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Abstract A series of amino-functional imidazolium ionic

liquids have been prepared and used as catalysts for cyclo-

addition of CO2 with epoxide. The reactions generated the

cyclic carbonate even at room temperature under atmo-

spheric pressure. Under the optimal reaction conditions, the

propylene carbonate was yield to 98.0 % in the presence of

[APbim]I, and the ionic liquids could be reused at least nine

times without noticeable decrease in activity and selectivity.

Besides, the reaction mechanism was proposed.

Keywords Amino-functional imidazolium ionic liquids �
Carbon dioxide � Epoxide � Cyclic carbonate

1 Introduction

Carbon dioxide is the largest contributor to the greenhouse

effect. In order to prevent the risky reinforcement of the

greenhouse effect, it is extremely important to reduce carbon

dioxide emissions. At the same time, carbon dioxide is an

easily available, non-toxic, inexpensive C1 resource [1–5],

which can be used to produce valuable compounds such as

organic carbonates, urea derivatives, oxazolidinones and

formic acid. Under these circumstances, CO2 activation and

subsequent conversion is the key to the use of carbon dioxide

as a building block. One of the most promising ways for

effective utilization of CO2 is the synthesis of five-mem-

bered cyclic carbonates via coupling carbon dioxide and

epoxides (Scheme 1). Cyclic carbonates are valuable

industrial raw materials, which are useful as aprotic polar

solvents, electrolytes in lithium secondary batteries, inter-

mediates for the pharmaceutical and fine chemical indus-

tries, and precursors for synthesizing polycarbonate

materials [6–8].

In recent years, a large number of catalysts have been

employed for the insertion of carbon dioxide into epoxides

to form cyclic carbonates. Such examples vary from alkali

metal salts [9, 10], metal oxides [11], molecular sieves

[12], transition metal complexes [13–20], N-heterocyclic

carbene [21], metal–organic frameworks [22–26], quater-

nary ammonium and phosphonium salts [27–31], gold

nanoparticles [32], cross-linked polymeric nanoparticles

[33] to ionic liquids [34–42]. Among the catalysts men-

tioned above, ionic liquid is one of the most important

catalysts for the cycloaddition of CO2 with epoxides [43–

46]. In recent years, the functionalized ionic liquids have

been received attention and show much better catalytic

efficiency than traditional ionic liquids toward the synthe-

sis of cyclic carbonates with no use of a cocatalyst and
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organic solvent [47]. Sun et al. [48] found hydroxyl-func-

tional ionic liquids showed highly catalytic activity in the

coupling reaction of carbon dioxide and epoxides, and OH

groups ionic liquid was crucial for the reaction to proceed

smoothly due to its cooperation function of ring-opening of

epoxide. However, a sharp decline in the yield was

observed when the temperature dropped to 110 �C. Park

and coworkers [49] developed Brønsted acidic ionic liquids

as a catalyst for the cycloaddition of CO2 to epoxides and

they found the low yield of propylene carbonate was

obtained when the reaction temperature was below 90 �C.

Although great strides have been made in synthesis of

cyclic carbonates from CO2 and epoxides, the development

of efficient, stable, and economical ionic liquid-based

catalytic systems that facilitate the production of cyclic

carbonates under mild conditions is highly desired.

Organic amine molecules have recently been shown to

catalyze the direct reaction between CO2 and epoxides to

form cyclic carbonates [50–52]. One major advantage of

this type of catalyst system is that it would not introduce

metal contaminant(s) to products and the environment [53–

55]. Recently, Tsang and coworkers [56] investigated the

role of amine in cycloaddition of carbon dioxide and

epoxides and suggested a mechanism of coupling reaction

of carbon dioxide and epoxides in the presence of organic

amine catalyst. In context, we conceived that the amine-

functional imidazolium ionic liquids have a great potential

to accelerate the reaction in forward direction, due to its

ability for activating and fixing carbon dioxide [57, 58]. In

contrast to other imidazolium ionic liquids, amino-func-

tional imidazolium ionic liquids could separate and fix the

CO2 by way of ammonium carbamate formation [59]. Until

now, a numerous of amino-functional imidazolium ionic

liquids were synthesized and used for carbon dioxide cap-

ture [60, 61]. However, to the best of our knowledge, no

literature reported amino-functional imidazolium ionic

liquid was used as catalyst for conversion of carbon dioxide

to cyclic carbonate [55]. In the present work, a series of

amino-functional imidazolium ionic liquids were synthe-

sized, characterized and employed as a catalyst for coupling

reaction of epoxide and CO2 to form five-membered cyclic

carbonate without using transition metal additives and co-

solvent. The reactions generated the corresponding products

even at room temperature under atmospheric pressure.

Under the optimized reaction conditions, amino-functional

imidazolium ionic liquids showed significant activity

providing excellent yield of desired product with appre-

ciable recyclability for nine consecutive recycles and a

possible mechanism was proposed.

2 Experimental

All the chemicals were commercially available and were

used without further purification. NMR spectra were

recorded on a Bruker 400 MHz NMR spectrometer and the

FT-IR spectra were measured on a PerkinElmer spectrum

100 spectrometer. The products were analyzed by a HP

6890/5973 GC–MS, NMR and a gas chromatography (GC,

Agilent 6820) equipped with a flame-ionized detector

(FID).

2.1 Preparation of Amino-Functional Imidazolium

Ionic Liquids

2.1.1 Synthesis of 1-(3-Aminopropyl)-3-methylimidazolium

Chloride

The imidazolium ionic liquids used in this article were

synthesized according to previous methods [57], N-meth-

ylimidazole (8.21 g, 100 mmol) and 3-chloropropylamine

hydrochloride (13.0 g, 100 mmol) were added to 50 ml

ethanol under stirring. The resulting solution was refluxed

for 24 h. After removal of ethanol in vacuum, the residue

was dissolved in water. Then the pH value of the solution

was adjusted to *8 by the addition of potassium hydrox-

ide. The obtained solution was concentrated under vacuum

and then extracted with ethanol-tetrahydrofuran. The

combined extracts were concentrated to get the product

1-(3-aminopropyl)-3-methylimidazolium chloride ([AP-

mim]Cl) as a pale yellow viscous liquid (Fig. 1).

2.1.2 Synthesis of 1-Propylamine-3-methylimidazolium

Bromine

1-(3-Aminopropyl)-3-methylimidazolium bromine ([AP-

mim]Br) was given by ion exchange through ([APmim]Cl)

with potassium bromide. The mixture was performed in

ethanol for 48 h at room temperature and then filtered to

remove the chloride salt. The resulting solution was con-

centrated to remove ethanol in vacuum. The obtained

solution was re-dissolved in ethanol-tetrahydrofuran and

filtered to remove the inorganic salt. At last the filtrates

were concentrated to give the product 1-(3-aminopropyl)-

3-methylimidazolium bromine ([APmim]Br) (Fig. 1).

Different amino-functional imidazolium ionic liquids,

such as 1-(3-aminopropyl)-3-methylimidazolium iodide

([APmim]I), 1-(3-aminopropyl)-3-ethylimidazolium chlo-

ride ([APeim]Cl), 1-(3-aminopropyl)-3-butylimidazolium

O CO2+ OO

O
Catalyst

1a
2a

Scheme 1 Synthesis of cyclic carbonates from CO2 and epoxides
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chloride ([APbim]Cl) and 1-(3-aminopropyl)-3-butylimi-

dazolium iodide ([APbim]I), were prepared by the similar

way Fig. 1.

All the amino-functional imidazolium ionic liquids were

determined by 1H NMR and FT-IR, and the data was

provided as follows:

[APmim]Cl: 1H NMR (400 MHz, D2O): d (ppm) 7.44

(s, 1H), 7.41 (s, 1H), 4.17 (t, 2H), 3.79 (s, 3H), 2.67 (t, 2H),

1.97 (m, 2H); FT-IR (KBr): 3422, 3151, 3097, 2959, 1625,

1573, 1462, 1339, 1170, 1022, 839, 756, 650, 622 cm-1.

[APmim]Br: 1H NMR (400 MHz, D2O): d (ppm) 7.41

(s, 1H), 7.35 (s, 1H), 4.18 (t, 2H), 3.80 (s, 3H), 2.68 (t, 2H),

2.00 (m, 2H); FT-IR (KBr): 3427, 3153, 3095, 2951, 2857,

1639, 1569, 1462, 1383, 1334, 1169, 1111, 1020, 837, 754,

650, 620 cm-1.

[APmim]I: 1H NMR (400 MHz, D2O): d (ppm) 7.42 (s,

1H), 7.37 (s, 1H), 4.19 (t, 2H), 3.81 (s, 3H), 2.68 (t, 2H),

2.02 (m, 2H); FT-IR (KBr): 3430, 3146, 3091, 2945, 2871,

1625, 1571, 1458, 1386, 1338, 1167, 1109, 1073, 1020,

831, 754, 650, 619 cm-1.

[APeim]Cl: 1H NMR (400 MHz, D2O): d (ppm) 7.43 (s,

2H), 4.20 (t, 2H), 4.11 (t, 2H), 2.69 (t, 2H), 2.01 (m, 2H),

1.41 (t, 3H); FT-IR (KBr): 3426, 3145, 3090, 2948, 2868,

1639, 1565, 1462, 1384, 1339, 1165, 1110, 1079, 1030,

842, 762, 647 cm-1.

[APbim]Cl: 1H NMR (400 MHz, D2O): d (ppm) 7.41 (s,

2H), 4.17 (t, 2H), 4.08 (t, 2H), 2.55 (t, 2H), 1.92 (m, 2H), 1.75

(m, 3H), 1.22 (m, 2H), 0.82 (m, 3H); FT-IR (KBr): 3420,

3142, 3091, 2959, 2874, 1645, 1562, 1462, 1382, 1330, 1165,

1110, 1059, 1030, 839, 753, 664, 644, 622 cm-1.

[APbim]I: 1H NMR (400 MHz, D2O): d (ppm) 7.45 (s,

2H), 4.19 (t, 2H), 4.13 (t, 2H), 2.66 (t, 2H), 1.99 (m, 2H),

1.78 (m, 3H), 1.25 (m, 2H), 0.84 (m, 3H); FT-IR (KBr):

3445, 3137, 3084, 2957, 2872, 1637, 1564, 1461, 1385,

1332, 1163, 1110, 1077, 1024, 825, 752, 664, 636 cm-1.

2.2 Coupling Propylene Oxide and CO2 to Form

Propylene Carbonate

The coupling reaction was carried out in a 50 ml stainless

steel autoclave equipped with a magnetic stirrer. For each

typical reaction process: imidazolium ionic liquid

(0.71 mmol) and propylene oxide 1a (5.0 ml, 71.5 mmol)

were charged into the reactor vessel without using any co-

solvent and co-catalyst. The reactor vessel was placed under

a constant pressure of carbon dioxide and then heated to

120 �C for 1.5 h. Then the reactor was cooled to ambient

temperature, and the resulting mixture was transferred to a

50 ml round bottom flask. By distillation under vacuum, the

product propylene carbonate 2a was then obtained as a col-

orless liquid. The cyclic carbonates were identified on GC–

MS (HP6890/5973) and NMR. The catalyst was separated

from the resulting mixture by distillation under vacuum and

reused directly without further treatment.

The NMR characterizations of cyclic carbonates were

shown as follows:

4-Methyl-1,3-dioxolan-2-one: 1H NMR (400 MHZ,

CDCl3): d (ppm) 4.84 (m, 1H), 4.54 (dd, 1H), 4.01 (dd,

1H), 1.47 (d, 3H); 13C NMR (100 MHz, D2O): d (ppm)

155.05, 73.54, 70.66, 19.42;

4-(Chloromethyl)-1,3-dioxolan-2-one: 1H NMR (400

MHZ, CDCl3) d (ppm) 4.97 (mm, 1H), 4.58 (t, 1H), 4.40

(dd, 1H), 3.75 (mm, 2H);13C NMR (100 MHz, D2O): d
(ppm) 154.19, 74.30, 66.99, 43.69;

4-(Phenoxymethyl)-1,3-dioxolan-2-one: 1H NMR (400

MHZ, CDCl3) d (ppm) 7.31 (m, 2H), 7.02 (t, 1H), 6.91 (dd,

2H), 5.03 (mm, 1H), 4.62 (t, 1H), 4.54 (dd, 1H), 4.24 (dd,

1H), 4.15 (dd, 1H);13C NMR (100 MHz, D2O): d (ppm)

157.76, 154.60, 129.71, 122.03, 114.63, 74.07, 66.90, 66.26;

4-Phenyl-1,3-dioxolan-2-one: 1H NMR (400 MHZ,

CDCl3) d (ppm) 7.46 (d, 3H), 7.38 (m, 2H), 5.69 (t, 1H), 4.82

(t, 1H), 4.36 (dd, 1H); 13C NMR (100 MHz, D2O): d (ppm)

154.83, 135.84, 129.74, 129.25, 125.88, 78.00, 71.17;

Cis-hexahydrobenzo [1, 3] dioxol-2-one: 1H NMR (400

MHZ, CDCl3) d (ppm) 4.69 (m, 2H), 1.91 (m, 4H), 1.64

(m, 2H), 1.42 (m, 2H),13C NMR (100 MHz, D2O): d (ppm)

155.39, 75.78, 26.63, 19.03.

3 Results and Discussions

3.1 Catalytic Performance of Different Catalysts

Propylene carbonate synthesis from CO2 and propylene

oxide was carried out in the presence of a series of amino-

functional imidazolium ionic liquids under identical

NN NH2
Cl

NN NH2
I

NN NH2
Br

NN NH2
Cl

NN NH2
Cl

NN NH2
I

[APmim]Cl [APmim]Br [APmim]I

[APeim]Cl [APbim]Cl [APbim]I

Fig. 1 Amino-functional

imidazolium ionic liquid

Amino-Functional Imidazolium Ionic Liquids 1315

123



reaction conditions (catalyst loading 1 mol%, CO2 pressure

1.5 MPa, temperature 120 �C, time 1.5 h) and the results

were listed in Table 1. As shown in Table 1, both the

cation and anion of the imidazolium ionic liquids have

strong impact on the catalytic activities (Table 1, entries

1–6). When [APmim]Cl was used as a catalyst, the pro-

pylene carbonate was yield to 58.9 %, and the yield of

propylene carbonate was increased to 91.5 % in the pre-

sence of [APmim]I, and these results were indicated the

catalytic activity of the halide anions was decreased in the

order of I- [ Br- [ Cl- (Table 1, entries 1–3). It was due

to their good leaving ability and nucleophilicity [51]. It is

worth noting that the structure of the cation had a large

influence on catalytic activity towards the synthesis of

propylene carbonate. The long N-alkyl chain in amino-

functional imidazolium ionic liquids was beneficial for the

increase in its catalytic activity (Table 1, entries 1, 4, 5)

and a similar result was observed over other imidazolium

ionic liquid catalyst [62]. The yield of propylene carbonate

was achieved at 94.3 % with using [APbim]I as a catalyst

(Table 1, entry 6). For comparison, imidazole and metal

halide were used as a sole catalyst in this reaction, but no

product was founded in the reaction mixture (Table 1,

entries 8 and 9). In the literatures, the propylene carbonate

was yield to 99 % under 2.0 MPa when hydroxyl-func-

tionalized ionic liquid (1.6 mol%) was used as a catalyst in

this reaction [48]. Comparing to hydroxyl group, carboxyl

group is a stronger Brønsted acid and hydrogen bond

donor, Park and coworkers [49] used carboxyl functional-

ized imidazolium-based ionic liquid as a catalyst for syn-

thesis of styrene carbonate, the yield was achieved at 95 %

with 1.5 mol% ionic liquid catalyst. So, the catalytic

activity of carboxyl functionalized imidazolium-based

ionic liquid was investigated and the results were listed in

Table 1. The propylene carbonate was yield to 84.0 and

84.4 % when 1 mol% [CEmim]Br or [CPmim]Br was used

as a catalyst (Table 1, entries 7 and 10). Compared to the

carboxyl functionalized ionic liquid, the propylene car-

bonate was yield to 88.6 % in the presence of 1 mol%

Table 1 The effects of different catalysts on synthesis of propylene

carbonate

Entry Catalyst Yield

(%)a
TOF

(h-1)b

1 NN NH2
Cl

[APmim]Cl

58.9 39.3

2 NN NH2
Br

[APmim]Br

88.6 59.1

3 NN NH2
I

[APmim]I

91.5 61.0

4 NN NH2
Cl

[APeim]Cl

60.4 40.3

5 NN NH2
Cl

[APbim]Cl

68.9 45.9

6 NN NH2
I

[APbim]I

94.3 62.9

7

Br
NN COOH

[CPmim]Br

84.4 56.3

8 NN

mim

– –

9 KI – –

10 NN
COOH

Br

[CEmim]Br

84.0 56.0

11 NN

Br

[Emim]Br

52.7 35.1

Reaction conditions: propylene oxide 5.0 ml, catalyst 1 mol%, CO2

pressure 1.5 MPa, temperature 120 �C, time 1.5 h
a Isolated yield and the selectivity [99 %
b Moles of propylene carbonate per mole ionic liquids per hour

0.5 1.0 1.5 2.0 2.5
65

70

75

80

85

90

95

100

Y
ie

ld
 %

Time h

Fig. 2 The effect of reaction time on propylene carbonate yield:

propylene oxide 71.5 mmol, [APbim]I 1 mol%, CO2 pressure

1.5 MPa, temperature 120 �C
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amino-functional imidazolium ionic liquid and it indicated

that the catalytic activity of amino-functional imidazolium

ionic liquids was higher than that of carboxyl-functional

imidazolium ionic liquid (Table 1, entries 2, 7, 10). Under

the same reaction conditions, the middle yield of propylene

carbonate was obtained when the [Emim]Br was used as a

catalyst (Table 1, entry 11). These results suggested that

the highly catalytic activity may attribute to the amine

tethered to the cation of the ionic liquid. It was because an

amine group strongly increased the reactivity of CO2 by

forming ammonium carbamate [50] and ammonium-group,

which was formed by the reaction of carbon dioxide and

amino-functional imidazolium ionic liquid [57], could help

the ring-opening reaction of propylene oxide through

hydrogen bond interaction with oxygen, and halogen anion

can nucleophilic attack the b-carbon atom with small steric

hindrance [35]. Therefore, [APbim]I was identified as the

most effective catalyst, and was thus chosen as the model

catalyst for further investigation.

3.2 Optimum Reaction Conditions

The influence of reaction time on the synthesis of propylene

carbonate was given in Fig. 2. From Fig. 2, it can be seen that

the yield of propylene carbonate was increased rapidly

within the first 2.0 h, and almost quantitative yield could be

achieved with[99 % selectivity. When another half an hour

was employed to synthesize of propylene carbonate, only a

slight raising (\2 %) on the yield of propylene carbonate was

observed. That is to say, [APbim]I could be an effective

catalyst for converting CO2 into cyclic carbonate in 2.0 h.

Therefore, the suitable reaction time would be 2.0 h.

Furthermore, we found that the yield of propylene car-

bonate was strongly affected by the reaction temperature

while the selectivity was kept more than 99 % (Fig. 3). As

shown in Fig. 3, the yield of propylene carbonate was

increased with increasing the reaction temperature and the

optimal performance was achieved at 120 �C. These results

suggested that higher temperature favors the insertion of

carbon dioxide into the C–O bond of epoxide leading to the

rapid conversion of epoxide to cyclic carbonate. But when

a higher temperature was used for this reaction and only a

tiny change was observed. Besides, in order to investigate

the activity of [APbim]I at low temperature, the reaction

was conducted at room temperature without further energy

input and the 41.3 % propylene carbonate was obtained

when the reaction time was prolonged to 24 h. It was

indicated amino-functional imidazolium ionic liquid could

activated and converted carbon dioxide.

The effect of CO2 pressure was also studied for the

reaction and the results showed that the pressure had a great

impact on the yield of cyclic carbonate (Fig. 4). The yield of

propylene carbonate was increased by an increase in the

pressure in the ranking up to 1.5 MPa and further increase of

the pressure causes a decline in the yield of propylene car-

bonate. Such an effect of pressure on the reaction has also

been observed in other catalytic systems. Based on these

reports, it could be explained that propylene carbonate was in

its liquid form under the adopted reaction conditions. A high

pressure mainly caused by CO2 would reduce propylene

oxide conversion because a lowered propylene oxide con-

centration in the vicinity of the catalyst was not favorable to

the reaction since propylene oxide was also a reactant. To our

astonishment, even at room temperature under atmospheric

pressure yield of propylene carbonate was up to 31.5 after

24 h. It was probably because amino-functional imidazoli-

um ionic liquid can sequestrate and transport CO2.

3.3 Coupling Carbon Dioxide and Other Epoxides

Under the optimized reaction conditions, the utility and

generality of catalyst were examined. Various epoxides

40 60 80 100 120 140
0

20

40

60

80

100
Y

ie
ld

 %

Temperature oC

Fig. 3 The effect of temperature on propylene carbonate yield:

propylene oxide 71.5 mmol, [APbim]I 1 mol%, CO2 pressure

1.5 MPa, time 2.0 h
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Y
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Fig. 4 The effect of CO2 pressure on propylene carbonate yield:

propylene oxide 71.5 mmol, [APbim]I 1 mol%, temperature 120 �C,

time 2.0 h
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were used to react with CO2 to produce the corresponding

products and the results were shown in Table 2. All the

epoxides could be converted to their corresponding cyclic

carbonates in excellent yield (Table 2, entries 1–4). It

should be noted that internal cyclohexene oxide showed

poor reactivity and only 76 % of the corresponding cyclic

carbonate was obtained even after 24 h. It was because the

steric effect of cyclohexene oxide (Table 2, entry 5). When

the stereochemistry of 2e was determined by the 1H, 13C

and NOESY NMR, we found it was cis-stereochemistry

and this result was according to our previous result [39].

Compared to cyclohexene oxide, the other epoxides with

less steric hindrance were easy that the ring-opening

reaction and epoxides take place with an electron-with-

drawing group that are able to stabilize the ring-opened

structure of epoxides, thus resulting in a higher activity.

3.4 The Reusability of the Catalyst

As we all know, the stability and reusability of a catalyst

system are the two keys for its potentially practical appli-

cation in industry. In this study, the catalyst reusability of

[APbim]I was tested under the optimal conditions. The

catalyst was recovered after separation of propylene car-

bonate from the reaction mixture by distillation and reused

directly for the subsequent reaction. As shown in Fig. 5,

the yield of propylene carbonate in subsequent runs was

similar to the fresh catalyst and the catalyst could be reused

at least nine cycles without significant loss of activity.

Moreover, we characterized the recovered catalyst (after

six runs) by FT-IR (Fig. 6). Compared to the fresh one, the

recovered catalyst exhibited a new peak at 1,691 cm-1 (the

peak at 1,789 cm-1 was assigned to C=O of propylene

carbonate), which corresponds to the new COOH moiety

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

Y
ei

ld

Cycle

Fig. 5 Catalyst recycles studies in coupling carbon dioxide with

propylene oxide: propylene oxide 5.0 ml, catalyst 1 mol%, CO2

pressure 1.5 MPa, temperature 120 �C, time 2.0 h

Table 2 Coupling of CO2 and various epoxides with [APbim]I

Entry Substrate Product Selectivity (%) Yield (%)

1 O

(1a) OO

O

(2a)

[99 98.0

2 O
Cl (1b)

Cl
OO

O

(2b)

[99 97.0

3 O
O

(1c)
O O

O
O

(2c)

[99 99.0

4 O

(1d)
O

O O

(2d)
[99 84.7

5a

O
(1e) O

O
O

H

H (2e)

[99 76.0

Reaction conditions: catalyst 1 mol%, CO2 pressure 1.5 MPa, temperature 120 �C, time 2.0 h
a Reaction time 24 h
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formed from the reaction of CO2 with the amine tethered to

the cation of the ionic liquid [63]. It can be deduced that

this catalyst has excellent reusability and stability for the

cycloaddition reaction of carbon dioxide and propylene

oxide.

3.5 Possible Reaction Mechanism

Based on previous reports [50–54, 56] and the results in our

study, a probable catalytic cycle was proposed for the

cycloaddition of CO2 to propylene oxide using amino-

functional imidazolium ionic liquids as catalysts, as

shown in Scheme 2. In this reaction process, the most

marked characteristic was achieving CO2 activation and

subsequent conversion by one step. Firstly, the primary

nitrogen atom of the catalyst reacted reversibly with CO2 to

afford the ammonium carbamate 1 in which CO2 was acti-

vated. Then, the proton was coordinated with the oxygen of

the propylene oxide through a hydrogen bond, resulting in

activation of an propylene oxide, and simultaneously, the

nucleophilic attack of iodide anion on the less sterically

hindered b-carbon atom of the propylene oxide generates the

ring-opened intermediate 2. Followed by the formation of

ring-opened intermediate, insertion of the activated CO2 into

C–I bond produces intermediate 3. Finally, the intermediate

3 converted to the propylene carbonate through intramole-

cular ring closing. Based on the literature [47–49, 64, 65], we

proposed another way which may lead to the formation of

cyclic carbonate. The insertion of CO2 into the ring-opened

intermediate 4 forms an alkyl carbonate anion 5. Then, the

halocarbonate further converted to the corresponding cyclic

carbonate through ring closing, and the catalyst is

regenerated.

4 Conclusions

In summary, the amino-functional imidazolium ionic liquid

was found to be an effective catalyst for the synthesis of

cyclic carbonates from carbon dioxide and epoxides under

mild conditions without any co-solvent. Various epoxides
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T
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were used to react with CO2 to produce the corresponding

products in excellent yield. And the catalytic system can be

reused at least nine times without noticeable decrease in

activity and selectivity. Notable among these are that CO2

activation and subsequent conversion can be achieve in one

step in the place of amino-functional imidazolium ionic

liquid at room temperature under atmospheric pressure.

Nowadays, further efforts to extend the next application of

the system are underway in our laboratory.
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