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Abstract  Oxygen pressure plays an integral role in 
regulating various aspects of cellular biology. Cell 
metabolism, proliferation, morphology, senescence, 
metastasis, and angiogenesis are some instances that 
are affected by different tensions of oxygen. Hyper-
oxia or high oxygen concentration, enforces the pro-
duction of reactive oxygen species (ROS) that disturbs 
physiological homeostasis, and consequently, in the 

absence of antioxidants, cells and tissues are directed 
to an undesired fate. On the other side, hypoxia or low 
oxygen concentration, impacts cell metabolism and 
fate strongly through inducing changes in the expres-
sion level of specific genes. Thus, understanding the 
precise mechanism and the extent of the implica-
tion of oxygen tension and ROS in biological events 
is crucial to maintaining the desired cell and tissue 
function for application in regenerative medicine 
strategies. Herein, a comprehensive literature review 
has been performed to find out the impacts of oxygen 
tensions on the various behaviors of cells or tissues.

Keywords  Oxygen · ROS · Cell morphology · Cell 
proliferation · Cancer · Senescence · Angiogenesis

Introduction

Oxygen homeostasis is a pivotal factor in preserv-
ing the physiological survival of vertebrate spe-
cies (Semenza 2009a, b). The atmospheric oxygen 
is estimated about 21.1% (160  mmHg), which is 
decreased to about 19% (150  mmHg) in the upper 
airways. However, it has been demonstrated that the 
oxygen levels could vary between 0 and 19% in non-
pathological tissues in a normal state (Carreau et al. 
2011). Hyperoxia leads to the production of reac-
tive oxygen species (ROS), including superoxides, 
hydroxyl radicals, and hydrogen peroxide groups. 
These chemical groups can cause cellular damage 
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through lipid peroxidation, enzyme destruction and 
protein/nucleic acid oxidation, leading to apoptosis 
or necrosis (Jamieson et  al. 1986). ROS production 
causes higher levels of injury in unhealthy cell types; 
however, ROS toxic effects are needed to suppress the 
proliferation of cancer cells in tumor tissues (Fang 
et al. 2009). The mechanism by which ROS enforces 
cell abnormalities and even death is not clear. Normal 
cells can neutralize the destructive impacts of ROS by 
cellular anti-oxidative reactions. For instance, heme-
oxygenase-1 (HO-1) catalyzes the breakdown reac-
tion of heme to bilirubin and superoxide dismutase 
(SOD) converts superoxide ion to hydrogen perox-
ide. However, anti-cancer drugs target tumor abla-
tion through ROS synthesis. In a study, the effect of 
ROS production and accumulation was examined in 
a lung cancer cell line. The results confirmed that the 
high levels of developed H2O2 cause DNA damage, 
ATP deficiency, and acute cytotoxicity. In contrast, 
the low levels of exogenously produced H2O2 resulted 
in a moderate level of ATP concentration, late toxic-
ity, G2/M cell cycle arrest and cell senescence. The 
H2O2 produced by mitochondria causes a decline in 
ATP production, although this reduction is reversible 
without any negative impact on cell growth except 
cell senescence due to the cell cycle arrest in G1/S 
phase. Simultaneously, the glycolysis pathway was 
inhibited in cells, and subsequently, ATP restoration 
was inhibited (Panieri et al. 2013). On the other hand, 
hypoxia has been defined as a state without sufficient 
oxygen for cellular metabolic reactions. However, 
oxygen levels are determined in accordance with the 
metabolic requirements of the cell (Semenza 2000). 
Chronic wounds remain a global health challenge 
and hypoxia is one of main causes of delayed wound 
closure in diabetic wounds. To this end, a variety of 
oxygen therapeutics, including hyperbaric oxygen 
therapy, topical pressurized oxygen therapy, topi-
cal continuous oxygen therapy, and/or oxygen diffu-
sion enhancer, have been successfully developed 
over the last decade in order to alleviate the hypoxia 
for an improved wound healing. In a recent study, a 
hybrid hydrogen that supply oxygen and provide anti-
bacterial activity through promoting cell prolifera-
tion improved healing in diabetic wounds (Lin et al. 
2022; Rasouli et al. 2023a, b, c). Hypoxia causes cel-
lular stress through epigenetic-related mechanisms 
that are regulated by hypoxia induced factors (HIFs). 
HIFs mainly control oxygen homeostasis in cells by 

regulating the genes involved in oxygen metabolism, 
erythrocyte production, angiogenesis, and mito-
chondrial metabolism (Choudhry and Harris 2018; 
Al Tameemi et al. 2019). As a whole, oxygen levels 
could alter different aspects of cell biology through 
specific mechanisms. Accordingly, achieving an in-
depth understanding in this regard will pave the way 
toward improving tissue regeneration and promoting 
tissue engineering strategies (Rasouli et al. 2021). In 
this review, we will concisely discuss the effect of 
oxygen tension on cell fate and tissue function/regen-
eration in terms of cell proliferation, angiogenesis, 
cellular senescence, and cell death.

Oxygen tension and cellular growth 
and morphology

In general, molecular oxygen is a metabolic and sign-
aling compound for cells, both in  vitro and in  vivo. 
One of the most important effects of oxygen tension 
on cell biology is related to cell proliferation. In nor-
mal cell populations, following hypoxia, cell prolif-
eration is weakened since the higher cell population is 
accompanied by more O2 demand. However, specific 
cell types sustain their growth in hypoxic conditions. 
Cancerous cells adapt to hypoxic stress and continue 
cell growth by decreasing their O2 consumption. 
However, another important issue is the high levels 
of non-physiological oxygen that lower cell viability. 
Therefore, excess oxygen can be toxic to cells because 
of the increasing influence of ROS (Cipolleschi et al. 
1993). Hypoxia induces stem cell proliferation and 
inhibits their differentiation via stimulation of the 
Notch signaling pathway (Hubbi and Semenza 2015). 
For instance, in a study, human embryonic stem cells 
(hESC) were cultured in both physiological (2–6.5%) 
and atmospheric (21%) oxygen conditions to evalu-
ate the potential variations in the impacts of dif-
ferent oxygen concentrations on colony formation 
and genetic stability. It turned out that physiological 
oxygen conditions better supported clone recovery 
than atmospheric oxygen conditions, in which the 
mean increase was six fold. Furthermore, karyotype 
abnormalities declined in the cultured hESCs under 
physiological oxygen conditions compared to the 
cultured hESCs under atmospheric oxygen condi-
tions, which suggests the likelihood of genomic sta-
bility during the prolonged in vitro hESCs expansion 
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in physiological oxygen culture conditions (Forsyth 
et al. 2006).

In certain types of adult stem cells, low oxy-
gen concentrations in  vitro cause the multiplication 
and maintenance of a multi-potency state (Csete 
2005; Grayson et al. 2007; Samal et al. 2021). Some 
researchers believe that hypoxia is a strong stimulus 
for the differentiation of specific cell lines. For exam-
ple, hypoxia is a strong stimulus for chondrogenesis 
by stem cells (Rehman et al. 2004; Sadat et al. 2007; 
Thangarajah et al. 2009). In most tissue cultures, the 
oxygen level is approximately 20% in  vitro, where 
cells have much lower oxygen levels. The mean arte-
rial blood oxygen concentration is approximately 12% 
and about 3% in tissues (Csete 2005). Therefore, opti-
mizing and understanding stem cell growth and func-
tion has an important relationship with their condition 
in the microenvironment of in vivo. Embryonic stem 
cells live in a low oxygen environment at the time of 
implantation in the uterus due to the lack of access 
to maternal circulation. Uterine oxygen levels are 2% 
in early pregnancy, which increases to only 8% after 
fetal-maternal blood contact. This relative hypoxia is 
the natural physiological environment of embryonic 
stem cells (Genbacev et al. 1997; Cowden Dahl et al. 
2005). Similarly, adult stem cells live in conditions 
of oxygen poverty in the body, such as the environ-
ment in which bone marrow-mesenchymal stem cells 
(BM-MSC) reside (Ma et  al. 2009). It was shown, 
some cells are persistently in hypoxic states between 
1 and 2% (Kofoed et al. 1985; Harrison et al. 2002). 
MSCs are one of the most common candidate cells in 
clinical trials due to their therapeutic capabilities and 
ability to be transplanted allogeneically (Rasouli et al. 
2022; Shirbaghaee et al. 2023).

Hypoxia can alter the properties of cytoskel-
eton proteins, resulting in morphological changes 
in targeted cells (Glass et  al. 2015). For example, 
the phenotype of differentiated chondrocytes could 
be restored after applying oxygen tension, as shown 
in vivo. When the encapsulated chondrocytes in algi-
nate were exposed to 20% oxygen, the morphology 
changed to fibroblastic form, and the expression of 
specific genes related to human articular chondro-
cytes like collagen II, aggrecan and sox9 genes were 
lost in contrast to the cells cultured in 5% oxygen 
tension. Also, the expression of matrix glycosamino-
glycan (GAG) was enhanced statistically significant 
in physiological oxygen level (5%) compared to the 

culture condition of 20% oxygen tension (Murphy 
and Polak 2004).

It seems cell behavior changes in accordance with 
the with the cell type employed. Regarding this, 
the adipose-derived MSCs lost their differentiation 
potential both into chondrocytes and osteocytes after 
culturing in condition with a lower oxygen level of 
2% compared to higher levels of 21% (Malladi et al. 
2006). The stem cells derived from rat CNS (Studer 
et al. 2000), rat neural crest (Chen et al. 2017), murine 
skeletal muscle (Sharkey 2020), rat bone marrow 
(Kim et al. 2016), human CD34 + bone marrow (Gui-
tart et  al. 2011) and human cord blood (Peng et  al. 
2016) showed higher proliferation rate when cultured 
at lower oxygen pressure (2% vs 20%). The addition 
of antioxidants enhances the self-renewal of hemat-
opoietic cells via the activation of the ataxia telangi-
ectasia mutated (ATM) gene. On the contrary, in the 
presence of ROS, the self-renewal of hematopoietic 
progenitor cells was reduced (Ghaffari 2008). The 
effect of oxygen tension on cell fate is much more 
complicated. It seems any oxygen response mecha-
nism in case of inducing the differentiation into a 
lineage suppresses differentiation into other lineages. 
The oxygen pressure lower than below 20% stimulates 
myogenesis more than adipogenesis in skeletal mus-
cle stem cells and MSC lines. In the high-oxygen con-
dition the peroxisome proliferator-activated receptor 
(PPAR)-gamma, a main regulator of adipogenesis, is 
upregulated, thereby suppressing the activation of the 
MyoD promoter (Villarroya et al. 2007). In contrast, 
in the hypoxic condition, the satellite cells undergo an 
increase in the expression level of multiple myogenic 
basic-loop-helix genes (Wang et  al. 2015). In addi-
tion, HIF-1α, an activated factor following diminished 
oxygenation, inhibits adipogenesis via DEC1/Stra13-
mediated repression of PPAR-gamma under hypoxic 
conditions (Yun et al. 2002). In a study, an innovative 
channeled scaffold and culture medium containing 
perfluorocarbon (PFC) were employed to mimic the 
oxygen carrier function of hemoglobin and capillary 
network architecture, respectively. Scaffolds are 3D 
structures that support cell adhesion and prolifera-
tion and are commonly used for tissue regeneration 
purposes (Fattahi et al. 2023; Rasouli et al. 2023a, b, 
c). Compared to the control group, the oxygen pres-
sure was better maintained, whereas the decline in 
the control group was twofold. Accordingly, the DNA 
content, cardiac markers (troponin I, connexin-43) 
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and contractile properties were improved in compari-
son to the control group. Eventually, the biomimetic 
approach served as an important strategy to replenish 
oxygen and increase cardiac differentiation (Radisic 
et  al. 2006). Tissue/organ damage leads to changes 
in the local microenvironment, including reduced 
oxygen concentration and degradation of the extra-
cellular matrix (ECM) (Rasouli et  al. 2021). The 
response of surrounding stem cells to these changes 
is of particular importance. Culture under low-oxygen 
conditions increased cell proliferation and migration 
by activating the ERK signaling pathway and related 
integrins. ECM degradation materials increase ROS 
levels in cells through mitogenic and chemotactic 
responses. Under low oxygen conditions, high cell 
growth rates in progenitor cells were observed with-
out any changes in morphology, differentiation, DNA 
synthesis process or metabolic activity (Tottey et  al. 
2011). There is a report that approving the optimum 
physiological oxygen (5%) inhibits karyotypic abnor-
malities in cardiac and embryonic stem cells. Ane-
uploidy occurs following the addition of high doses 
of antioxidants. Antioxidants also reduce the cellu-
lar amount of DNA repair enzymes by removing all 
intracellular ROS. Therefore, ROS has a physiologi-
cal value that activates DNA repair pathways and 
maintains the stem cell genome’s stability (Li and 
Marbán 2010). Since MSCs following implantation 
are sensitive to microenvironmental stresses such as 
low oxygen and limited nutrition, In a study, hypoxia 
preconditioning and/or transforming growth factor-β3 
(TGF-β3) were investigated to enhance performance 
upon their in vivo implantation for cartilage and disc 
regeneration. Increased MSC survival and extracellu-
lar matrix production were observed in a low-oxygen 
and nutrient-limited environment. The results showed 
that hypoxic preconditioning led to the upregulation 
of genes related to growth, cell signaling, metabo-
lism, and cellular stress response pathways and signif-
icantly increased the survival of MSCs. These results 
strongly support the use of hypoxic preconditioning 
to improve MSC survival after implantation in avas-
cular tissues such as cartilage (Peck et al. 2021). The 
hypoxia-cultured human MSCs either young and old 
ones perform better than cultured cells under nor-
moxia. Hypoxia improves MSC’s capacity for self-
renewal and multipotent differentiation. The underly-
ing mechanisms are Inhibition of miR-627, miR-193a, 
miR-196a, miR-148b expression and up-regulation of 

mir-7977 and mir-195 expression (Mohd Ali et  al. 
2016; Rasouli et al. 2023a, b, c).

Reactive oxygen species (ROS) act to regulate var-
ious signaling pathways in cell physiology. Previous 
studies have shown that hydrogen peroxide (H2O2), 
a non-radical ROS, is required for cytokines, growth 
factors, insulin, AP-1 and NF-KB signaling (Finkel 
1998). H2O2 can also inactivate phosphatase by oxi-
dizing cysteine, which confirms that ROS can inter-
fere with the signaling pathway (Rhee et  al. 2000). 
The physiological flux of H2O2 results in reversible 
oxidation to a sustained state of specific protein tar-
gets. As a result, protein activity changes localization 
and interactions. On the other hand, it helps coordi-
nate processes such as cell reproduction, differen-
tiation, migration and angiogenesis (Jones and Sies 
2015; Siegrist and Sies 2017). The low-level H2O2 
maintenance status and the associated physiological 
redesign signals are called “oxidative stress” (Sies 
2017). The total cellular concentration of radical ani-
ons is much lower than that of H2O2. Molecular redox 
initiation in signaling is one of the physiological tar-
gets of oxidants that respond to external stress by reg-
ulating cells at different levels. In addition to physi-
ological H2O2 levels, which are important for signal 
transmission, high physiological H2O2 concentra-
tions (approximately over 100 nM) also lead to non-
specific protein oxidation, altered reaction patterns, 
and reversible and irreversible damage to protein 
biomolecules. Finally, cell death is accompanied by 
pathological complications (oxidative distress) (Sies 
and Jones 2020). Most superoxide is generated by the 
partial reduction of oxygen in the electron transfer 
chain. In addition, they are formed at different rates in 
a cell, and their activity is different. In terms of activ-
ity, the hydroxyl radical is the most reactive species 
known and is mainly responsible for the cytotoxic 
effects of ROS (Bolisetty and Jaimes 2013). Most of 
the superoxide produced is found either in the matrix 
or in the inner membrane of the mitochondria facing 
the matrix. Although hydrogen peroxide is more sta-
ble than superoxide, it can be released from the mito-
chondria into the cytosol through voltage-gated anion 
channels, thereby reducing the deleterious effects 
of these reactive species on the mitochondria (Mac-
Millan-Crow et al. 1998; Lacza et al. 2003). Besides 
mitochondrial metabolism, ROS also produce cellular 
enzymes known as nicotinamide adenine dinucleotide 
phosphate oxidases (NADPH) (Lassègue et al. 2012). 
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Other cellular sources of ROS include neutrophils, 
monocytes, cardiomyocytes, endothelial cells, xan-
thine oxidases, cytochrome P450, lipoxygenases, and 
nitric oxide synthase (Izyumov et  al. 2010; Cubero 
and Nieto 2012). Another physiological factor of ROS 
is aging caused by ROS toxicity through a destructive 
cycle. Damage from mitochondrial ROS is greater. 
It was also shown that mitochondrial ROS produc-
tion is higher in mitochondria isolated from older 
animals (Sohal and Sohal 1991; Balaban et al. 2005). 
On the other hand, protein, lipid, and DNA levels in 
oxidative diseases are strongly associated with aging 
(Bardaweel et  al. 2018). Therefore, a negative rela-
tionship between mitochondrial ROS production and 
longevity can be understood in different organisms 
(Lambert et  al. 2007). In the chronic inflammatory 
state (Dröge 2002), excess ROS inhibits mitophagy 
and activates a specific type of autophagy used to 
eliminate dysfunctional mitochondria (Salminen et al. 
2012). Thus, increased levels of ROS are produced, 
which activate more inflammation (Zhou et al. 2011).
However, high concentrations of generated ROS are 
involved in other biological processes.

It is obvious that the low tension of oxygen forms 
ROS and finally causes chromosomal instabilities, 
and the physiological signals try to eliminate the 
harm. In this manner, VEGF and erythropoietin are 
increased after hypoxic conditions over injuries and 
lead to the migration of bone marrow stem cells into 
the blood circulation and their mobilization into the 
site (Greenwald et  al. 2019). Furthermore, these 
two factors play a role in the tumor core following 
hypoxia, where they promote cancer stem cell sur-
vival and radiation resistance (Lugano et  al. 2020). 
Moreover, in the ischemic tissues, the stromal cell-
derived factor (SDF-1) is expressed, and thereby this 
factor stimulates the migration of stem cells into the 
injury sites (Miller et  al. 2005). Although, the cor-
responding factor acts as a metastatic agent, such as 
other oxygen-regulated factors, matrix metallopro-
teases and hepatocyte growth factor (Bragg et  al. 
2019).

When the hypoxic condition is applied to MSCs 
in an in  vivo model, the apoptosis happens through 
the down-regulation of pro-survival genes like Akt, 
which causes cell death. In contrast, in in vitro stud-
ies, the proliferation rate of the corresponding cells 
is enhanced and their differentiation into various lin-
eages is started. The lower oxygen tension induces 

the paracrine activity of MSCs and increases the 
expression of angiogenic factors such as VEGF and 
interleukin-6 (IL-6). Also, hypoxia causes the migra-
tion and homing of MSCs via the stimulating expres-
sion of stromal cell–derived factor-1 (SDF-1) and its 
receptor, CXCR4 (Das et al. 2010).

The effects of hypoxia on cell morphology lead 
to different results that could be beneficial or harm-
ful to cell functionality. Yuan et  al. illustrated that 
after culturing the human HCC cell line HepG2 in 
1% O2 for 72  h, the cells morphology changed to 
a spindle shape and their cellular junctions were 
destroyed (Yuan et  al. 2012). Also, neuronal IMR-
32 cells rounding and detachment from the growth 
surface were observed by Huang et  al. under 
hypoxia (Huang et  al. 2013). The same result was 
achieved by Song et  al. In this evaluation, three 
breast cell lines (MDA-MB-231, MCF-7 and MCF-
10A) were stored in a hypoxic state for 72  h and 
their morphology was compared with that of control 
cells in a normal condition. The cell–cell junctions, 
form, and shape of cells under normoxia (21% oxy-
gen) were normal, but the cells were flattened and 
lost their tight cell–cell junctions and looked like 
fibroblasts. Indeed, the cell phenotype had changed 
under hypoxia stress (Song et  al. 2018). Furuta 
et  al. incubated Lewis lung carcinoma (LLC) cells 
in hypoxia. They observed that the cell morphol-
ogy was altered to a spindle-shape under hypoxia 
(Furuta et al. 2015). However, a reverse report was 
published by Ahmed et  al. Their findings revealed 
that the dental pulp stem cells (DPSCs) cultured 
under normoxia condition had a larger and more 
flattened morphology than under hypoxia. Also, 
the cells exhibited larger nuclei and were hardly 
detached from surface culture by trypsinization 
under hypoxia than the cells cultured under nor-
moxia condition (Ahmed et al. 2016). Peixoto et al. 
showed that under hypoxia, bladder cancer cell lines 
(T24) had a morphology with a more elongated 
semblance and larger intercellular spaces (Peixoto 
et  al. 2016). Moreover, Lim et  al. cultured human 
embryonic stem cells under hypoxia and examined 
the effects of O2 tension on embryoid body (EB) 
formation and their morphology. Significant cell 
death was observed, and also, the smaller EBs were 
formed under hypoxia than those grown under nor-
moxia (300 ± 50 µm vs. 500 ± 100 µm, respectively) 
(Lim et al. 2011). On the other hand, the content of 
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extracellular vesicles (EV) obtained from MSCs can 
be adjusted under different culture conditions. These 
cells respond to exposure to hypoxia by activat-
ing hypoxia-inducible factor (HIF) at low O2 con-
centrations. HIF has direct and indirect pleiotropic 
effects and modulates the expression of hundreds of 
genes involved in processes such as inflammation, 
migration, proliferation, differentiation, angiogen-
esis, metabolism, and cell apoptosis. Several stud-
ies have shown that MSC-derived EVs subjected to 
hypoxia have a greater regenerative capacity than 
those obtained under normoxia (Pulido-Escrib-
ano et  al. 2022). Morphological studies of 3 cell 
types have been presented in Fig. 1. Since hypoxia 
increases the proliferation of BM-MSCs, in a study, 

the proliferation of BM-MSCs along with zinc was 
investigated. All tissues, fluids, and organs of the 
human body contain zinc. Zinc is essential for cell 
proliferation and differentiation, especially for the 
regulation of DNA synthesis and mitosis. It sig-
nificantly increases the proliferation of BM-MSC 
and reduces the doubling time of the cell popula-
tion in hypoxic and normoxic environments com-
pared to control cells. MSC migration to the injury 
site was increased, and HIF1-α expression signifi-
cantly decreased in hypoxic conditions compared to 
untreated and control hypoxic cells. Zn-precondi-
tioned mesenchymal cells maintained their spindle-
shaped and fibroblast-like morphology at high pas-
sage (Rizvi et al. 2022).

Fig. 1   Morphological 
differences of cell cultured 
under normoxia and 
hypoxia by light micros-
copy. A H9C2 cells under 
hypoxia condition; B H9C2 
cells under normoxia 
condition (Fan et al. 2018); 
C OCUM-2MD3 (Gastric 
cells) under normoxia 
condition; D OCUM-
2MD3 (Gastric cells) 
under hypoxia condition 
(Matsuoka et al. 2013); E 
Renal Carcinoma Cell Lines 
in normoxia condition; 
F Renal Carcinoma Cell 
Lines in hypoxia condition 
(Zhang et al. 2017)
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Oxygen and inflammatory pathways

Inflammatory mechanisms are complex biologi-
cal processes by which tissues respond to combat 
injurious stimuli and defend the host. This event 
can be associated with tissue remodeling and meta-
bolic changes, in order to maintain cell homeosta-
sis (Medzhitov 2008). The inflammatory reactions 
involve multiple specific cell activities that could 
cause different processes, such as the activation of 
immune cells (leukocytes, granulocytes, monocytes, 
lymphocytes, and dendritic cells) and the stimulation 
of the different bioactive mediators’ production (such 
as cytokines, chemokines, or prostanoids). Also, this 
complex biological process leads to epigenetic regu-
lation of the important related genes expression, such 
as nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-κB/AP1) activity or IL-6 expres-
sion (Martínez et  al. 2012; Nayadu et  al. 2012). 
The NF-κB family contains members of transcrip-
tion factors that regulate inflammation, coordinate 
immune responses and tissue homeostasis (Vallab-
hapurapu and Karin 2009). The hypoxia of intestinal 
ischemia reperfusion causes the activation of NF-κB 
in intestinal epithelial cells, which in turn leads to 
the higher production of tumor necrosis factor α 
(TNF-α); a pro-inflammatory cytokine, but simulta-
neously reduces intestinal epithelial apoptosis (Chen 
et  al. 2003). Accordingly, the increased TNF-α pro-
duction strongly inhibits skeletal (Chen et  al. 2008) 
and cardiac (Suematsu et  al. 2003) muscle differen-
tiation by decreasing myocyte enhancer factor 2C 
(MEF2C) (Csete 2005). Another point worth noting 
is that hypoxia enhances the NF-κB pathway through 
the increased expression and signaling of Toll-like 
receptors (TLRs) (Kuhlicke et  al. 2007). The TLRs 
family, as a class of pathogen-recognition receptors, 
provides antimicrobial factors and stimulates phago-
cytosis in the first line of defense against pulmonary 
infection. The function is carried out via the recog-
nition of unique microbial structures and the initia-
tion of inflammatory and adaptive immune responses 
(Bals and Hiemstra 2004). Macrophages are homed 
to inflammation site after the activation step by dam-
aged tissue, and they increase the levels of cytokines, 
chemokines, and other molecules in the blood circu-
lation. These macrophages are called polarized type, 
having M1 or M2 phenotype. The M1 macrophage 
after inhibition of arginine metabolism, and the M2 

macrophage, under inhibitory induction of cytokines, 
produce ROS and inflammatory cytokines (Brown 
et al. 2012).

The HIFs are another important factors in hypoxic 
situations. HIFs are a family of transcription fac-
tors whose role is response regulation to hypoxic 
stimuli. Over 100 target genes whose expression 
are involved in a broad range of physiological func-
tions, including metabolism, autophagy, and other 
physiological responses to hypoxia, can be regulated 
by the HIF signaling pathway (Semenza 2009a, b). 
Members of this κB (NF-κB) family interact with 
the members of PHD–HIF pathway associated with 
inflammation (Taylor 2008). The HIF gene expres-
sion in hypoxia and NF-κB in inflammation con-
ditions have been shown to have several common 
target genes, common regulators, and specifically, 
common stimuli (Bandarra and Rocha 2013; Nath 
et  al. 2022; Dvornikova et  al. 2023). NF-κB activa-
tion has been shown to stabilize HIF-1α activation 
in hypoxia and HIF-1β expression in inflammation 
(Van Uden et  al. 2008). On the other hand, HIF-1α 
factor has been shown to inhibit NF-κB expression 
in  vivo and in  vitro under inflammatory conditions 
(Bandarra et  al. 2015, Dvornikova et  al. 2023). Cel-
lular adaptation to hypoxia is based on the transcrip-
tion factor HIF-1α, which is inactive under normoxic 
conditions. In mammals, HIF-1α plays an important 
role in the cellular response to systemic oxygen lev-
els by influencing metabolic and inflammatory path-
ways (Di Girolamo et al. 2022). It has been confirmed 
that the concentration of environmental oxygen lev-
els and inflammation as a physiological process are 
closely related. Inflammation is often accompanied 
by hypoxia and on the other hand, hypoxia itself can 
cause inflammation (Corcoran and O’Neill 2016). In 
spite of the important role of ROS in pathogen kill-
ing, it could increase vascular permeability through 
endothelial cell damage (Tiidus 1998). In one investi-
gation, the adhesion of eosinophils to nerve cells and 
the release of their products were investigated due to 
the plausible contribution of eosinophil products in 
developing some inflammatory diseases. Eosinophils 
caused neurite contraction in IMR32 neuroblastoma 
cells, which resulted in tyrosine phosphorylation of 
some neuronal cell proteins, activation of p38 MAP 
kinase, and ROS production. If eosinophil adhe-
sion is suppressed, the reaction will stop. However, 
attenuation of p38 MAP kinase could not stop ROS 
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production despite inhibition of neurite contraction. 
Thus, there may be two distinct pathways that work 
separately: by producing tyrosine kinase-dependent 
MAP kinase and by p38 MAP kinase. Therefore, 
the results show that the consequences of eosinophil 
adhesion and degranulation of neurons, change the 
morphology of neurons with the release of a number 
of proteins (Kingham et al. 2003). ROSs are produced 
by cells engaging in host-defense responses. These 
cells, called polymorphonuclear neutrophils (PMNs), 
promote endothelial dysfunction by oxidizing crucial 
cellular signaling proteins. ROS acts as a signaling 
molecule and also as an inflammation mediator. Thus, 
the production of ROS is a central occurrence in the 
progression of many inflammatory diseases (Salvem-
ini et  al. 2003). Moreover, recent studies indicated 
that TLRs expression participates in the response to 

oxidant stress and that ROS is correlated with the 
inflammatory signaling pathway of TLR4 in neutro-
phils (Jiang et al. 2005) (Fig. 2).

In some patients, it had been shown that their 
inflamed tissues had a lower oxygen value than nor-
mal. There are several diseases that result from the 
de-regulation of hypoxia and inflammation path-
ways such as rheumatoid arthritis (RA), inflamma-
tory bowel disease, and colorectal cancer (CRC) 
(Taylor 2008; Näthke and Rocha 2011). Recently, a 
few scientific studies have been focused on attempt-
ing to better understand how these pathways are 
regulated and respond to in diseases. In the gastro-
intestinal (GI) tract, the mice with the experimen-
tal models associated with inflammatory bowel 
disease (IBD) confirmed that more inflammation 
was accompanied by lower oxygen levels in their 

Fig. 2   Oxygen and inflammation pathways. Hypoxic condi-
tions lead to increased expression and signaling of Toll-like 
receptors (TLRs), and thereby NF-κB pathway activation. An 
increased NF-κB signaling pathway is associated with higher 
levels inflammatory cytokines, including TNF-α, and simul-
taneously decreased cell apoptosis. Furthermore, expression 
and activation of both HIF-1α HIF-1β increased as a result of 

NF-κB activation. However, following HIF-1α activation the 
NF-κB pathway is suppressed. It is worth noting, TLRs not 
only activate NF-κB, but also drive ROS production. Subse-
quently, generated ROS plays a role in promoting inflammation 
and rising vascular permeability through endothelial cell dam-
age
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colonic tissues (Karhausen 2004). The result cor-
relates with the pathology that was investigated in 
IBD patients (Taylor and Colgan 2007). Inspect-
ing the role of hypoxia in epithelial cells and 
immune cell responses could open a new field for 
the development of new therapeutics for treating 
IBD (Lewis et al. 1999). The fact that hypoxia can 
induce inflammation has attained general accept-
ance from studies related to hypoxia signaling 
pathways. In people with mountain sickness, for 
example, the levels of circulating pro-inflammatory 
cytokines would be increased subsequently (Gro-
cott et al. 2009). By the examination of all inflam-
mation markers, it was shown that the serum lev-
els of interleukin-6, the interleukin-6 receptor, and 
C-reactive were increased in healthy volunteers who 
spent three nights at elevations higher than 3400 m 
(Hartmann et  al. 2000). Furthermore, the increase 
of inflammatory cells in multiple organs and greater 
serum levels of cytokines were approved in mice 
after short-term exposure to low oxygen concentra-
tions (Rosenberger et  al. 2009). In various studies, 
it has been reported that higher oxygen concentra-
tions can regulate the mRNA expression of sev-
eral genes related to protein secretion. For exam-
ple, after 5 h of HBOT (90 min at 97.5% O2 at 2.4 
ATA), 19 genes involved in adhesion, angiogenesis, 

inflammation, and oxidative stress were downregu-
lated (Kendall et  al. 2012). While, T cells showed 
different relationships with oxygen when they reg-
ulated their function in response to environmen-
tal oxygen levels (Ruigrok et  al. 2019). In addi-
tion, Mitchel et  al. showed that necrosis can lead 
to acute inflammation, and among pro-inflamma-
tory cytokines, the mRNA expression of IL-6 and 
TNF-α were elevated upon exposure to 80% O2 in 
48  h, although they decreased after 96  h (Ruigrok 
et  al. 2019). In an In vivo study of Wang C. et  al. 
the higher expression of IL-1β mRNA after 24  h 
confirmed by the examination of the blood samples 
from individuals under hypobaric hypoxia (Wang 
et al. 2018). At the end, the molecular mechanisms 
of the interactions between hypoxia and inflamma-
tion are intertwined at cellular and clinical levels. 
Therefore, oxygen-sensing mechanisms and hypoxia 
signaling pathways could be potential therapeutic 
targets for the treatment of inflammatory diseases. 
Moreover, this evaluation could be tested in patients 
with acute lung injury, myocardial ischemia, inflam-
matory bowel disease, or cancer. There are stud-
ies focused on the impact of oxygen levels on the 
expression of inflammatory genes, as summarized 
in Table 1.

Table 1   ROS impacts on inflammatory genes

Treatment condition Model/tissue Gens/proteins References

Hypoxia Serum IL-6↑,CRP ↑ Hartmann et al. (2000)
Hypoxia Blood sample IL-1β ↑ Wang et al. (2018)
Hypoxia Rat model IL-6 ↑ Chaddha et al. (2020)
Hypoxia blood sample IL-1β ↑,IL-3 (n.s), IL-6↑, TNF-a 

(n.s), IL-10 ↑
Kammerer et al. (2020)

Hypoxia HUVEC cells IL -1a ↑, IL-6 ↑, IL-8 ↑ Ali et al. (1999)
Hypoxia Human IVD Cells IL-1β↑, IL-6↑, IL-8↑, and IL-20↑ Hsu et al. (2020)
Hyperoxia Mice tissue IL-6 and Tnf-α: (46 h ↑), ( 96 h ↓) Ruigrok et al. (2019)
Hyperoxia 3T3-L1 adipocytes Hif-1α ↑, Il-6 ↑, ROS↑ Quintero et al. (2012)
Hyperoxia C56BL/6 J mice Hif-1α ↑ Benderro et al. (2012)
Hyperoxia Human alveolar macrophage IL -lp↑, IL-6↑, IL-8↑ TNF-a↓ Desmarquest et al. (1998)
Hyperoxia C57BL/6 female mice TNF-a↓ Barazzone-Argiroffo et al. (2001)
Hyperoxia A549 cells IL-6↑, IL-8↑, ROS ↑ Huang et al. (2016)
Hyperoxia Sprague–Dawley rat ROS ↑ Kwak et al. (2006)
Hyperoxia hematopoietic stem cells ROS ↑ Cipolleschi et al. (1993)
Hyperoxia lung capillary endothelial cells in rats ROS ↑ Brueckl et al. (2006)
Hyperoxia C57BL/6 J mice ROS ↑ Zangl et al. (2014)
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Oxygen and cancer/cell senescence

There are two types of cell death, necrosis and apop-
tosis, that are influenced by different factors. Oxy-
gen depletion is one of the main factors involved in 
necrosis, but apoptosis is a form of programmed cell 
death  (Elmore 2007). The cells that get necrotic, 
can be identified with these morphological features. 
The appearance of flocculent densities in mitochon-
dria was detected with the progressive swelling and 
degeneration of cellular components. The Madin-
Derby canine kidney (MDCK) cell line was cul-
tured in hypoxia and normoxia conditions by Allen 
et  al. (Allen et  al. 1992). They showed that the cell 
death pathway could change from apoptosis to necro-
sis by adding hypoxia stress to renal tubule struc-
tures. Although, this phenomenon has already been 
proven by Sheridan et al. for human melanoma cells 
in semi-solid agar medium (Sheridan et al. 1984). It 
was recently shown that hypoxia can modulate the 
anti-proliferative response in tumor cells (oncogene-
induced senescence). Intracellular levels of ROS 
increases following hypoxia. ROS acts as a double-
edged sword in cancer cells by altering two signal-
ing pathways, such as ras-raf-mek1/2-ERK1/2 and 
the P38 mitogen-activated protein kinases (MAPK) 
pathways, that have opposing roles in tumorogenesis. 
It was concluded that ROS may not be an absolute 
tumor suppressor or activator factor (Eren 2023).

Risk factors such as cancer, stress, tobacco, envi-
ronmental pollutants, radiation, viral infection, diet, 
and bacterial infection produce ROS molecules after 
their interactions with cells (Zhang et al. 2016). ROS 
molecules act as a double-edged sword in cancer cells 
(Schumacker 2006) depending on ROS dosage and 
type. The site of ROS production can either lead to 
apoptosis or increase tumorigenesis (Raza et al. 2017; 
Kumari et  al. 2018). The destruction of cancer cells 

occurs at a high ROS level (Nishikawa 2008), while 
at a modest level of ROS, cancer cells can survive 
(Kong et al. 2000). ROS-dependent apoptosis in can-
cer cells, both in  vitro and in  vivo, has been shown 
in many studies in the past years (Trachootham et al. 
2006). Both extrinsic and intrinsic pathways of apop-
tosis are activated through ROS (Ozben 2007). In the 
intrinsic pathway, apoptosis occurs through the open-
ing of mitochondrial permeability transfer pores and 
the release of cytochrome C into the cytosol. These 
events cause the formation of an apoptosome, caspase 
activation, and the decomposition of intracellular pro-
teins, and finally, cell death occurs (Martindale and 
Holbrook 2002; Redza-Dutordoir and Averill-Bates 
2016). Extrinsic pathways are composed of exter-
nal stimuli, ligand molecules, and death receptors. 
In this pathway, extracellular ligands such as Fas-L, 
TNF, and TNF-related apoptosis-inducing ligand 
(TRAIL) are attached to death receptors, and a death-
inducing signaling complex (DISC) is developed. 
Then, apoptotic signaling happens and facilitates cell 
death (Uchikura et al. 2004; Jin et al. 2005). On the 
other hand, for the role of ROS tumorigenesis, ROS 
can target transcription factors, and among the vari-
ous transcription factors that are activated by ROS, 
HIF-1 α, NF-κB and STAT3 could be introduced. 
Transcription factors activated by ROS are capable 
of enhancing the activation of the antioxidant defense 
system and promoting the expression of cell survival 
proteins and the genes involved in inflammation, cell 
transformation, tumor cell death or survival, prolif-
eration, invasion, angiogenesis, and tumor migra-
tion (Dewhirst et al. 2008; Gupta et al. 2012). It was 
shown that the antioxidant compatibility of tumor 
cells is very limited. Increased activity of antioxi-
dants such as SOD2/MnSOD or inactivation of inhib-
itory enzymes, including PRX1, are both seen in the 
development and progression of cancer (Janssen et al. 
1999). The summarized pathways of ROS impacts are 
indicated in Fig. 3.

Singlet oxygen is one of the most famous non-rad-
ical factors, but ROS compounds are active, and their 
levels decrease after the addition of antioxidants. A 
balance between the levels of antioxidants and ROS 
is required to suppress cell damage ranging from sig-
nal transduction and gene expression to cell transfor-
mation and necrosis/death. Thus, a lower or higher 
amount of oxygen could, respectively, lead to hypoxia 
or oxidative stress (Matés and Sánchez-Jiménez 

Fig. 3   ROS impacts on cancer and senescence. A ROS, acti-
vates the transcription factors HIF-1 α, NF-kB and STAT3. 
DNA and mitochondrial damage activate the antioxidant 
defense system and lead to cell death and senescence. B 
ROS, in response to death-inducing ligands (TNFα and Fas), 
increases the activation of effective caspases, decreases Bcl-2 
activity, or stimulates intracytoplasmic cytochrome release. 
Cytochrome c interacts with Apaf-1 to form the apoptosis. 
ROS can also increase p53 expression, which increases ROS 
levels through an intracellular mechanism. Eventually leads to 
cell death

◂
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2000). Tumor cells adapt to hypoxia through glucose 
metabolism, which contributes to an invasive phe-
notype. Glycolysis plays a role in redox homeostasis 
in cancer through the production of reducing agents 
such as NADPH and glutathione (GSH). Also, stud-
ies have shown that tumor cells adapt by increasing 
glycolysis to prevent H2O2-induced cell death (Harris 
2002). On the other hand, depending on the type and 
concentration of ROS they impose complex effects on 
cells. A slight increase in reactive species causes dif-
ferent cell signaling cascades that enable cell growth 
and survival (Bäumer et al. 2008). If ROS levels are 
decreased using antioxidants in tumor tissue, it would 
induce senescence, although cancer stem cells still 
remain. The incidence of antioxidant defense signal-
ing in the following could occur and reactivate cancer 
cells (Achuthan et  al. 2011). Moreover, ROS could 
not only be a reason for cell death but also activate a 
signaling pathway for cell survival. Hypoxia or oxida-
tive stress induces ROS generation, and autophagy in 
cancer may lead to a healthy state (Azad et al. 2009). 
However, it is worth mentioning that hypoxia can 
participate in tumor progression through alternations 
in the gene and protein expression of the ECM, and 
these proteins play a main role in angiogenesis. Hiels-
cher et al. showed that the fibrous structure of ECM 
in the co-cultures of neonatal fibroblasts (NuFF) with 
MDAMB-231 breast cancer cells after incubation 
in hypoxia, converted to more compact and aligned 
fibers with a larger diameter compared to the fibers 
formed in the atmospheric oxygen condition. This 
architecture regulated the expression of angiogenic 
factors and matrix metalloproteinases (Hielscher et al. 
2013).

Singlet oxygen is a toxic molecule and can be 
implicated in many human diseases. It is derived 
directly from oxygen gas and relates extremely well 
to the oxygen level of an in vitro or in vivo environ-
ment. Also, when antioxidants such as NAC are used 
to inhibit HIV-virus replication, oxidative stress starts 
and disrupts the balance of cellular protein kinase/
phosphatase (Waris and Ahsan 2006). Intracellular 
ROS is produced after higher expression of p53 and 
induces senescence or apoptosis in normal and can-
cer cells. While, exogenous ROS in combination with 
p53’s physiological level could change senescence 
into apoptosis (Macip et  al. 2003). There are differ-
ences between the reactions of human and mouse 
cells to oxygen pressures. Human cells showed a 

senescence-associated secretory phenotype (SASP) 
for the secretion of cytokines. Both senescent mouse 
and human fibroblasts were cultured in physiological 
(3%) and normal cell culture conditions (20%) of oxy-
gen tension. Mouse cells did not expose SASP like 
human cells. When the mouse cells were incubated in 
3% oxygen pressure and induced by radiation, SASP 
appeared and the synthesis of metalloproteinases 
started. Furthermore, the cell proliferation of mouse 
cells was inhibited, although with SA-bGal activity, 
DNA synthesis, and serum-inducible c-Fos expres-
sion (Coppé et al. 2010). In a study, human umbilical 
vein endothelial cells (HUVECs) were treated with 
indoxyl sulfate (IS) that had a concentration similar 
to the serum level in hemodialysis patients. IS caused 
ROS synthesis and cell senescence through p53 acti-
vation (Adelibieke et  al. 2012). A group studied the 
effect of physiological oxygen pressure (3%) vs. high 
oxygen tension (20%) in an in vitro analysis of mouse 
embryonic fibroblasts (MEFs) derived from lacZ 
mice. Senescence and immortalization with a three-
fold increase in mutations occurred when the cells 
were cultured in a 20% oxygen condition, contrary to 
the cells in a 3% oxygen condition. The results clearly 
exposed the critical role of oxidative conditions 
on genomic integrity (Busuttil et  al. 2003). It has 
recently been claimed that physiological levels of O2 
should be maintained in cell culture to better mimic 
the in  vivo redox reactions associated with specific 
cell types (Sies et al. 2022). Aging is a stochastic pro-
cess that happens as a result of genetic and epigenetic 
changes such as oxidants (Colavitti and Finkel 2005). 
ROS induces telomerase shortening and premature 
senescence increases ROS levels as a positive feed-
back system (Passos and Von Zglinicki 2006). Also, 
it was reported that the activation of the checkpoint 
gene CDKN1A (p21) for a long time caused mito-
chondrial dysfunction and finally ROS synthesis, 
which is a major proof of DNA damage and then 
senescence (Passos et  al. 2010). The senescence of 
endothelial cells accelerates in diabetes. The antidia-
betic hormone glucagon-like peptide 1 (GLP-1) was 
studied by a group to reduce the aging rate of these 
cells which were under oxidative stress. The peptide 
decreased intracellular H2O2 and activated the tran-
scription factor of cAMP response element-binding 
(CREB) levels through the cAMP/protein kinase A 
(PKA) pathway. In addition, the oxidative defense 
genes HO-1 and NQO1 were activated after applying 
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GLP-1 (Oeseburg et  al. 2010). Exogenous hydrogen 
peroxide at ≥ 1 mM, induced cell death, 100–500 μM 
caused senescence, and lower values did not lead to 
cell proliferation. This non-specific behavior of ROS 
has been related to the random injury of cell compo-
nents and some activation of specific cell pathways 
(Lu and Finkel 2008).

Oxygen and angiogenesis

Hypoxia or ischemia conditions could activate the 
expression of VEGF and angiopoietin-1 genes, trig-
gering the activation of NADPH oxidase. This 
enzyme produces ROS compounds such as superox-
ide and the resultant H2O2 leads to the auto-phospho-
rylation of VEGFR2 and finally angiogenesis. This 
ROS dependent angiogenesis happens via endog-
enous antioxidant enzymes such as SOD and thiore-
doxin. Hence, NADPH oxidase has been introduced 
as a main producer of ROS. The deep insight into 
oxygen’s role in cell fate may provide a better under-
standing of stem cell requirements for desirable pro-
liferation, migration, homing, commitment, or dif-
ferentiation (Ushio-Fukai and Nakamura 2008). The 
related mechanism is summarized in Fig. 4.

The singlet oxygen, as a chemical formula of O2 is 
classified as the non-radical form of ROS that could 
lack unpaired electrons but is chemically reactive and 
can be changed to radical ROS through mitochon-
dria, peroxisomes, endoplasmic reticulum, and the 
NADPH oxidase (NOX) complex in cell membranes 
(Luis et al. 1992; Inoue et al. 2003). There is a major 
relationship between tissue oxygenation status and 
active angiogenesis, in which the accumulation of 
genes as hypoxia-inducible factor (HIF)-α subunits, 
plays a major role in the activation of angiogenic 
transcription factors. HIF-α is regulated by a subset 
of dioxygenases called prolyl hydroxylase (PHD), 
which use oxygen as a substrate. Therefore, in the 
absence of oxygen, HIF-α subunits are gathered due 
to lower hydroxylation function. After their forma-
tion of heterodimers with HIF-1ß, the expression of 
angiogenic factors is activated and thus, cells could 
adapt to hypoxia. The regulation of angiogenesis 
involves two different mechanisms. The mechanism 
of paracrine (non-endothelial expression of angiogen-
esis factors) induced by VEGF-A, in which the factor 
interacts with surface receptors on endothelial cells to 

Fig. 4   ROS impacts on angiogenesis. In hypoxic conditions, 
the expression of VEGF and angiopoietin-1 genes is activated, 
which contributes to the activation of NADPH oxidase. Sub-
sequently, the activated enzyme generates ROS compounds. 
Thereby, ROS molecules induce the auto-phosphorylation of 
VEGFR2 and eventually angiogenesis
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initiate angiogenic activity. The autocrine mechanism 
induces endothelial cells to express VEGF-A, which 
supports angiogenesis and protects vascular integ-
rity. These two mechanisms interact with each other 
(Fong 2009). The therapeutic use of MSC transplan-
tation has proposed a new strategy for hypoxic pre-
conditioning through angiogenesis. For example, in 
ischemic heart disease, a major problem with using 
this treatment is the low survival of transplanted cells 
around the infarct, which leads to cell death due to 
endogenous and environmental factors such as the 
inflammatory response. Therefore, improving the 
survival of transplanted cells is crucial to increasing 
the efficiency and effectiveness of stem cell therapy. 
Angiogenesis is one of the effective mechanisms for 
improving the function of stem cells after transplan-
tation. Transplanted MSCs stimulate angiogenesis 
after myocardial infarction (MI) by secreting multiple 
angiogenic cytokines and undergoing differentiation 
into endothelial cells. Hypoxia preconditioning (HP) 
stimulates endogenous mechanisms to express multi-
ple proteins to protect against hypoxia. This condition 
can reduce neuronal apoptosis by inducing HIF-1α 
and protecting myocytes from oxygen-induced dam-
age and reperfusion. As a result, studies show that 
HP-treated MSCs have better therapeutic effects in 
ischemic heart cases. The functional advantages of 
HP-MSC transplantations are as follows: (1) With 
HP, autocrine and paracrine signaling of MSCs is 
increased, and it reduces the apoptosis of transplanted 
cells and endogenous cardiomyocytes; (2) the higher 
survival of HP-MSCs provides better and longer sup-
port in a compensation process; and (3) the higher 
survival of the transplanted cells increases angiogene-
sis. These factors generally repair tissue and provide a 
simple but effective strategy for treating clinical MSC 
transplantations. The important point in this regard 
is to study its effect on mortality for long time (Hu 
et  al. 2008). In addition, mechanical stress has been 
shown in in vivo studies to lead to angiogenesis and 
vascular regeneration. In this regard, related evidence 
has shown that blood vessels contain stem/progenitor 
cells that are activated by physiological and patho-
physiological biomechanical pressures and released 
into the bloodstream (Sharifpanah et al. 2016). Also, 
hypoxia stimulates the angiogenic effects of fat-
derived older MSCs. Since the exact concentration 
of oxygen in adipose tissue is unknown, hypothetical 
oxygen levels were used for bone marrow. Hypoxic 

ventilation has shown beneficial effects on bone mar-
row-derived MSCs by enhancing their angiogenic 
properties. Activation of HIF-1 leads to the expres-
sion of more genes for angiogenic stimuli such as 
VEGF, angiopoietin, platelet-derived growth factor 
B subunit (PDGFB), beta-1 growth factor conversion 
(TGFb1), and SDF-1. Thus, hypoxic ventilation of 
human fat-derived MSCs can increase angiogenesis 
through secretory factors (Efimenko et al. 2011).

Because oxygen is an important signaling mol-
ecule in stem cells, hypoxia can increase the expres-
sion of specific genes, including glycolysis, erythro-
poiesis, and angiogenesis (Glut-1, Epo, and VEGF, 
respectively) (Cameron et  al. 2008). Satellite cells 
are muscle progenitor cells that are normally inactive 
and activated by muscle damage and have a number 
of growth factors, including hepatocyte growth fac-
tor (HGF), fibroblast growth factor (FGF) and VEGF. 
Their strong VEGF gene expression happens dur-
ing muscle fiber regeneration. In ischemic muscle, 
HIF transcribes 100 genes involved in metabolism, 
erythropoiesis (Rhoads et al. 2009). Exogenous oxy-
gen supply could increase nerve regeneration through 
Schwan cell survival and angiogenesis. Schwan 
cells were protected from hypoxia and angiogen-
esis was improved in vitro by perfluorotributylamine 
(PFTBA)-VEGF core–shell system. Furthermore, 
In  vivo investigations shown that the VEGF could 
induce neovascularization, and the emerging blood 
vessels served as consecutive oxygen supplies for SCs 
during nerve regeneration when the oxygen trans-
ported by PFTBA was depleted (Ma et al. 2022). The 
physiological niches of MSCs have much less oxy-
gen stress. Therefore, the stimulus of oxygen stress 
plays an important role in the balance between cell 
proliferation and commitment to differentiation. The 
presence of blood vessels and HIF-1α in fetus is not 
known. HIF-1α shows anomalous evidence about 
its role in NSCs fate via glycolytic metabolism. In 
drosophila neuroblasts, during the development of 
anaerobic metabolism, it is converted to oxidative 
phosphorylation, and the induction of oxidative phos-
phorylation is required for cell cycle exit and neuro-
blast differentiation. Similarly, in adult mammals, the 
oxygen consumption of NSCs, increases with their 
differentiation in  vitro and accordingly, the inhibi-
tion of electron transfer chain enhances the prolifera-
tion of these cells (Lange et al. 2016). In a study, the 
adhesive proteins secreted from oysters (MAPs) were 
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found to be biocompatible natural adhesives due to 
their attractive physicochemical properties such as 
non-accumulation in water, low surface tension and 
strong adhesion underwater. In addition, it enhances 
angiogenesis(Park et  al. 2019). Studies have shown 
that HP can alter MSC function, aging, and epigenetic 
patterns by modulating chromatin-modifying enzyme 
gene expression levels (Isik et  al. 2021). Another 
example is about cancer-like stem cell (CSC) inter-
actions that occur between microvascular endothe-
lial cells and endothelial progenitor cells in hypoxia 
within tumor niches. These interactions could induce 
an angiogenic response by the evaluation of micro-
RNA expression in spheroid cells (Klimkiewicz et al. 
2017).

Conclusion

Taking everything into account, ROS concentra-
tion, as a dependent factor of oxygen tension, plays 
a pivotal role in the regulation of cell fate and tis-
sue function/regeneration. However, the underlying 
mechanism varies to some extent depending on the 
type of cell/tissue. Obviously higher concentrations 
of ROS alter cell growth, typical cell morphology, tis-
sue angiogenesis, and cancer/senescence pathways. 
Anyway, these molecules must be neutralized by anti-
oxidants, especially at higher concentrations. Moreo-
ver, it seems that the production site of this factor is 
important to determining the cell’s fate. In the case 
of TNF activation by extrinsic ROS, cells are strictly 
doomed to die. In contrast, cell’s death is not the only 
fate and their survival/senescence may occur in the 
case of originating ROS from tumor tissue.
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