Effect of Sulfation on the Selective Catalytic Reduction of NO with NH₃ Over γ -Fe₂O₃

Haili Huang · Yi Lan · Wenpo Shan · Feihong Qi · Shangcao Xiong · Yong Liao · Yuwu Fu · Shijian Yang

Received: 8 September 2013/Accepted: 23 November 2013/Published online: 12 December 2013 © Springer Science+Business Media New York 2013

Abstract Because the site for NH₃ adsorption and the active site for NH₃ oxidization were separated after the sulfation, both the SCR reaction and the catalytic oxidization of NH₃ to NO over γ -Fe₂O₃ were restrained after the sulfation. As a result, the operation temperature window of γ -Fe₂O₃ for the SCR reaction shifted about 100 °C to higher temperature after the sulfation.

1 Introduction

Selective catalytic reduction (SCR) with NH₃ is proven to be the most promising technology to control the emission of nitrogen oxides from automobile exhaust gas and industrial combustion of fossil fuels [1]. Although V₂O₅/ WO₃-TiO₂ has been employed as a commercial SCR catalyst for several decades [2], it is still not satisfactory due to some drawbacks, such as the relatively narrow temperature window of 300–400 °C, the low N₂ selectivity at high temperatures, the toxicity of vanadium pentoxide to the

School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China e-mail: yangshijiangsq@163.com environment [3], and the soaring price of W resource [4]. Therefore, a more cost-effective, better N_2 selectivity and more environmental-friendly SCR catalyst should be developed.

Recently, it is reported that Fe-based catalysts [5–7], for example Fe/ZSM-5 [8, 9], Fe³⁺ exchanged TiO₂-pillared clay [10], Fe-Ti spinel [11], Fe-Ti-V spinel [12], Fe₂(SO₄)₃/TiO₂ [13], and iron titanate [14], show excellent SCR activity and N2 selectivity at 300-400 °C. y- Fe_2O_3 is one of the simplest iron oxides, which adopts a cubic close packed cation deficient spinel structure [15]. γ -Fe₂O₃ shows the reduction–reoxidation properties, which is suitable for the use as an oxygen storage component in automobile exhaust catalysts [16]. Recently, it is reported that γ -Fe₂O₃ had excellent SCR activity and N_2 selectivity at 200–350 °C [17]. However, the operation temperature window of γ -Fe₂O₃ for the SCR reaction shifted 100 °C to higher temperature in the presence of SO_2 [17]. Generally, the deactivation of SO_2 on the SCR reaction was attributed to the deposition of NH₄HSO₄ and/or $(NH_4)_2SO_4$ at low temperatures [18]. The decomposition temperature of NH₄HSO₄ and/or (NH₄)₂SO₄ was less than 250 °C. Therefore, there could be another mechanism, which caused to the deactivation of SO_2 at 250–300 °C. Meanwhile, the SCR activity of γ -Fe₂O₃ was obviously promoted above 300 °C due to the presence of SO_2 . Therefore, the mechanism of SO_2 effect on the SCR reaction over γ -Fe₂O₃ need to be further studied. The presence of SO₂ would cause to the sulfation of catalyst [19–21]. The mechanism of the SCR reaction over γ - Fe_2O_3 may differ from that over sulfated γ -Fe₂O₃. Therefore, the sulfation on the SCR reaction over γ -Fe₂O₃ was investigated in this work, which is helpful to understand the mechanism of SO₂ effect on the SCR reaction [22].

Electronic supplementary material The online version of this article (doi:10.1007/s10562-013-1174-4) contains supplementary material, which is available to authorized users.

H. Huang · Y. Lan · W. Shan · F. Qi · S. Xiong · Y. Liao · Y. Fu · S. Yang (\boxtimes)

2 Experimental

2.1 Catalyst Preparation

Nanosized Fe₃O₄, the precursor of γ -Fe₂O₃, was prepared using a co-precipitation method at room temperature [23]. γ -Fe₂O₃ was obtained after the thermal treatment of Fe₃O₄ under air for 3 h at 400 °C [11]. Sulfated γ -Fe₂O₃ was obtained by pretreating γ -Fe₂O₃ (1.0 g) in a flow of 500 ppm SO₂ and 2 % O₂ (200 mL min⁻¹) at 300 °C for 8 h.

2.2 Catalytic Activity Measurement

The SCR reaction was performed on a fixed-bed quartz tube reactor. The mass of catalyst with 40–60 mesh was 100 mg. The total flow rate was 200 mL min⁻¹ (room temperature), and the corresponding gas hourly space velocity (GHSV) was 1.2×10^5 cm³ g⁻¹ h⁻¹. The typical reactant gas composition was as follows: 500 ppm of NH₃, 500 ppm of NO, 2 % of O₂, 500 ppm of SO₂ (when used), 10 % of H₂O (when used), and balance of N₂. The concentrations of SO₂, H₂O, NO, NO₂, NH₃ and N₂O were continually monitored by an FTIR spectrometer (MKS Instruments).

2.3 Catalyst Characterization

BET surface area was determined using a nitrogen adsorption apparatus (Quantachrome, Autosorb-1). XRD patterns were recorded on an X-ray diffractionmeter (Rigaku, D/max-2200/ PC) between 20° and 80° at a step of 7° min⁻¹ operating at 30 kV and 30 mA using Cu K\alpha radiation. H2-TPR was recorded on a chemisorption analyzer (Micromeritics, ChemiSorb 2720 TPx) under a 10 % hydrogen-90 % nitrogen gas flow $(50 \text{ cm}^3 \text{ min}^{-1})$ at a rate of 10 °C min⁻¹. Temperature programmed desorption of ammonia (NH₃-TPD) and temperature programmed desorption of NO (NO-TPD) were carried out on the packed-bed microreactor at a rate of 10 °C min⁻¹ from 50 to 600 °C. The binding energies of Fe 2p, S 2p and O 1s were recorded on an X-ray photoelectron spectroscopy (Thermo, ESCALAB 250) with Al K α (hv = 1486.6 eV) as the excitation source and C 1s line at 284.6 eV as the reference for the binding energy calibration. In situ DRIFT spectra were performed on a Fourier transform infrared spectrometer (FTIR, Nicolet NEXUS 870) equipped with a liquid-nitrogen-cooled MCT detector, collecting 100 scans with a resolution of 4 cm $^{-1}$.

3 Results and Discussion

3.1 SCR Activity

As shown in Fig. 1a, γ -Fe₂O₃ showed an excellent SCR activity at 200–350 °C (NO_x conversion was higher than

Fig. 1 SCR reaction over: a γ -Fe₂O₃, b sulfated γ -Fe₂O₃

80 %). During the SCR reaction over γ -Fe₂O₃, only a small amount of N₂O formed above 300 °C. However, NO_x conversion obviously decreased with the increase of reaction temperature from 300 to 400 °C, and a small amount of NO₂ was observed at 350-400 °C. However, NH₃ conversion reached 100 % above 300 °C. It suggests that some NH₃ was oxidized to NO over γ -Fe₂O₃ at 300-400 °C. As 500 ppm of SO₂ was introduced, the SCR activity of γ -Fe₂O₃ obviously decreased at 150–300 °C. However, the SCR activity of γ -Fe₂O₃ was obviously promoted due to the presence of SO2 at 350-400 °C (shown in Fig. 2). After the further introduction of H_2O , no obvious change happened (shown in Fig. 2). The similar result of γ -Fe₂O₃ was once reported by Mou et al. [17]. As shown in Fig. 2, the SCR activity of γ -Fe₂O₃ in the presence of SO₂ was close to that of sulfated γ -Fe₂O₃ at 300–400 °C. It suggests that the sulfation of γ -Fe₂O₃ could contribute to the effect of SO₂ on the SCR reaction over γ -Fe₂O₃. Therefore, the sulfation on the SCR reaction over γ -Fe₂O₃ was studied.

With the increase of reaction temperature from 150 to 400 °C, NO_x conversion over sulfated γ -Fe₂O₃ gradually increased (shown in Fig. 1b). Figure 1b also shows that the ratio of NO_x conversion was close to that of NH₃ conversion. It suggests that most NH₃ was used to reduce NO over

Fig. 2 Effect of SO₂ and/or H_2O on the SCR reaction over γ -Fe₂O₃

Fig. 3 XRD patterns of $\gamma\text{-}Fe_2O_3$ and sulfated $\gamma\text{-}Fe_2O_3$

sulfated γ -Fe₂O₃. Meanwhile, little NO₂ can be observed during the SCR reaction over sulfated γ -Fe₂O₃. In comparison with γ -Fe₂O₃, NO_x conversion over sulfated γ -Fe₂O₃ was much less at 150–300 °C. However, sulfated γ -Fe₂O₃ showed excellent SCR activity (NO_x conversion was higher than 80 %) and N₂ selectivity (>95 %) above 300 °C, which was much better than γ -Fe₂O₃. Figure 1 shows that the operation temperature window of γ -Fe₂O₃ for the SCR reaction shifted about 100 °C to higher temperature after the sulfation.

3.2 Characterization

3.2.1 XRD and BET

As shown in Fig. 3, the characteristic peaks of γ -Fe₂O₃ and sulfated γ -Fe₂O₃ correspond very well to the standard card of maghemite (JCPDS: 39-1346) [15]. It indicates that the spinel structure of γ -Fe₂O₃ was not destroyed after the sulfation.

BET surface areas of γ -Fe₂O₃ and sulfated γ -Fe₂O₃ were 74.7 and 64.8 m² g⁻¹, respectively. It indicates that

the BET surface area of γ -Fe₂O₃ slightly decreased after the sulfation.

3.3 XPS

As shown in Fig. 4a, the binding energies of Fe 2p 2/3 on γ -Fe₂O₃ mainly centered at about 710.2, 711.1 and 712.5 eV, which were assigned to Fe³⁺ in the spinel structure and Fe³⁺ bonded with hydroxyl groups respectively [15]. Furthermore, the satellite component appeared at about 719.0 eV, which is the fingerprint of Fe³⁺ species [23]. They both suggest that Fe species on γ -Fe₂O₃ were mainly Fe³⁺. The O 1s peaks on γ -Fe₂O₃ mainly centered at about 530.2 eV and 531.6 eV (shown in Fig. 4b), which were attributed to O²⁻ in transition metal oxides and that in –OH respectively [24]. As shown in Fig. 4c, no obvious S 2p band was observed on γ -Fe₂O₃.

As shown in Fig. 4d, a new peak at 713.8 eV appeared in the spectral region of Fe 2p after the sulfation of γ - Fe_2O_3 , which could be attributed to Fe^{3+} in $Fe_2(SO_4)_3$ [23]. Meanwhile, XPS analysis shows that the percent of Fe^{3+} on γ -Fe₂O₃ decreased from 40 to 31.3 % after the sulfation. The presence of SO_4^{2-} on sulfated γ -Fe₂O₃ can also be supported by the XPS spectra over S 2p and O 1s regions. A new peak at 532.1 eV appeared in the spectral region of O 1s (shown in Fig. 4e), which could be assigned to O^{2-} in SO_4^{2-} [25]. The S 2p peaks mainly centered at 168.9 and 169.9 eV (shown in Fig. 4f), which could be assigned to SO_4^{2-} and HSO_4^{-} respectively [15]. Previous research on the heterogeneous uptake of SO₂ on γ -Fe₂O₃ also demonstrated that the formed S species on iron oxides were mainly HSO_4^- and SO_4^{2-} [26]. XPS analysis shows that the percent of $S(SO_4^{2-})$ on γ -Fe₂O₃ increased to 5.4 % after the sulfation.

3.4 TPR

TPR profile recorded from γ -Fe₂O₃ showed two obvious reduction peaks. The peak centered at about 318 °C was assigned to the reduction of γ -Fe₂O₃ to Fe₃O₄ [27], and the slight fluctuation at about 350 °C may be related to the impurity on γ -Fe₂O₃. The broad peak at higher temperature was attributed to the reduction of Fe₃O₄ to Fe [27].

The active site on γ -Fe₂O₃ for H₂ oxidization was covered by SO₄²⁻ after the sulfation. Hence, a strong displacement of the first reduction peak to 423 °C happened in the TPR profiles of sulfated γ -Fe₂O₃ (shown in Fig. 5). It suggests that the oxidization ability of γ -Fe₂O₃ decreased after the sulfation. Meanwhile, no obvious changes happened on the broad peak at higher temperature. The reduction peak at 423 °C of sulfated γ -Fe₂O₃ could be attributed to the reduction of Fe³⁺–SO₄²⁻. TPR analysis shows that the area ratio of the first peak to the total TPR Fig. 4 XPS spectra of γ -Fe₂O₃ and sulfated γ -Fe₂O₃ over the spectral regions of Fe 2p, O 1s and S 2p

Fig. 5 H₂-TPR profiles of γ -Fe₂O₃ and sulfated γ -Fe₂O₃

profile increased from 13 % for γ -Fe₂O₃ to 19 % for sulfated γ -Fe₂O₃. It also suggests that the reduction of γ -Fe₂O₃ to Fe₃O₄ and the reduction of SO₄²⁻ both contributed to the first reduction peak of sulfated γ -Fe₂O₃.

3.5 NO-TPD and NH₃-TPD

The capacities of γ -Fe₂O₃ and sulfated γ -Fe₂O₃ for NH₃ and NO + O₂ adsorption were calculated from NH₃-TPD and NO-TPD (shown in Fig. S1). The capacity of sulfated γ -Fe₂O₃ for NH₃ adsorption was 5.1 mmol g⁻¹, which was about 4.3 times that of γ -Fe₂O₃ (1.2 mmol g⁻¹). However, the capacity of sulfated γ -Fe₂O₃ for NO + O₂ adsorption was 0.32 mmol g⁻¹, which was only about 1/5 that of γ -Fe₂O₃ (1.7 mmol g⁻¹). It suggests that the adsorption of NH₃ on γ -Fe₂O₃ was promoted and the adsorption of NO on γ -Fe₂O₃ was restrained after the sulfation.

3.6 Adsorption of NO and NH₃

The characteristic vibration corresponding to the adsorption of NO + O₂ on γ -Fe₂O₃ at 300 °C mainly appeared at about 1.600 and 1.578 cm^{-1} (shown in Fig. 6a), which were assigned to monodentate nitrite and monodentate nitrate respectively [28]. However, the characteristic vibration corresponding to the adsorption of NO + O₂ on sulfated γ -Fe₂O₃ at 300 °C appeared at 1,385 cm⁻¹ (shown in Fig. 6a). Monodentate nitrite and monodentate nitrate adsorbed on γ -Fe₂O₃ were coordinated by oxygen atom. However, the oxygen atom on γ -Fe₂O₃, which can be used to bridge NO and Fe cation, was covered by SO_4^{2-} after the sulfation. Therefore, the characteristic vibration at $1,385 \text{ cm}^{-1}$ was assigned to nitro [28], which is coordinated via its N atom [19]. The intensity of the adsorption of NO + O₂ on sulfated γ -Fe₂O₃ was much less than that on γ -Fe₂O₃. It indicates that the adsorption of NO_x on γ -Fe₂O₃ was restrained after the sulfation.

The characteristic vibration corresponding to NH_3 adsorption on γ -Fe₂O₃ at 300 °C mainly appeared at about

Fig. 6 a DRIFT spectra of the adsorption of NO + O_2 on γ -Fe₂O₃ and sulfated γ -Fe₂O₃ at 300 °C, **b** DRIFT spectra of the adsorption of NH₃ on γ -Fe₂O₃ and sulfated γ -Fe₂O₃ at 300 °C

1.202 and 1.609 cm^{-1} (shown in Fig. 6b), which were assigned to coordinated ammonia bound to the Lewis acid sites [14]. However, the characteristic vibration corresponding to NH₃ adsorption on sulfated γ -Fe₂O₃ appeared at 1,426 and 1,298 cm^{-1} (shown in Fig. 6b), which were assigned to ammonium ions bound to the Brønsted acid sites [22]. The intensity of the adsorption of NH₃ on sulfated γ -Fe₂O₃ was much higher than that on γ -Fe₂O₃. It indicates that the adsorption of NH₃ on γ -Fe₂O₃ was promoted after the sulfation, which was consistent with the result of NH₃-TPD. Meanwhile, a negative peak at about 1,373 cm⁻¹ appeared on sulfated γ -Fe₂O₃. XPS analysis demonstrates that γ -Fe₂O₃ was covered by SO₄²⁻ after the sulfation. As is well known, SO_4^{2-} is a typical Brønsted acid [29], so NH₃ mainly adsorbed on SO_4^{2-} on sulfated γ - Fe_2O_3 . Therefore, the negative peak at about 1,373 cm⁻¹ could be ascribed to SO_4^{2-} , which was covered by NH_4^{+} after the adsorption of NH_3 [22].

3.7 Mechanism of the Sulfation on the SCR Reaction

Both the Eley–Rideal mechanism (the reaction of activated NH₃ with gaseous NO) and the Langmuir–Hinshelwood mechanism (the reaction between adsorbed NO_x and NH₃) could contribute to the SCR reaction over γ -Fe₂O₃ and sulfated γ -Fe₂O₃. Furthermore, the catalytic oxidization of NH₃ to NO [21] can happen at high temperatures (shown in Table S1).

The SCR reaction and the catalytic oxidization of NH₃ to NO both contributed to NH₃ conversion over γ -Fe₂O₃ and sulfated γ -Fe₂O₃. Therefore, the ratio of NH₃ conversion over γ -Fe₂O₃ and that over sulfated γ -Fe₂O₃ can be described as:

NH₃ conversion
$$\% = \delta_{SCR} + \delta_{C-O},$$
 (1)

where δ_{SCR} and δ_{C-O} were the contributions of the SCR reaction and the catalytic oxidization of NH₃ to NO to the ratio of NH₃ conversion, respectively.

The SCR reaction contributed to the reduction of gaseous NO, while the catalytic oxidization of NH₃ to NO contributed to the formation of gaseous NO. Therefore, the ratio of NO conversion over γ -Fe₂O₃ and that over sulfated γ -Fe₂O₃ can be described as:

NO conversion
$$\% = \delta_{SCR} - \delta_{C-O}$$
 (2)

According to Eqs. 1 and 2, the amount of NH_3 conversion assigned to the SCR reaction and that assigned to the catalytic oxidization of NH_3 to NO can be calculated according to the difference between the ratio of NO conversion and that of NH_3 conversion.

Figure 7a shows that the SCR reaction over γ -Fe₂O₃ was obviously promoted with the increase of reaction temperature. However, the catalytic oxidization of NH₃ to NO happened over γ -Fe₂O₃ above 250 °C, resulting in a drop of

Fig. 7 Contributions of the SCR reaction and the catalytic oxidization of NH₃ to NO (C–O) to NH₃ conversion during the SCR reaction over: $\mathbf{a} \gamma$ -Fe₂O₃, \mathbf{b} sulfated γ -Fe₂O₃

NO_x conversion (shown Fig. 1a). After the sulfation, the SCR reaction over γ -Fe₂O₃ was obviously restrained, resulting in a remarkable decrease of NO conversion at 150–300 °C. Meanwhile, the catalytic oxidization of NH₃ to NO over γ -Fe₂O₃ above 250 °C was suppressed after the sulfation. As a result, the operation temperature window of γ -Fe₂O₃ for the SCR reaction shifted about 100 °C to higher temperature after the sulfation.

The acid sites on γ -Fe₂O₃ (Lewis acid) mainly resulted from the unsaturated coordination between Fe^{3+} and O^{2-} . The unsaturated coordination was destroyed after the sulfation, and the acid sites on sulfated γ -Fe₂O₃ mainly resulted from SO_4^{2-} on the surface. Therefore, NH₃ mainly adsorbed on Fe³⁺ (or Fe–O band) on γ -Fe₂O₃, while it mainly adsorbed on SO_4^{2-} on sulfated γ -Fe₂O₃. It suggests that the site for NH₃ adsorption and the active site for NH₃ activation on γ -Fe₂O₃ were separated after the sulfation (illustrated in Fig. 8). Meanwhile, the oxidization ability of Fe^{3+} on sulfated γ -Fe₂O₃ was less than that on γ -Fe₂O₃, which was hinted by the TPR analysis (shown in Fig. 5). Moreover, the concentration of Fe^{3+} on sulfated γ -Fe₂O₃ was slightly less than that on γ -Fe₂O₃. As a result, the activation of adsorbed NH₃ over γ -Fe₂O₃ was restrained after the sulfation. It suggests that the SCR reaction over γ -Fe₂O₃ through the Eley-Rideal mechanism would be obviously restrained after the sulfation. Furthermore, NO-TPD analysis and in situ DRIFTS study show that the adsorption of NO + O_2 on γ -Fe₂O₃ was restrained after the sulfation. It suggests that the SCR reaction through the Langmuir-Hinshelwood mechanism would be restrained after the sulfation. As a result, the SCR reaction over γ - Fe_2O_3 was restrained after the sulfation (shown in Fig. 7).

Figure 1b shows that most of adsorbed NH₃ on sulfated γ -Fe₂O₃ can be transformed above 300 °C, so the negative effect of sulfation on the SCR reaction over γ -Fe₂O₃ above 300 °C can be neglected. Therefore, the key factor of NO reduction over γ -Fe₂O₃ at high temperatures was the negative effect of the catalytic oxidization of activated NH₃ species (–NH₂) to NO.

-NH₂ mainly adsorbed on Fe³⁺ (or Fe–O band) on γ -Fe₂O₃, while it mainly adsorbed on SO₄²⁻ on sulfated γ -Fe₂O₃. It suggests that the site for -NH₂ adsorption and the active site for the further oxidization of -NH₂ were separated after the sulfation, which was similar to that for NH₃ activation. Meanwhile, the concentration of Fe³⁺ on sulfated γ -Fe₂O₃ was less than that on γ -Fe₂O₃. Moreover, the concentration of -NH₂ on sulfated γ -Fe₂O₃ was much less than that on γ -Fe₂O₃ due to the depression of NH₃

Fig. 8 Illustration of sulfation on the SCR reaction over γ -Fe₂O₃

activation. As a result, the catalytic oxidization of NH_3 to NO over γ -Fe₂O₃ was obviously restrained after the sulfation (shown in Fig. 7).

4 Conclusions

Because the site for NH₃ adsorption and the active site for NH₃ activation were separated, the SCR reaction over γ -Fe₂O₃ was restrained at 150–300 °C after the sulfation. Meanwhile, the catalytic oxidization of NH₃ to NO over γ -Fe₂O₃ was restrained after the sulfation, so the drop of NO_x conversion at high temperatures postponed. As a result, the operation temperature window of γ -Fe₂O₃ for the SCR reaction shifted about 100 °C to higher temperature after the sulfation.

Acknowledgments This study was financially supported by the National Natural Science Fund of China (Grant No. 21207067 and 41372044), the Fundamental Research Funds for the central Universities (Grant No. 30920130111023), the Zijin Intelligent Program, Nanjing University of Science and Technology (Grant No. 2013-0106), Environmental scientific research of Jiangsu Province (2012026), and special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control.

References

- 1. Topsoe NY (1994) Science 265:1217
- 2. Chen L, Li JH, Ge MF, Zhu RH (2010) Catal Today 153:77
- 3. Chen L, Li JH, Ge MF (2010) Environ Sci Technol 44:9590
- 4. Yang SJ, Wang CZ, Ma L, Peng Y, Qu Z, Yan NQ, Chen JH, Chang HZ, Li JH (2013) Catal Sci Technol 3:161
- 5. Akah AC, Nkeng G, Garforth AA (2007) Appl Catal B 74:34
- Chmielarz L, Kustrowski P, Rafalska-Lasocha A, Dziembaj R (2005) Appl Catal B 58:235

- 7. Yao GH, Gui KT, Wang F (2010) Chem Eng Technol 33:1093
- Grossale A, Nova I, Tronconi E, Chatterjee D, Weibel M (2008) J Catal 256:312
- 9. Brandenberger S, Krocher O, Tissler A, Althoff R (2008) Catal Rev 50:492
- 10. Long RQ, Yang RT (1999) J Catal 186:254
- Yang SJ, Li JH, Wang CZ, Chen JH, Ma L, Chang HZ, Chen L, Peng Y, Yan NQ (2012) Appl Catal B 117:73
- Yang S, Wang C, Chen J, Peng Y, Ma L, Chang H, Liu C, Li J, Yan N (2012) Catal Sci Technol 2:915
- 13. Ma L, Li JH, Ke R, Fu LX (2011) J Phys Chem C 115:7603
- Liu FD, He H, Zhang CB, Feng ZC, Zheng LR, Xie YN, Hu TD (2010) Appl Catal B 96:408
- Yang S, Guo Y, Yan N, Wu D, He H, Qu Z, Yang C, Zhou Q, Jia J (2011) ACS Appl Mater Interface 3:209
- Ayub I, Berry FJ, Crabb E, Helgason O (2004) J Mater Sci 39:6921
- Mou XL, Zhang BS, Li Y, Yao LD, Wei XJ, Su DS, Shen WJ (2012) Angew Chem Int Edit 51:2989
- Xie GY, Liu ZY, Zhu ZP, Liu QY, Ge J, Huang ZG (2004) J Catal 224:36
- Yang SJ, Guo YF, Chang HZ, Ma L, Peng Y, Qu Z, Yan NQ, Wang CZ, Li JH (2013) Appl Catal B 136:19
- 20. Gu T, Liu Y, Weng X, Wang H, Wu Z (2010) Catal Commun 12:310
- Yang SJ, Liu CX, Chang HZ, Ma L, Qu Z, Yan NQ, Wang CZ, Li JH (2013) Ind Eng Chem Res 52:5601
- 22. Liu FD, Asakura K, He H, Shan WP, Shi XY, Zhang CB (2010) Appl Catal B 103:369
- Yang S, Yan N, Guo Y, Wu D, He H, Qu Z, Li J, Zhou Q, Jia J (2011) Environ Sci Technol 45:1540
- 24. Yang S, Guo Y, Yan N, Qu Z, Xie J, Yang C, Jia J (2011) J Hazard Mater 186:508
- 25. Yang S, Guo Y, Yan N, Wu D, He H, Xie J, Qu Z, Jia J (2011) Appl Catal B 101:698
- 26. Fu HB, Wang X, Wu HB, Yin Y, Chen JM (2007) J Phys Chem C 111:6077
- 27. Yang S, Wang C, Li J, Yan N, Ma L, Chang H (2011) Appl Catal B 110:71
- 28. Hadjiivanov KI (2000) Catal Rev 42:71
- 29. Xie GY, Liu ZY, Zhu ZP, Liu QY, Ge J, Huang ZG (2004) J Catal 224:42