initio ther-

modynamics studies. Of course, this limitation is not con-

ceptual, but results merely from the steeply increasing

computational costs when comparing extended numbers of

configurations (certainly in the context of in situ studies of

model catalysts). Any form of more systematic configura-

tional sampling, as e.g. resulting from global geometry

optimization algorithms, can be straightforwardly incor-

porated into the ab initio thermodynamics framework. The

resulting total energies of all configurations sampled just

need to be entered into thermodynamic equations of the

type of Eqs. (1–3), or one directly performs the sampling in

the appropriate thermodynamic ensemble by evaluating

different cost functions than the total energy.

2.2 Oxide Formation at (Near-)ambient Conditions

After this brief methodological survey, let me illustrate the

kind of insights and the effect of the discussed approxi-

mations and limitations with an application example in the

in situ context. As mentioned before, a possible formation

of oxides at the surface of late transition metal oxidation

catalysts is a prototypical manifestation of the type of

surface morphological transitions that one suspects to
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occur under technologically relevant, (near-)ambient reac-

tion conditions. While nominally Rh, Pd or Pt would thus

be materials that one cites as catalysts employed for such

reactions, in fact their oxides or ‘‘oxidic’’ films could be the

ones that really actuate the catalysis. If true, it would

obviously not make much sense to discuss the catalytic

activity (and any ‘‘ideas’’ for improved catalysts) in terms

of the classic active sites offered by fcc(111) of fcc(100)

facets of these metals. One would have simply looked at the

wrong material. Ab initio thermodynamics has been heavily

employed in this context and a natural starting point is to

only consider the effect of an oxygen environment. Using

the clean metal surface as a suitable reference, one would

calculate the excess surface free energy for a range of sur-

face configurations with increasing oxygen content, and in

turn evaluate their relative stabilities as a function of the

oxygen chemical potential of the surrounding gas phase.

Figure 1 exemplifies this for a Pd(100) surface [46–48].

Natural surface configurations to consider in such a case are

various (ordered) simple adsorption layers of different

concentrations as they could for example have been char-

acterized in UHV Surface Science work. For the O/Pd(100)

surface this would be so-called p(2 9 2) and c(2 9 2)

structures with O atoms adsorbed at the fcc(100) hollow

sites at � monolayer (ML) and � ML coverage, respec-

tively [49, 50]. The excess surface free energies of these

structures will vary with varying O content in the gas phase.

In Eq. (3) this enters through the linear dependence on the

(oxygen) chemical potential, which scales differently for

configurations with different amounts of (oxygen) species

incorporated into the surface fringe. In the limit of an infi-

nitely dilute gas (DlO ? -?), incorporating any O into

the surface configuration would incur an infinite cost due to

the concomitant infinite loss of entropy. This is why the

clean surface reference naturally exhibits the lowest excess

surface free energy under these conditions, cf. Fig. 1a.

With increasing oxygen content in the gas phase, DlO
will become less negative and it will become increasingly

more favorable to stabilize oxygen at the surface. In the

example of O/Pd(100) in Fig. 1a this happens at

DlO = -1.3 eV, which is when the excess surface free

energy of the p(2 9 2) adsorption structure becomes

lower than the clean surface reference. The higher the

surface O concentration of a configuration, the steeper

will be the decrease of its excess surface free energy in a

plot like Fig. 1a. This can eventually stabilize such con-

figurations at higher O chemical potentials. The obvious

upper limit of surface O concentration is thereby a

complete transformation of the bulk metal into a bulk

oxide, as this then implies an infinite number of O atoms

in the normalization per surface area employed in Eq. (3)

[51]. In a plot like Fig. 1a this leads to an infinite nega-

tive slope, i.e. a vertical excess surface free energy line.

For the shown example of O/Pd(100) this line indicating

the formation of bulk PdO lies at DlO = -0.7 eV, and

for any higher oxygen chemical potential the PdO bulk

oxide will be the stable phase.

Already at this stage it is worthwhile to point out what

has been gained through this theory. On the basis of only a

handful of static DFT calculations we can discuss the

possible surface structure and composition at finite tem-

perature and pressure. In a plot like Fig. 1a the latter two-

dimensional (T,pO2)-dependence is thereby conveniently

described through the one-dimensional dependence on the

corresponding chemical potential. By defining suitable ref-

erences one can convert one dependence into the other on

an absolute scale [38]. As done in Fig. 1a this allows to

include additional x-axes that give the pressure dependence

at some specific temperature (or alternatively the temper-

ature dependence at some fixed pressure). The surface

configuration exhibiting the lowest excess surface free

energy for a certain range of chemical potentials would be

identified as the most stable one for the corresponding gas-

phase conditions. Another way of plotting the results would

be to concentrate only on these most stable structures and

plot their (T,pO2)-stability ranges in a so-called surface

phase diagram as done in Fig. 1b. Such surface phase

diagrams are more intuitive to read, but there is also a

certain caveat to them. This has to do with the uncertainty

due to the mentioned approximate DFT total energies. For

a surface phase diagram this implies that the obtained

boundaries between different phases can typically be

wrong by *100 K and (depending on temperature) several

orders of magnitude in pressure. As a large part of the error

arises often from the DFT description of the gas-phase

species, such shifts tend to similarly apply to all phase

boundaries though. The overall topology of the surface

phase diagram (which phases are predicted to be stable at

some finite range of (T,pO2)-conditions) is then more

robust, and this is what one should generally focus on. In

this respect, an intriguing immediate result contained in the

O/Pd(100) example of Fig. 1 is for example that the

c(2 9 2) adsorbate structure which has been observed and

characterized after gas dosage in UHV [52, 53] is never

predicted to be a stable phase on the basis of the employed

DFT functional.

A second intriguing aspect of ab initio thermodynamics

that can be highlighted with the example of Fig. 1 is the

possibility to test the stability of surface configurations one

suspects to potentially play a role at finite temperatures and

pressures. In the context of oxide formation this would

prominently be thin oxide films at the surface. For

O/Pd(100) such a structure had again be stabilized after

excessive O dosage in UHV and was subsequently char-

acterized as a layer of PdO(101) in a commensurate

(H5 9 H5)R27� stacking on top of Pd(100) [52, 53].
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Evaluating the excess surface free energy for this surface

structure, there is indeed a finite range of O chemical

potentials where it is predicted to be most stable, cf. Fig-

ure 1. This range extends over DlO lower than the ones of

the known bulk oxide phase, i.e. ab initio thermodynamics

predicts a range of less O-rich gas-phase conditions where

bulk PdO is not yet stable, but such a PdO(101) overlayer

is. Such an extended stability range of surface oxide films

has been found for many low-index late transition metal

facets [54–61]. It can arise from an enhanced coupling of

the film to the underlying metal [62], but also simply

because the structure of the thin films is by no means

restricted to those of the known bulk oxides. The latter

point thereby hints at the mentioned limitation of prevalent

ab initio thermodynamics with respect to the configura-

tional sampling. Maybe there are more complex, highly

O-enriched surface configurations that would exhibit even

lower excess surface free energies. Without knowing their

explicit structure (or being able to represent this structure

in computationally tractable periodic supercell geometries)

their excess surface free energies cannot be calculated and

the corresponding stabilities not be assessed. Even within

the drive towards (near-)ambient catalysis this underscores

the value of dedicated UHV Surface Science work that

aims to stabilize and characterize such structures and

therewith serves as a generator for structural models to test.

Just as much as one might rather focus more on the overall

topology of surface face diagrams than their absolute phase

boundaries, this also suggests that the really valuable

‘‘idea’’ that has emerged out of studies of the kind of the

discussed O/Pd(100) work is not necessarily that of a

particular, defined surface oxide structure. These ordered

structures are likely just idealized models. Instead it is the

general notion that such kind of O-enriched surface con-

figurations (be they called surface oxides, oxidic films or

sub-surface oxygen) can be stabilized in environments far

less O-rich than those where bulk oxides are known to be

stable.

2.3 Constrained Thermodynamics: Approximate

Structure and Composition Under Reaction

Conditions

Whether such configurations really play a role for (near-

)ambient oxidation catalysis, then critically depends on the

particular reaction. The presence of the other reactant tends

to reduce the catalyst surface. In order to assess whether an

oxidized configuration will prevail under reactive condi-

tions, the other reactant thus needs to be accounted for. In

ab initio thermodynamics this seems straightforward to do

as a multi-component gas phase can simply be considered

through multiple reservoirs for the corresponding gas-

phase species [41]. In Eqs. (1)–(3) this is already indicated

through the dependence on several chemical potentials li.
There is a slight catch to this for heterogeneous catalysis

though. If one was to consider full thermodynamic equi-

librium, then also these various reservoirs would be in

equilibrium with each other. However, if all reactants were

Fig. 1 a Excess surface free

energies and b surface phase

diagram for O/Pd(100).

Considered are two ordered O

adsorbate layers with different

coverage (p(2 9 2), �
monolayer (ML), and c(2 9 2),

� ML) and a (H5 9 H5)R27�–
O surface oxide film (0.8 ML).

Note the extended stability

range of the surface oxide

compared to the known PdO

bulk oxide. The total energies

(DFT-GGA, PBE) used to

construct this graph via Eq. (3)

are taken from Refs. [46–48]
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in full equilibrium with each other, the gas phase would

only consist of products, as a catalyst can only operate

under gas-phase conditions where the products are ther-

modynamically more favorable than the reactants. As this

is obviously not the situation we want to describe, one

instead suitably resorts to a kind of ‘‘constrained’’ equi-

librium approach [41, 63]. In order to capture the effect of

exposure to the reactant gas phase, the catalyst surface is

considered to be in full equilibrium with all reactant gas-

phase chemical potentials, while the latter are treated as

mutually independent of each other. The approximation

that is introduced through this is to neglect that the actual

on-going surface catalytic reactions may consume surface

reaction intermediates faster than they can be replenished

from the gas phase [64]. A ‘‘constrained’’ ab initio ther-

modynamics study can therefore only provide some first

rough insight into the surface structure and composition in

reactive environments, but its advantage is that as before a

wide range of structurally and compositionally largely

differing configurations can readily be compared in a

computationally undemanding way.

Figure 2 illustrates this for the CO oxidation at Pd(100)

system, where in contrast to Fig. 1 the CO chemical

potential is now explicitly considered as a second axis [47,

48]. Comparing the stability of a large set of on-surface

(co)adsorption, surface oxide and bulk oxide structures,

several phases involving the (H5 9 H5)R27� surface

oxide are found to be most stable over a wide range of (T,

pO2, pCO)-conditions. Again, this range largely exceeds the

stability range of bulk PdO. Intriguingly, this range extends

in fact so much that it even just touches the gas-phase

conditions typical for technological CO oxidation, i.e.,

partial pressures of the order of 1 atm and temperatures

around 300–600 K. In terms of a potential oxide formation

under reaction conditions, this would suggest that instead

of thick bulk-like oxide films it would rather be such a

nanometer thin oxidic overlayer that could play a role.

Indeed, in situ reactor scanning tunneling microscopy

(STM) experiments observed substantial morphology

changes that were precisely assigned to the formation of a

thin oxidic overlayer [60, 65, 66]. However, in these

experiments, a continuous consumption and formation of

this surface oxide even under the employed steady-state

reaction conditions was reported—which would directly

relate to the general ‘‘idea’’ of a working catalyst as a very

dynamic entity. For this aspect the proximity of the tech-

nologically-relevant (near-)ambient reaction conditions to

the phase boundary between the surface oxide and reduced

metal configurations in Fig. 2 has to be emphasized. In

Fig. 2 this boundary is drawn as an infinitely sharp tran-

sition, whereas in reality any such phase transition would

occur over a finite range of pressures and/or temperatures.

This abrupt change in (lO,lCO)-space in Fig. 2 is the result

of the neglect of the solid-state configurational entropy

contributions in Eq. (3). While these contributions are

generally small compared to absolute excess surface free

energies, they particularly matter for chemical potential

conditions where the excess surface free energy lines of

two competing configurations cross, i.e. exactly at phase

boundaries. Under such conditions the thermally induced

possibility to explore both configurations leads to enhanced

fluctuations and phase coexistence [41, 63].

Under the neglect of configurational entropic contribu-

tions the prevalent formulation of (constrained) ab initio

thermodynamics cannot explicitly account for such a phase

coexistence (and the implied fluctuations). As done in

Fig. 3 one may estimate its width in (T,pi)-space and rep-

resent this information by drawing the phase boundaries as

regions with a corresponding finite width [41, 63]. Figure 3

shows results equivalent to Fig. 2, but obtained for CO

oxidation at RuO2(110) [64]. Strikingly, technologically

relevant feed conditions fall again precisely into such a

phase coexistence region. The thus suggested notion to

view heterogeneous catalysis as a phase transition phe-

nomenon may thereby be rationalized by recalling that a

so-called stable phase is not stable on an atomistic scale.

Instead it represents an average over many continuously

on-going processes such as dissociation, adsorption, dif-

fusion, association, and desorption. As all these elementary

processes and their interplay are of crucial importance for

catalysis, regions in (T,pi)-space that exhibit enhanced

thermal fluctuations, i.e. where the dynamics of these

atomistic processes is particularly strong, appear naturally

as most relevant [41]. In this understanding where in phase

space catalytically relevant regions might emerge, insights

of the type provided by Figs. 2 and 3 also allow to com-

ment on the possibility to further explore them by bridging

the pressure gap between (near-)ambient real catalysis and

UHV Surface Science. In the thermodynamic Gibbs

ensemble the only ruling quantities are the chemical

potentials li. As long as the (T,pi)-conditions of two

experiments correspond to the same li, thermodynamically

the same results would be expected. In order to represent

the chemical potentials of (near-)ambient catalysis in UHV

Surface Science one would correspondingly have to resort

to much lower temperatures, cf. the different pressure

scales in Figs. 2 and 3. Note, however, that this idea of

thermodynamic scaling by maintaining the same chemical

potentials is not necessarily the same as simply maintaining

a constant reactant partial pressure ratio and varying the

total pressures or temperature. Such a procedure does not

keep the chemical potentials constant, and in case of dis-

sociatively adsorbing reactants generally not even the

chemical potential ratios. Without knowledge of the sur-

face phase diagram, the concomitantly explored chemical

potential range may easily cross phase boundaries, and then
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lead to incomparable results even on thermodynamic

grounds alone.

Obviously, also kinetic limitations will contribute to

deviations from thermodynamic scaling and further jeopar-

dize a reliable bridging of the pressure gap by simple ther-

modynamic recipes for the gas-phase concentrations [10].

Such kinetic effects are thereby not necessarily more

prominent at low temperatures. At higher temperatures one

may generally expect higher TOF. The surface reaction

processes might thus increasingly occur at higher rates than

the adsorption and desorption processes that maintain the

equilibrium with the surrounding gas phase that is assumed

in (constrained) ab initio thermodynamics. As further dis-

cussed below, the resulting depletion of particular surface

species may then well lead to significant deviations from the

predicted surface structure and composition [64]. Already

for the pure formation of the thin surface oxide overlayer on

Pd(100) at increasing O pressures, in situ surface X-ray

diffraction (SXRD) experiments indicated severe kinetic

limitations that suppressed formation of the overlayer at

near-ambient pressures and elevated temperatures on the

time scale of hours [46]. One may well imagine such limi-

tations to intensify in the presence of a reducing co-reactant,

or when formation of thick bulk-like films is concerned. This

should be kept in mind when assessing the results of Fig. 3.

For the more reactive Ru metal, the stability region of its

bulk RuO2 oxide is much larger than for Pd and PdO [51]. In

terms of the surface phase diagram, technologically relevant

reaction conditions fall therefore well into the stability

region of this bulk oxide, cf. Fig. 3. Instead of a potential

(dynamic) formation of a nanometer thin surface oxide

overlayer as on Pd(100), this would rather suggest thick

bulk-like oxide films to occur on Ru, with the catalytic phase

coexistence then restricted to the adsorbate overlayer on

these film. However, kinetic growth limitations, e.g. due to

slow diffusion of either O or Ru atoms through the formed

film [67, 68] might significantly change this picture. Indeed,

while the formation of crystalline, bulk-like RuO2(110)

during (near-)ambient CO oxidation catalysis has indeed

been observed experimentally at Ru(0001), even after long

operation times the reported film thicknesses never exceeded

about 20 Å [13, 69, 70].

This restates to really view the results of (constrained)

ab initio thermodynamics only as very rough first insights.

However, even on this level these insights can be very

valuable and in the discussed context of oxide formation in

(near-)ambient oxidation catalysis these insights do support

the dynamical catalysis picture in terms of substantial

Fig. 2 Surface phase diagram for the Pd(100) surface in ‘‘con-

strained’’ thermodynamic equilibrium with an environment consisting

of O2 and CO. The atomic structures underlying the various

stable (co-)adsorption phases on Pd(100) and the (H5 9 H5)R27�
surface oxide, as well as a thick bulk-like oxide film (indicated by the

bulk unit-cell), are also shown (Pd: large blue spheres, O: small red

spheres, C: white spheres). Phases involving surface or bulk oxide are

to the right bottom of the dotted and dashed line, respectively. The

dependence on the chemical potentials of O2 and CO in the gas phase

is translated into pressure scales at 300 and 600 K. The black hatched

ellipse marks gas-phase conditions representative of technological CO

oxidation catalysis, i.e., partial pressures of 1 atm and temperatures

between 300 and 600 K. Adapted from Ref. [47]

Ab Initio Thermodynamics and First-Principles Microkinetics for Surface Catalysis 549

123



surface morphological transformations in the reactive

environment that has emerged from corresponding in situ

experiments. In fact, as there is no reason why a possible

formation of (surface) oxides should simultaneously occur

on different facets of the same metal, such transformations

can also contribute to substantial changes in the shape and

morphology of (supported) nanoparticles. (Constrained)

ab initio thermodynamics can also contribute to this con-

text by calculating surface free energies of different facets

and combining them within Wulff (Kaischew) construc-

tions [71, 72]. Significant particle shape changes have this

way indeed been predicted as a function of the surrounding

gas-phase environment [73–76]. The possibility to quickly

compare surface configurations that vary as widely as

metal, oxidic overlayer and bulk-like oxides is thereby an

asset that—behold of the highly approximate nature of this

theory—cannot be overstated and that serves ideally to

elucidate the dynamics of working catalysts.

3 First-Principles Microkinetics

3.1 Methodology

In order to properly capture the kinetic effects that are

suspected to modify the approximate picture obtained within

ab initio thermodynamics, the simulations need to explicitly

account for a time dependence. The involved time integra-

tion is thereby extensive and may exceed time scales of the

order of seconds. The reason for this is the so-called rare-

event dynamics underlying surface catalytic processes.

While a catalyst generally reduces the barriers of these

processes, they are still typically of the order of *1 eV.

Since this is much larger than kBT, the time scales of these

relevant elementary processes are largely decoupled from

the regular thermal (vibrational) motion. A vanilla-flavor

molecular dynamics simulation integrating the Newtonian

equations of motion for the nuclei would be able to capture

these vibrations. Yet, it is largely intractable to integrate up

over time scales that would allow for a statistically relevant

averaging of the rare catalytic processes.

In microkinetic theories this separation of time scales is

instead exploited by abandoning the continuous dynamical

description in favor of a discrete state-to-state time evo-

lution, in which the individual elementary processes drive

the system in discrete jumps from one system state to the

next [77, 78]. The central equation to solve is then a

Markovian master equation

dPaðtÞ
dt

¼
X

b

WabPbðtÞ �WbaPaðtÞ
� �

; ð4Þ

where a and b are states of the system with corresponding

probabilities Pa(t) and Pb(t). Wab and Wba are the transition

probabilities per unit time, specifying the rate with which

the system changes due to the elementary processes (ad-

sorption, desorption, reaction and diffusion), respectively

from state b to a and vice versa. These master equations,

one for each system state a, are thus simple balancing

equations: the probability to find the system Pa(t) in state a
at any time t changes because transitions from any other

state b can occur into state a (WabPbðtÞ) or they can occur

out of state a into any other state b (�WbaPaðtÞ). Impor-

tantly, one has thereby applied a Markov approximation,

because none of these transitions depend on the history

through which states the system has gone before. Rather

than involving probabilities that depend on any past time

t0\ t, Eq. (4) thus only shows probabilities at the same

instant in time t: transitions involving a hopping out of state

a at time t depend only the probability that the system

actually is in state a at time t (PaðtÞ). Transitions involving
a hopping from any other state b into state a at time t

depend only the probability that the system is in state b at

this time (PbðtÞ). The rationale behind this approximation

is that one assumes that during the long vibrational motion

before a rare event eventually brings the system out of the

current state into the next one, the system completely

forgets how it actually got into this state in the first place.

Limitations in the dissipation of the reaction energy

released during individual elementary processes might

Fig. 3 Surface phase diagram for the RuO2(110) surface in ‘‘con-

strained’’ thermodynamic equilibrium with an environment consisting

of O2 and CO. The labels of the different stable phases reflect a

predominant population (O, CO or empty ‘‘–’’) of the two prominent

adsorption sites offered by this surface, br(idge) and coordinatively

unsaturated (cus) site. Coexistence regions at the phase boundaries are

marked in white, with the width of these regions corresponding to

600 K. Technologically relevant catalytic conditions around partial

pressures of 1 atm and temperatures between 300 and 600 K are

indicated by the black hatched ellipse. Above the dashed line bulk

RuO2 is thermodynamically unstable against CO-induced decompo-

sition (see text). Adapted from Ref. [64]
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potentially lead to violations of this Markov approximation

[15], but for the time being this approximation is unani-

mously assumed in prevalent formulations of chemical

kinetics.

For a small number of system states, a Markovian

master equation like Eq. (4) can be solved analytically.

Unfortunately, in surface catalysis we are not facing such a

small number. On the contrary. Assume that our catalyst

surface exhibits a total of N active sites. A unique system

state would then be defined by the detailed population of

every single one of these sites, and any elementary process

that changes the population of one or more of these sites

corresponds to one entry in the transition matrix Wab [79].

Since the examples I use are for CO oxidation catalysis,

let’s stick to this reaction to see what this means in terms of

numbers. In this reaction, any active site can either be

empty, or occupied by the reaction intermediates O or CO

(if we assume that CO2 formation leads to immediate

desorption of the product). This yields three population

possibilities for every site and if we for example assume

that there are N = 100 active sites, then the total number of

system states, aka detailed population configurations of the

sites, is 3100 & 1047. Obviously, this is not a small number

and for any more complex reaction network with a corre-

spondingly increased number of different reaction inter-

mediates it will even be higher. Yet, we still have to

rationalize why N = 100 should be a good representation

for an extended catalyst surface. This comes about as in

order to appropriately capture the ensemble effects at such

a surface, the explicitly considered group of active sites

(that is suitably continued through periodic boundary

conditions) must be large enough to exceed the correlation

length between sites. This is the length over which the

statistics of the processes that are ongoing at one site still

influences the statistics of the processes that occur at

another. From present experience on the type of systems

discussed in this review an area spanned by

(10 9 10) = 100 sites is a good (in fact lower) estimate for

this [22, 79].

For a surface catalytic system we thus have to generally

expect a transition matrix with a dimension of the order of

*(3100 9 3100) or larger, i.e. with at least

*(3100)2 & 1095 matrix elements. Fortunately, most of

these matrix entries are zero [79]. This has to do with the

fact that chemical elementary processes typically affect

only the population of a small number of sites. A uni-

molecular adsorption or desorption event of a molecule like

CO changes the occupation of one particular site. A dif-

fusion process of such a molecule changes the occupation

at two active sites, one being emptied and an empty one

being filled. Any transition connecting states that differ in

their populations by more than a few individual sites has

therefore a Wab = 0. An additional important feature that

simplifies the transition matrix immensely is translational

symmetry at a crystalline extended surface. In such a sit-

uation our ensemble of N = 100 active sites may only

comprise a much smaller number of inequivalent site types.

At a simple low-index metal surface maybe something on

the order of two or three, say hollow or bridge terrace sites

or high-symmetry sites at an upper or lower step edge. In

the crystalline symmetry the elementary processes occur-

ring at any site type are equivalent, which means that their

corresponding transition matrix elements Wab are the same.

While the total number of non-zero matrix elements even

in the largely sparse transition matrix is thus generally still

too large to even be stored, the total number of inequivalent

matrix entries Wab is then typically rather small and

determined by the total number of inequivalent elementary

reactions in the reaction network [79–81]. For a simple CO

oxidation model comprising only one active site type this

total number can in fact be as low as seven: Dissociative

adsorption of O2, associative desorption of two adsorbed O,

CO adsorption, CO desorption, O diffusion, CO diffusion,

and CO ? O reaction. It is only this immense simplifica-

tion due to a prevailing and despite the ongoing catalytic

reactions static crystalline symmetry that makes any kind

of microkinetic model computationally tractable today. I

come back to this point later, but already here we should

realize that this obviously clashes with our working

hypothesis of a dynamically evolving, possibly amorphous

or highly heterogeneous catalyst surface that we intend to

scrutinize with such simulations. This is precisely the

dilemma. We are largely constrained to conduct microki-

netic simulations within static models focusing on

impinging and reacting gas-phase species on a rigid solid

surface. In a self-fulfilling prophecy this then contributes to

the present widespread acceptance of such a picture of

catalysis.

Even though the transition matrix is thus sparse and

contains only few non-equivalent non-zero matrix ele-

ments, this does not change the fact that its dimension is of

the order of *(3100 9 3100) already for the discussed CO

oxidation reaction. While in the notation of Eq. (4) the

master equation has a deceptively simple form, it is hence

so high dimensional that it generally escapes any direct

solution. Kinetic Monte Carlo (kMC) simulations over-

come this problem by generating an ensemble of state-to-

state trajectories with the property that an average over the

entire ensemble of trajectories yields the probability den-

sities Pa(t) of Eq. (4) [21, 22]. In this way, only those

matrix elements Wab of transitions between states a and b
are required that are actually executed along the generated

trajectories. Despite the averaging over the trajectory

ensemble, a central feature of the finally obtained explicit

numerical solution is thereby that it contains the informa-

tion of the detailed spatial distribution of the reaction
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intermediates over the considered active sites, along with

the equally resolved occurrence of the individual elemen-

tary processes. The still prevailing alternative to achieve a

solution of Eq. (4) discards this detailed information and

instead considers only the occupation probabilities at dif-

ferent site types, i.e. the averaged coverage h of all

equivalent sites of a given type [5–7]. This represents a

significant simplification of the problem, as the master

equation then decays into a small number of differential

rate equations describing the time evolution of these cov-

erages at the different site types [82, 83]. These are exactly

the type of rate equations that are often phenomenologi-

cally formulated. Typically the resulting network of dif-

ferential equations is extremely stiff and requires special

solution techniques. Nevertheless, even then the computa-

tional solution is so undemanding that it can mostly be

achieved on time scales of the order of seconds on simple

desktop computers.

There is also an additional simplification with respect to

the input that such a mean-field (MF) rate equation model

requires. It only needs to know what kind of active site

types are considered and which elementary processes can

take place at each one of them. In contrast, as it resolves

the spatial distributions at the surface, a kMC model

additionally needs to know how these active site types are

geometrically arranged with respect to each other. As

already mentioned such simulations are presently only

tractable under a prevailing translational symmetry. Typi-

cally, kMC simulations in the field are therefore performed

for a given lattice model that reflects the crystalline

structure of the studied single crystal surface or nanopar-

ticle facet. From this perspective, and recalling our

objective to investigate a possible dynamical picture of

catalysis, this sounds like a disadvantage or limitation in

comparison to the MF rate equation approach. To some

extent this is true. On the other hand, one has to realize that

a MF model doesn’t even know whether there is a crys-

talline order at the surface or not. It doesn’t even know that

step sites are per definition linearly coordinated next to

each other and are thus differently accessible to surface

reaction intermediates than active sites at a two-dimen-

sional terrace. The only thing a MF model knows and can

correspondingly account for is that there are the different

active site types that it considers. Obviously, MF rate

equation theory is thus a gross approximation in compar-

ison to kMC and we can only expect it to yield a faithful

description of the surface kinetics if this approximation is

justified. The latter is the case, when there is a perfect

mixing of the reaction intermediates over the active sites of

the surface. Then, indeed, the details of the spatial distri-

bution do not matter. Fast diffusion processes can ensure

such a mixing. In turn, diffusion limitations, as we can

often expect them for example at oxide surfaces, are one of

the two classic situations known to cause a break-down of

the MF approximation, with rate equation theory corre-

spondingly providing inaccurate solutions [24, 83]. The

other situation arises in the case of strong lateral interac-

tions between reaction intermediates, as the implied pref-

erences of certain reaction intermediates to either seek or

avoid each other naturally oppose the diffusional tendency

to randomly mix the adlayer [82]. As it is not a priori

obvious if the MF assumptions are fulfilled for a given

system, MF rate equation theory should not be applied

uncritically. Clearly, if they are fulfilled, MF theory is the

much more efficient approach that should be pursued. If

they are not fulfilled, wrong results and concomitant

‘‘ideas’’ might result.

kMC and MF rate equations are presently the two pre-

dominant microkinetic theories. As rate equations are the

far more traditional and widespread approach, people often

exclusively associate them with the label microkinetic

modeling. This is sloppy as both theories formally provide

solutions to the same microkinetic master equation. With

the rapidly advancing use of kMC simulations in the field

of surface catalysis one should thus rather refer to

microkinetic modeling as a joint label for both approaches.

The formal similarity of the two approaches is also

reflected in the equivalent input they require. As already

discussed these are the inequivalent active sites (in kMC

additionally a lattice model fixing their geometrical

arrangement) and the list of elementary processes that can

occur at these sites. It is worthwhile to emphasize that this

is an input, not an outcome of the simulations. Neither

approach has any built-in warning feature if a relevant

process or site type has been overlooked, or even more

desirable the capability to automatically generate complete

lists of such processes and sites. If a relevant process or site

is not included in the microkinetic model, the results are

nothing, but simply just wrong.

3.2 The First-Principles Input

Apart from these lists the remaining input that is addi-

tionally needed are the inequivalent, non-zero transition

matrix elements. With units of time-1, these matrix ele-

ments correspond to the rate constants of the various ele-

mentary processes, i.e.Wab = ka if the transition from state

a to state b results from elementary process a with rate

constant ka [22, 79]. In first-principles (1p) microkinetic

approaches these rate constants are determined by elec-

tronic structure theory calculations, and it is through these

rate constants that such kind of modeling then obtains its

(hopefully) predictive character. To derive the rate con-

stants predominantly from computationally less demanding

static, again typically DFT calculations, the currently most
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commonly employed approach in the area of surface

catalysis is transition-state theory (TST) [19, 84–86].

Without having seen much systematic scrutiny, this

approach seems to meet sufficient accuracy, which is thus

quite different to the situation in other fields e.g. when

liquids are involved. Application of TST yields rate con-

stants of a general Arrhenius-type form

ka ¼ A T; pið Þexp �DEa

kBT

� �
; ð5Þ

where the prefactor A(T,pi) accounts for entropic changes

between the initial and transition state (TS) of the process,

and DEa is the corresponding energy barrier. As the pref-

actor enters this equation only linearly, various in parts

drastic approximations for it characterize the present state-

of-the-art in the field [19, 87]. In particular for adsorption

or desorption processes or Eley–Rideal reaction steps that

may involve large entropy changes this will have to be

improved in future work [64, 88]. Apart from their direct

quantitative impact on the rate constant and subsequently

the microkinetic simulation result, such approximations

have generally also to be seen in the light of microscopic

reversibility. In order to be thermodynamically consistent,

rate constants of forward and (time-reversed) backward

processes like adsorption and desorption have to fulfill a

detailed balance condition. If different approximations are

made for the two processes, this condition can be broken.

Kinetic models that correspondingly do not yield the

proper thermodynamic limits should be met with great

skepticism, but are unfortunately frequently found in the

literature.

This leaves as most crucial DFT input the energy bar-

riers DEa for every inequivalent elementary process a. Al-

ready for decently sized reaction networks and considering

only a few inequivalent active site types, the explicit cal-

culation of these barriers quickly becomes the predominant

computational bottleneck of 1p microkinetic studies [19].

This in particular, as the DEa generally depend on the local

environment, i.e. lateral interactions with nearby co-ad-

sorbates modify the energy barriers. In order to capture

such effects, multiple DFT calculations of the same process

need to be performed for different local adsorbate config-

urations. In 1p-kMC simulations these are then cast into

some (short-range truncated) lattice-gas Hamiltonian

expansion [89–93], while in 1p-MF rate equation theory

this dependence is considered through an effective cover-

age-dependence DEa = DEa(h) [7, 94, 95]. In their

prevalent formulation 1p microkinetic studies thus carry an

enormous overhead. Extensive DFT calculations are

required to determine all process barriers and their envi-

ronment dependencies. This information is then stored in

look-up tables, which serve as basis for the subsequent and

computationally typically far less demanding actual 1p-

kMC or 1p-MF rate equation simulations. An obvious

disadvantage of such a static divide-and-conquer type

procedure is that potentially extensive DFT calculations are

performed for reaction intermediates or coverage regimes

that in the actual microkinetic simulations for the targeted

reaction conditions are never met.

A pragmatic solution to this is to start with quite

simple formulations for the reaction network and lateral

dependencies, possibly using lower-level theories for an

only approximate account of the lateral interactions. In a

second step one iteratively refines the model depending on

the simulation results one obtains. Due to the non-lin-

earities of the reaction network, such an approach is not

uncritical though, i.e. the initial model can be so coarse

that it leads into a completely wrong direction. A highly

appealing alternative especially for the trajectory-based

1p-kMC simulations would therefore be to only compute

the really required reaction barriers on-the-fly, i.e. in the

course of the on-going 1p-kMC simulation. Such

approaches come with names like adaptive kMC, on-the-

fly kMC, self-learning kMC or kinetic activation-relax-

ation technique [96–99]. They would indeed also be most

appealing from the perspective of a dynamical catalysis

picture, as such approaches would not necessarily be

restricted to a fixed lattice model. The essential idea of

these kind of on-the-fly kMC formulations is to compute

all energetically low-lying (and therefore dynamically

relevant) barriers out of a given system state a. In

accordance with the kMC algorithm, one of the corre-

sponding elementary processes is executed and brings the

simulation into a new system state b. This process is then
iterated, i.e. barrier calculations are performed sequen-

tially for every new state visited. Huge savings in com-

putational time can thereby be achieved when

appropriately storing the already computed barriers and

introducing some form of state recognition. If the algo-

rithm thus realizes that the new state b corresponds to an

already visited earlier state a, barriers are not recomputed,

but drawn from the existing look-up tables. Despite these

savings, the computational effort of an at least semi-reli-

able exploration of all low-lying barriers at individual

kMC steps is generally still orders of magnitude higher

than the one of the traditional divide-and-conquer look-up

formulation. Applications of on-the-fly kMC in surface

catalysis are therefore presently either restricted to very

specialized systems with only reduced configurational

complexity or they employ force fields rather than DFT

calculations for the process barriers.

The computationally expensive part of an actual barrier

calculation is in either case the location of the TS through

advanced transition state search algorithms [100, 101]. In

on-the-fly 1p-kMC, where the final states are not known,

this would be one-ended techniques like the dimer method
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[102, 103]. In the prevalent divide-and-conquer 1p

microkinetic approaches, where initial and final state of an

elementary process are known, most accurate results are

instead obtained by state-of-the-art two-ended techniques

like the (climbing image) nudged elastic band (NEB)

method or string approaches [104–106]. Regardless of

dimer, NEB or string, one TS search will involve numerous

individual DFT calculations. For the system sizes typical

for surface catalytic problems these DFT calculations may

furthermore exhibit severe convergence issues, or the

actual TS search algorithm has problems converging to the

(right) TS. The barrier determinations are therefore the by

far most critical and (human and CPU) time consuming

step in a 1p microkinetic study. Obviously, it is thus also

this step that has the highest leverage for speed-ups through

more approximate approaches. This starts already with the

use of less rigorous TS search algorithms like drag methods

or a mere calculation of energy profiles along assumed

reaction paths. However, most prominently and with

highest efficiency gains, this has been exploited by

approximate relations between the activation energies and

the thermochemistry of the reaction [107–113]. One

prominent example are the well-known Brønsted-Evans-

Polanyi (BEP) relationships [5, 7, 111–113], which yield

linear relations of the kind DEa & c1 (Ef –Ei) ? c2, where

c1, c2 are constants and (Ef - Ei) is the energy difference

of the initial and final state of the reaction. Since the latter

thermochemical energy difference only involves geometry

optimizations of (meta)stable configurations, knowledge of

such a relation yields substantial reductions in computa-

tional cost as compared to an explicit TS search. An even

further reduction in cost and the number of independent

parameters has been achieved by realizing that the binding

energetics of many reaction intermediates can be related to

the binding energetics of a few base elements out of which

these reaction intermediates are typically composed,

namely H, C, N, O, and S [113–115]. While the initial task

was thus to explicitly compute a considerable number of

energy barriers for each elementary process of the con-

sidered reaction network, exploitation of the latter scaling

relations and BEP relations may reduce this to the calcu-

lation of the binding energies of a few base elements. This

can imply such an enormous reduction in the computa-

tional cost that it allows to access quite complex reaction

networks and in particular engage in computational

screening studies [7, 113, 116–125]. This route has hitherto

been exclusively pursued within 1p-MF rate equation

approaches. As the goal of kMC-based 1p microkinetic

modeling is typically more a comprehensive and most

accurate understanding of a particular system, use of such

more approximate scaling and BEP energetics may have

seemed less obvious. However, there is no conceptual

obstacle against doing so in the future.

3.3 Surface Morphological Transitions in Near-

Ambient Catalysis

Just as with (constrained) ab initio thermodynamics, a

central outcome of 1p microkinetic modeling is the surface

structure and composition as a direct function of the sur-

rounding gas phase. As the theory is explicitly time

dependent, this can be for steady-state reaction conditions,

but equally for non-stationary situations as for example in

temperature programmed reaction (TPR) experiments. 1p-

MF rate equation theory provides this information in form

of average coverages at the considered active sites. 1p-

kMC simulations additionally provide the detailed spatial

distributions and fluctuations at the surface. Such insight is

invaluable to properly capture and analyze microstructural

effects, for instance at oxide surfaces or defects like

vacancies or steps. Of course, the 1p-kMC distributions can

also be averaged to obtain (proper) average coverages

without having to resort to the MF approximation.

In the resulting surface populations the kinetic effects

due to the on-going reaction events (that were neglected in

constrained ab initio thermodynamics) are now explicitly

considered. Also, ‘‘phase’’ transitions are better described

as ‘‘configurational entropy’’ is accounted for. In 1p-MF

rate equation theory without any coverage dependencies

this is at a level equivalent to Langmuir models [126], in

1p-kMC this is the accurate numerical evaluation on the

ensemble of active sites considered. Quite deliberately, I

have put the words ‘‘phase’’ and ‘‘configurational entropy’’

in quotes here, as these are inherently thermodynamically

defined terms, while the consideration of an open catalytic

system with on-going reaction events in 1p-kMC and 1p-

MF obviously brings us outside the realm of thermody-

namics. To reflect this, pioneering kMC work on surface

catalytic problems [127] has created the, sometimes criti-

cally mocked, word ‘‘kinetic phase diagrams’’ (then con-

taining ‘‘kinetic phase transitions’’ etc.) to denote the

equivalent compositional output as compiled in the surface

phase diagrams of (constrained) ab initio thermodynamics

as e.g. shown in Figs. 1, 2 and 3. In the following I will

stay within this type of nomenclature in exactly the spirit as

put forward by Ziff, Gulari and Barshad [127].

Figure 4 shows such a kinetic phase diagram for the CO

oxidation problem at RuO2(110) that I discussed at the

(constrained) ab initio thermodynamics level above. Directly

compared are results obtained by 1p-kMC simulations and

1p-MF rate equation theory [64, 82]. Both microkinetic

simulations have been based on exactly the same DFT input

and the same considered reaction network, such that the

differences discernible in Fig. 4 arise exclusively from the

mean-field approximation in the MF approach. Even though

the overall topology of the phase diagram is largely robust

against this approximation, the positions of the catalytically
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most relevant kinetic phase boundaries are somewhat shif-

ted. A detailed analysis shows that this goes hand in hand

with significant shortcomings of MF theory to appropriately

describe the catalytic activity and underlying reaction

mechanisms [82]. More important for the present context

are, however, the much more significant deviations in the

predicted surface structure and composition when compar-

ing both 1p microkinetic theories with the approximate

thermodynamic insight in Fig. 3. What prevails is the insight

that technologically relevant reaction conditions with pres-

sures of the order of 1 atm and near-stoichiometric reactant

ratios fall in the vicinity of a phase transition, and in par-

ticular the one in which adsorbed O and CO compete for the

so-called coordinately unsaturated (cus) sites offered by this

surface. This finding and the importance of the cus sites for

the catalytic activity of RuO2(110) are fully consistent with

all presently available experimental data [11, 13, 14]. Sub-

stantial differences between (constrained) thermodynamic

and microkinetic theory are, however, obtained for the

population of the other (br)idge active site type offered by

the RuO2(110) surface. While (constrained) ab initio ther-

modynamics predicts a predominant population with Obr

even for largely CO-rich gas-phase conditions [41, 63], both

microkinetic theories agree on an essentially complete

replacement by CObr species in this regime. This is a classic

illustration of the surface catalytic reactions consuming a

reaction intermediate, here Obr, faster than it can be

replenished by adsorption from the gas phase. Since ab initio

thermodynamics is blind to such kinetic effects, it only

assesses the very strong binding of O to these br sites and

thereby largely overestimates the presence of this species at

the surface.

This showcase example thus nicely underscores the

approximate nature of (constrained) ab initio thermody-

namics results and the added value of explicit 1p microki-

netic theories. Of course, not everything is perfect in the

latter theories either. Even in the highly CO-rich gas-phase

conditions in the upper left parts of the panels in Fig. 4 both

1p microkinetic theories predict at maximum a fully CO-

poisoned oxide surface, whereas the thermodynamic esti-

mates in Fig. 3 immediately reveal the proper complete

reduction of the oxide. This difference arises as the predic-

tive power of the 1p microkinetic approaches extends, of

course, only to the active sites and concomitant set of ele-

mentary processes considered in the model. In the studies

behind Fig. 4 this framework corresponded to the active

sites of a reduced, but otherwise intact RuO2(110) surface.

The structural complexity that would arise when considering

a full oxide reduction path would presently imply a com-

pletely intractable 1p input (vide infra), let alone that at best

only a conceptual perception of the individual mechanistic

steps involved in such a path is available to date [128, 129].

For the targeted CO oxidation activity of RuO2(110) this

limitation with respect to oxide reduction is thereby not

actually the real problem. Relevant, near stoichiometric gas-

phase conditions are located sufficiently well inside the

stability regime of the bulk oxide, cf. Figures 3 and 4.

However, a long-term deactivation of this RuO2(110) facet

has been experimentally reported even for oxidizing feeds,

which was assigned to a microfaceting into an inactive

c(2x2)-RuO2(100) structure [130]. Again, such a reaction-

induced complex surface morphological transition—which

is a prototypical example for exactly the dynamical view of

an evolving catalyst we would like to scrutinize—is pre-

sently largely outside the reach of predictive-quality

microkinetic modeling capabilities.

Fortunately, the situation is a bit more accessible for the

Pd(100) example discussed before. Due to the reduced

stability of bulk PdO, here ‘‘only’’ the (possibly continuous)

formation and reduction of a thin surface oxide film while

on stream is to be assessed. A first step in this direction has

been taken by simply performing 1p-kMC simulations once

on the pristine metal, i.e. for a lattice model and set of

elementary reactions pertinent to Pd(100), and once on the

perfectly intact surface oxide, i.e. for a lattice model and set

of elementary reactions pertinent to the (H5 9 H5)R27 Æ

surface oxide [92]. Evaluating the average surface compo-

sition for a wide range of gas-phase conditions one can

assess the boundaries within which one would still trust

either of the two models. Detailed experimental work

indicates the onset of surface oxide formation once a critical

O coverage around and above 0.5 ML on Pd(100) is

exceeded [50]. This suggests the 1p-kMC Pd(100) model as

a faithful representation for gas-phase conditions where the

O coverage stays well below this value. Equivalently, one

would expect the onset of surface oxide decomposition

whenever a critical coverage of surface oxygen vacancies,

say 10 %, is exceeded [48]. For gas-phase conditions where

this coverage is much lower, the intact 1p-kMC surface

oxide model should be a good representation. Intriguingly,

the results of the corresponding 1p-kMC simulations shown

in Fig. 5 identify a finite range of (T,pCO,pO2)-conditions

where both stability criteria are fulfilled [92]. In this range

the Pd(100) 1p-kMC model predicts an O coverage below

0.25 ML, while simultaneously the (H5 9 H5)R27 Æ sur-

face oxide 1p-kMC model predicts a surface oxygen

vacancy concentration well below 10 %. The corresponding

bistability region is thereby quite robust against uncertain-

ties in the DFT energetics or the treatment of lateral inter-

actions. Moreover, its location in (T,pO2)-space in fact

comprises precisely the near-ambient reaction conditions

for which reactor STM studies had reported an oscillatory

formation and decomposition of an oxidic film at the sur-

face of the working catalyst [60, 65, 66].

In particular at elevated temperatures, 600 K in Fig. 5,

the bistability region centers on technologically most

Ab Initio Thermodynamics and First-Principles Microkinetics for Surface Catalysis 555

123



relevant near-stoichiometric partial pressure ratios. These

findings thus fully support a dynamic view of catalysis at

least in the sense that a surface morphological transition,

here the formation of a thin surface oxide layer, may

indeed occur in the reactive environment. The simulations,

performed separately on the two intact surface states, can,

however, not address whether the very dynamics of the

transition itself is a key factor. In other words, whether it is

only the continuous formation and decomposition of the

oxidic film in the experimentally reported oscillations that

creates the real active sites, e.g. in form of transient

structures or at domain boundaries on the evolving surface.

For this the 1p-kMC simulations would have to be able to

represent both surface states and transitions between them.

For this very system a step in this direction has in fact

recently been taken through a novel multi-lattice kMC

approach, which exploits the lattice commensurability of

the (H5 9 H5)R27 Æ surface oxide with the Pd(100) sur-

face [131]. The latter allows to establish a superlattice

model that simultaneously comprises both metal and sur-

face oxide sites, with the multi-lattice kMC algorithm

keeping track of which surface areas are either in the oxide

or the pristine metal state by appropriately activating or

deactivating elementary processes at the corresponding

sites. At present this approach has only been applied to the

reduction of the surface oxide in a CO atmosphere [131].

Intriguingly, CO oxidation reaction steps across metal-

oxide domain boundaries turned indeed out to be essential

to reproduce the experimentally reported temperature

dependence of the reduction rate [132].

Whether the same or other processes related to the

dynamics of an evolving surface are also crucial for steady-

state CO oxidation catalysis remains yet to be seen. The

price to pay for such insight through multi-lattice kMC

simulations is to establish a detailed atomistic pathway for

the transition between the treated system states, here the

pristine metal and the surface oxide. The exploitation of the

lattice commensurability renders this endeavor tractable. It

nevertheless constitutes a computationally most expensive

step involving a multitude of 1p calculations [131]. While

this obviously restricts the dynamical phenomena in

catalysis that can presently be tackled, an important aspect

to keep in mind is the following. Regardless of whether

traditional single- or multi-lattice 1p-kMC, already the

lattice models and concomitant elementary process lists

that can be handled today allow to treat quite complex

reaction networks that comprise many different reaction

mechanisms. Which of these reaction mechanisms domi-

nates the catalysis is then an output of the simulations, not

an input. This is a crucial asset that distinguishes such 1p

microkinetic simulations from prevalent kinetic studies

where a certain reaction mechanism is simply assumed,

often based on restricted or only indirect evidence e.g. on

experimentally observed reaction intermediates.

3.4 Catalytic Activity from First Principles

Another important asset of 1p microkinetic simulations is,

of course, that they do not only provide information about

the surface structure and composition, but also determine

the catalytic activity and if applicable the selectivity. Just

as much as for the surface (kinetic) phase diagrams this

information can be computed in steady state for a range of

gas-phase conditions and then be compiled in corre-

sponding, so-called TOF maps. Alternatively, if transient

situations are addressed, it can for example be computed

for various initial system states. Figure 6 shows examples

for such data drawing on the previously discussed example

Fig. 4 Kinetic surface phase diagrams for the RuO2(110) surface in

an environment consisting of O2 and CO at 600 K. Compared are

results from 1p-kMC simulations (left panel) with results from 1p-MF

rate equation theory (right panel). The labels of the different

stable phases reflect a predominant population (O, CO or empty ‘‘–

’’) of the two prominent adsorption sites offered by this surface,

br(idge) and coordinatively unsaturated (cus) site. Coexistence

regions at the phase boundaries are marked in white. Labels and

shown ranges of partial pressures (gas-phase chemical potentials) are

identical to those in Fig. 3. From Refs. [64, 82]
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of CO oxidation at RuO2(110) [133, 134]. In both shown

examples the absolute pressures addressed are in the UHV

regime, which makes it possible to directly compare to

corresponding data from Surface Science experiments

(vide infra). In both cases excellent agreement is reached,

which in particular for the transient TPR data is only

obtained through the appropriate consideration of the spa-

tial distributions at the catalyst surface. As shown in Fig. 6

qualitatively different variations with initially prepared

Ocus coverage would be expected for two competing

reaction mechanisms, Obr ? COcus (*linear variation) and

Ocus ? COcus (*parabolic variation). The latter mecha-

nism is known to be the more reactive one due to the much

weaker binding of the Ocus species. The at first glance

enigmatic strong suppression of this mechanism seen in

Fig. 6 is instead a direct result of diffusion limitations in

the trench-like arrangement of the cus sites under the

specific experimental TPR conditions. Such an effect can

only be captured by 1p-kMC simulations, which only then

are able to reconcile the known higher reactivity of the

Ocus ? COcus mechanism with the linear profile measured

in the TPR experiments [135]. Both for this example and in

general, the capability to explicitly resolve the contribu-

tions of individual reaction mechanisms to the overall (and

observable) catalytic activity is thus a most important

aspect for the mechanistic understanding. Obtaining wrong

relative contributions correspondingly bears the risk of

deducing wrong conclusions (and ‘‘ideas’’). Similar to the

TPR case, a wrong ordering of the contribution from dif-

ferent reaction mechanisms in 1p-MF rate equation theory

Fig. 5 Bistability region in CO oxidation catalysis, i.e. gas-phase

conditions where 1p-kMC models simultaneously predict the stability

of pristine Pd(100) and the (H5 9 H5)R27� surface oxide. At 600 K

this bistability region comprises technologically relevant (near-)

ambient, stoichiometric gas-phase conditions. At 400 K this region is

shifted to more O-rich conditions as employed in the reactor STM

experiments by Hendriksen et al. [60, 65, 66]. From Ref. [92]

Fig. 6 Comparison of measured and 1p-kMC computed steady-state

and transient catalytic activity for CO oxidation at RuO2(110). (Left)

Steady-state turnover frequencies (TOFs) at 350 K. (Right) Total CO2

yield obtained in TPR spectroscopy for surfaces initially prepared

with varying Ocus and COcus coverage. The CO2 yield is given relative

to the one obtained for the surface with zero Ocus coverage. Shown are

the total simulated CO2 yield and the contributions from the two

dominant reaction mechanisms under these conditions, Ocus ? COcus

and Obr ? COcus. From Refs. [133, 134]
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has also been reported for steady-state reaction conditions

[82], which thus adds to the list of shortfalls of this theory

if the MF approximation is unjustified.

Despite reports of a number of similarly successful 1p

microkinetic studies [118], one has to recognize that

reaching a quantitative agreement in absolute TOFs cannot

generally be expected. This holds already because of the

typically large uncertainties in experimental absolute

TOFs. The uncertainties on the theoretical side are not any

smaller, primarily due to the aforementioned uncertainties

in the approximate DFT energetics. At the temperatures of

interest in catalysis, the quoted *0.3 eV (*30 kJ/mol)

uncertainty in DFT barrier values translates into 1p rate

constants that can be wrong by several orders of magni-

tude. For more approximate BEP or scaling-derived bar-

riers, this will be even worse. At first glance such a large

uncertainty seems to invalidate any attempt to compute

meaningful TOFs, or it lends support to the pragmatic

approach to empirically ‘‘correct’’ 1p microkinetic simu-

lations such that they match certain experimental findings

[135]. A more constructive approach that does not sacrifice

the invaluable independence of a first-principles theory is

instead to systematically analyze which errors in the 1p

energetic data base can really contribute to what degree to

errors in the predicted activity (or other properties of

interest). A central concept in this respect are so-called

sensitivity analyses, which loosely speaking are nothing

but a systematic variation of the input energetic parameters

to assess the influence this has on the outcomes of the

microkinetic model (surface composition, activity, selec-

tivity, relative contributions of reaction mechanism etc.)

[136–142].

Formulated as linear response theories, approaches like

the degree of rate control [137, 141] thereby vary indi-

vidual rate constants (barriers), while keeping everything

else fixed. The insight such analysis provides is which of

the elementary processes are rate-controlling (rate-deter-

mining) and which ones are not. There are several things

one can learn from this. An immediate insight is the cor-

responding mechanistic understanding about the reaction

network per se. This is often much more robust with

respect to the DFT uncertainties and in itself typically

much more relevant than being able to quantitatively

determine an absolute TOF. Among others knowledge of

the rate-determining steps is the gateway to simplified

descriptions of the reaction network and therewith to

computational screening, as much as it identifies those

kinetic bottlenecks that need to be addressed in a rational

design of improved catalysts. With respect to the DFT

uncertainty, rate constants of non rate-determining pro-

cesses can typically be varied by several orders of mag-

nitude without having any effect on the simulation result.

We correspondingly learn that DFT errors in such rate

constants are irrelevant. On the contrary, any error con-

tained in the description of rate-determining steps will

directly propagate through and these are then the errors one

should worry about.

In some cases knowing which energetic input quantities

are the crucial ones already allows to rationalize agreement

or disagreement with experimental data. For the steady-

state catalytic activity shown in Fig. 6 a degree of rate

control analysis e.g. reveals that under the probed gas-

phase conditions it is primarily the dissociative adsorption

of O2 into a cus site pair that is rate determining [141]. The

good agreement with experiment then comes about as this

is a non-activated process. Rather than by the possibly

inaccurate DFT rate constant, the TOF is in this case

controlled by the limited availability of free site pairs for

O2 adsorption which is determined on the statistical

mechanical level. In the general case, sensitivity analyses

identify those microscopic input quantities on which

attention should be focused, say a particular binding energy

or a particular reaction barrier. Benchmark against higher-

level (wavefunction or advanced functional based) theory

or experiment can then in principle provide an assessment

how much the particular DFT quantity is actually in error,

and through the sensitivity analysis how much this propa-

gates through to the absolute TOF. The latter step is

important as it tells, if a deviation between simulated and

experimental TOFs is really (exclusively) due to an inac-

curacy in the underlying 1p energetics. As I will illustrate

further below, there can be multiple other reasons for such

deviations. This alone is an important argument against

simply empirically ‘‘correcting’’ the microkinetic simula-

tions by fitting selected 1p energetic values to match

experimental activities or other meso-/macroscopic

observables. Such a fudging can easily mask the true rea-

sons for the deviation between 1p theory and experiment.

Also replacing the 1p energetic quantity with a corre-

sponding experimental microscopic benchmark quantity is

a dangerous endeavor. Even if experimental quantities

carry microscopic names like ‘‘adsorption energy’’ or

‘‘reaction barrier’’ they are typically the result of some

approximate data analysis scheme, for which the multitude

of TPR analyses represents a prominent example [143].

Rather than clean data, such numbers are thus effective

quantities that contain an unspecified systematic error that

is not covered by the quoted statistical error bars. Even in

case of allegedly direct energetic measurements like

microcalorimetry, firmly believed reference numbers do

change with time and it remains an ongoing challenge to

fully establish a safe experimental database for adsorption

energetics [144].

A further argument against selectively replacing indi-

vidual DFT energetic parameters with empirical numbers

are the systematic trends often exhibited by DFT errors,
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with the widespread PBE functional [145] for instance

suspected to show a systematic overbinding at metal sur-

faces [146]. Replacing individual energetic quantities

breaks such trends and thereby a potential compensation of

the systematic errors. Such correlations in the underlying

energetic data base could also not be captured by the above

described linear-response type sensitivity analyses. In this

respect, the concept behind the recently introduced Baye-

sian error estimation functionals (BEEF) represents an

intriguing step forward [147–149]. The idea here is to

generate an entire ensemble of functionals where known

errors in adsorption energetics are mapped onto uncer-

tainties of the parameters entering the electronic xc model.

Rather than once, a 1p microkinetic simulation is then run

multiple times, each time with different energetic data sets

obtained from an appropriate sampling of this ensemble of

functionals. The spread of the results obtained provides a

quantitative error estimate and first applications of this

BEEF concept indeed indicate that correlations in the DFT

errors significantly reduce the predicted error on calculated

TOFs [150].

In fact, an even larger reduction of errors was reported

when comparing TOFs calculated for different metal cat-

alysts [150]. This is important as corresponding relative

activity comparisons, also of the same catalyst for different

reaction conditions, are in any case much more relevant

than the computation of an individual absolute TOF for one

set of reaction conditions. The increased robustness of such

trends could furthermore also rationalize the success of

emerging computational screening studies which rest

entirely on a comparison of relative activities varying over

many orders of magnitude [7, 113, 116–125]. The critical

aspect here is therefore likely less the 1p energetic data

base, but the rather drastic assumptions on the microkinetic

level that are presently made to make such studies tract-

able. Even though comparing an entire series from early to

late transition metals identical reaction mechanisms are for

instance simply imposed (and not evaluated as in 1p-kMC

simulations). As discussed at the beginning of this section,

these reaction mechanisms furthermore typically only

consider a few active sites as offered by a static, bulk-

truncated surface. Even though the typically obtained,

volcano-shaped activity variations over a transition metal

series often exhibit their peaks close to metals that are

known to be good catalysts for the studied reaction, it is

presently not clear if this should really be seen as a vali-

dation of the imposed mechanism. As such it is an open

question whether the success of the seminal screening

studies has any bearing on the issue of a static versus a

dynamically evolving catalyst surface. The true answer will

eventually only come from future 1p microkinetic

(screening) studies in which the possibility of surface

morphological transitions is explicitly contained in the

employed model.

3.5 Mass Transfer Limitations Under Near-

Ambient Conditions

Regardless of the already discussed uncertainties in 1p

calculated TOFs, there is yet another complication when

comparing them to experiment that particularly applies to

the in situ context, i.e. to the quest to specifically address

catalytic activities at technologically relevant near-ambient

conditions. For corresponding pressures the actual flow of

mass and heat through the employed reactor becomes a

significant factor. In fact, especially the dedicated experi-

mental setups employed in in situ studies of model cata-

lysts are likely to exhibit most complex such flow profiles,

as sophisticated spectroscopic probes and pumps often

need necessarily to be placed in the direct vicinity of the

catalyst surface [8, 9]. For the intrinsically targeted reac-

tion conditions with highest turnovers of reactants into

products this can give rise to heat and mass transfer limi-

tations, i.e. significant temperature and (partial) pressure

gradients inside the reactor [16–18, 151]. The local gas-

phase composition (and therewith reaction conditions)

directly at the catalyst surface may then deviate signifi-

cantly from the nominal reaction conditions controlled at

the inlet of the reactor. Existence of such mass transfer

limitations generally prevents any meaningful measure-

ments of the catalytic activity via the standard composi-

tional analysis at a reactor outlet or orifices placed at the

reactor walls. They also prevent any straightforward

comparison to 1p microkinetic simulations, unless the latter

are suitably integrated into a computational framework that

appropriately accounts for the concentration and flow

profiles in the reactor.

Such an integration into corresponding computational

fluid dynamics (CFD) simulations has a longer history for

MF rate equation theory [152], but could only recently be

achieved for kMC based microkinetic simulations [16–18].

Placed into the context of 1p microkinetic simulations,

resulting 1p-MF–CFD or 1p-kMC–CFD multiscale mod-

eling frameworks are in their absolute infancy. For the

theme of a potentially dynamically evolving catalyst sur-

face they nevertheless bear exciting prospects. Up to now

this discussion centered only on the possibility of surface

morphological transitions at the working catalyst, with in

particular the CO oxidation at Pd(100) example pointing at

an intrinsic heterogeneity of the surface. This does not

answer the central question as to the nature of the active

sites. Is one of the coexisting phases much more active than

the other, or are active sites maybe only created at the

(evolving) phase boundaries? Corresponding answers
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could be provided by a dedicated analysis of in situ activity

data, appropriately accounting for potential flow limitations

in the experiment. For the CO oxidation at Pd(100) system

a first such analysis of laser-induced fluorescence (LIF)

data has in fact already heralded the intriguing contribu-

tions this can make [153].

Figure 7 shows the LIF-measured CO2 concentration

directly above the catalyst surface, which is a non-invasive

local measure of the product formation and therewith of the

catalytic activity [153]. Also shown are the corresponding

signals as predicted by 1p-kMC–CFD simulations either

employing the 1p-kMC lattice model for the pristine

Pd(100) surface or the 1p-kMC lattice model for the sur-

face oxide. For the measured range of reaction conditions,

namely a temperature ramp at constant pressure and

slightly O-rich stoichiometry, only the prior model yields a

signature compatible with the experimental data. This

suggests the predominant catalytic activity to be due to

active sites still being in a metallic surface termination. On

the other hand, there is a notable shift of the theoretical

signature by *100 K to lower temperatures. A sensitivity

analysis points at the CO oxidation reaction barrier as rate-

determining step, and rerunning the simulations on an

energetic data base obtained with the less binding RPBE

functional [146] indeed brings the theoretical signature into

much closer agreement with experiment, cf. Figure 7. In an

empirically ‘‘correcting’’ approach one could now attribute

the remaining difference to a still deficient RPBE ener-

getics and simply fit the CO oxidation barrier so as to

perfectly match the theoretical and experimental LIF

profile.

Alternatively, we could recall that the probed reaction

conditions fall into the bistability regime discussed above,

and both metal and surface oxide phase could potentially

coexist at the surface [92]. Indeed, at the RPBE level and

disregarding any special catalytic activity of sites at

domain boundaries a quantitative agreement with the

experimental signature can also be reached when assuming

that the predominantly active pristine metal domains cover

only a fraction of *25 % of the total surface area [153].

On a methodological level this is a perfect illustration that

disagreement of a first-principles theory with experiment

can have multiple, quite distinct sources. A naı̈ve fudging

of just the 1p energetics to reach agreement in macroscopic

observables like catalytic activity is thus ill-advised.

Instead, further experiments and/or calculations are

required to single out the true source for the disagreement.

In the present example, the suggested surface heterogeneity

could be scrutinized by combining the LIF activity mea-

surements with an in situ surface characterization tech-

nique. If the rationalization in terms of a phase mixture

prevails, this could potentially resolve quite some contro-

versies in the emerging field of in situ model catalyst

studies. With a prevailing focus on spectro-/microscopic

measurements, phases that are predominantly characterized

at the working surface have there often tacitly been

assumed to also be the ones actuating the catalysis. From a

modeling perspective, the truly exciting validation would

instead come when multi-lattice or off-lattice kMC simu-

lations are able to explicitly treat an evolving surface

heterogeneity. This is the great challenge for the future, and

it will for sure create many interesting ‘‘ideas’’ in the

context of a reaction-induced dynamical picture of surface

catalysis.

4 Conclusions and Outlook

Over the last 10–15 years (constrained) ab initio thermo-

dynamics and first-principles microkinetics have become

well-established tools in surface catalysis research. (Con-

strained) ab initio thermodynamics is in fact a routine

approach that has spread even well out of academia. It

provides first, approximate insight into the structure and

composition of the catalyst surface at finite, technologi-

cally-relevant gas-phase compositions. Near-term

advancement of this technique will most likely center on

coupling this thermodynamic framework with global

geometry optimization algorithms and thereby overcome

the prevalent restricted sampling of configuration space in

form of small sets of structural candidates hand-selected by

the researcher.

More refined insight into the structure and composition,

as well as intrinsic TOFs can be obtained from

Fig. 7 Measured CO2 LIF signal over the active catalyst surface for a

temperature ramp from 500 to 650 K and black (as indicated by the

arrows). Feed gas conditions are otherwise: 4:1 O2/CO ratio, total

pressure 180 mbar; 50 % Ar; inlet mass flow 72 mln/min. Addition-

ally shown is the corresponding calculated CO2 concentration

variation as predicted for the (H5 9 H5)R27�-O surface oxide (blue

lines) and for the pristine metal state of Pd(100) (red lines). To assess

the uncertainties arising from the approximate DFT energetics, data

obtained with the PBE [145] (solid lines) and RPBE [146] (dashed

lines) xc functional are shown. From Ref. [153]
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computationally more involved 1p microkinetic approa-

ches. The power of these techniques and the step-out

changes connected with their advent are presently already

impressively heralded by trend studies, where rough

activity estimates are used for a computational screening of

catalyst materials. Such studies are currently based on

simplified mean-field kinetic models that assume reaction

mechanisms and rate-determining steps, and they employ

approximate scaling relations to reduce the required first-

principles energetic input. At this level of theory obtaining

a detailed mechanistic understanding and quantitative

TOFs of an individual system is neither intended, nor

achievable. In fact, already the uncertainty in presently

available DFT energetics for extended surface systems will

generally prevent reaching quantitative absolute TOFs in

the foreseeable future. However, considering that reaching

such numbers is similarly elusive in experimental studies

this is also not really a goal to worry about. Important is

instead to systematically validate, e.g. through sensitivity

analysis, that the relevant (mechanistic and activity) con-

clusions drawn are robust with respect to these and other

methodological uncertainties.

Due to the continuously increasing computer power

alone we will certainly see a rapid spreading of 1p

microkinetic modeling in the next years, eventually also

into industry. Obvious advancements are the extension to

more complex reaction networks with ever diminishing

assumptions on reaction paths and intermediates, the move

from presently studied individual facets to entire (sup-

ported) nanoparticles, and a gradual shift from prevalent

mean-field kinetics to spatially resolved kinetic Monte

Carlo simulations. The central challenge to all of this is

that all of the here discussed methodology relies inherently

on a rather rigid picture of the catalyst substrate,

exploiting a certain level of crystalline order and static

active site structures. Addressing the highly dynamic

picture of heterogeneous catalysis increasingly suggested

by in situ studies—with reaction-induced complex (sur-

face) morphological changes and an evolving, possibly

liquid-like phase behavior—is largely impossible with

currently available methodology. Great care has to be

taken that this incapability to describe such scenarios with

present models does not generate the ‘‘idea’’ to readily

dismiss them. Instead, it should be a source of motivation

to further push the field and tackle the methodological

frontiers.
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