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Abstract Alzheimer’s disease (AD) is a neuronal

disorder with insidious onset and slow progression,

leading to growing global concern with huge impli-

cations for individuals and society. The occurrence of

AD has been increased and has become an important

health issue throughout the world. In recent years, the

care of more than 35 million patients with AD costs

over $ 600 billion per year, it is approximately 1

percent of the global Gross Domestic Product.

Currently, the therapeutic approach is not effective

for neurological deficits especially after the develop-

ment of these major neurological disorders. The

discovery of the technique called cell-based therapy

has shown promising results and made important

conclusions beyond AD using the stem cells approach.

Here we review recent progress on stem cell-based

therapy in the context of AD.
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Introduction

Alzheimer’s disease (AD), the commonest cause of

dementia, leading to severe cognitive impairment and

neuronal death (Selkoe 2001). AD is characterized by

the precipitation of extracellular amyloid-beta (Ab)

plaques in the brain, the formation of neurofibrillary

tangles, which is composed of the microtubule-

associated protein (MAP) tau, neuroinflammation,

neuronal injury, and damage to neuronal synapses

(Selkoe 2001). AD-related neurodegeneration at first

affects the entorhinal cortex, which that progresses to

basal forebrain networks and the subiculum and Cornu

Ammonis 1 (CA1) hippocampal subregion (Mann

1996; Francis et al. 1999). Atrophy of mentioned

regions and the medial temporal lobe overall co-vary

with verbal episodic memory deficits in AD patients

and they progressively worsen with age, resulting in

death (Delbeuck et al. 2003; Han et al. 2016).

By now, there is no effective treatment to address

neurological deficits after the development of their

destructing neurological disorders (Ohtake and Li

2015). Current advances in therapeutic strategies

temporarily improve AD symptoms without an effec-

tive cure to reverse progressive disease. Earlier,
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physicians considered that the central nervous system

(CNS) is incapable of regeneration of new neurons due

to physical and chemical barriers (Ohtake and Li

2015). Hence, the researches focused on different

forms of stem cells due to their pluripotent feature in

regulating brain homeostasis and it may offer a novel

approach to CNS modulation. Due to the progressive

nature of neurological diseases, successful stem cell-

based therapy can target a well define clinical subset of

patients (Duncan and Valenzuela 2017). Among stem

cell types, mesenchymal stem cells (MSCs) can bring

great promise in disease treatment especially in the

fields of therapeutic gene delivery and regenerative

medicine (Lee et al. 2009; Gao et al. 2001). Their

therapeutic efficiency could initially relate to their

migration and engraftment to the target site (Liew

et al. 2017). In the transplanted region, stem cells have

a potential role to modulate the microenvironment

(Martino and Pluchino 2006). Stem cell grafts could

provide neuroprotective impacts through the secretion

of molecules with tissue trophic functions and

immunomodulatory properties such as brain-derived

neurotrophic factor (BDNF) and nerve growth factor

(NGF) (Shen et al. 2017; Bagheri-Mohammadi et al.

2020a, b). In this review, we focus on recent advances

in stem cell-based therapies that aim at relieving AD

symptoms.

Alzheimer’s disease prevalence, pathogenesis,

and available treatments

Dementia afflicts 46.8 million people worldwide and

this number seems to increase to 74.7 million by 2030

base on the World Alzheimer Report (‘‘2018 Alzhei-

mer’s disease facts and figures,’’ 2018). More than 35

million people are afflicted with AD and its deleterious

deficits in memory and cognitive domains leading to

death within 3–9 years (Prince et al. 2015). Although

age is the main risk factor and its diagnosis exceeds

one in three after the age of 85 years, AD is not

necessarily a function of aging. Every 5 years after

65 years of age, the incidence of AD doubles which

brings an increased social and economic burden on

human populations (Prince et al. 2015; Choi et al.

2014).

The majority of AD patients are sporadic and late-

onset. Sporadic AD accounts for almost 90% of cases,

occurs in older cases. It has a multifactorial origin with

partly a complex genetic profile by interaction with

environmental factors (Bradshaw et al. 2013; Griciuc

et al. 2013). The familial AD cases occur in less than

5% of cases and are due to highly penetrant autosomal

mutations of presenilin (PSEN) 1, PSEN2, and, less

frequently, amyloid precursor protein (APP) genes

(Prince et al. 2015; Choi et al. 2014). Three genes

involved in the production of PSEN1 (chromosome

14), PSEN2 (chromosome 1), and APP (chromosome

21) have been implicated in this type of AD. Excessive

accumulation of amyloid plaques in AD patients is

likely due to dysregulation of b-site APP-Cleaving

Enzyme 1 (BACE1) which gives rise to Ab from

membrane-spanning APP (Vassar et al. 1999). Tau, as

a microtubule-stabilizing protein, can be encoded by

the MAP tau gene located on chromosome 17q21.31

containing 16 exons, with exons 2, 3, and 10 being

alternatively spliced. Differential splicing giving rise

to six different isoforms present in the adult human

brain (Cacquevel et al. 2012). So far, more than fifty

mutations in the MAP tau gene have been reported

(Cacquevel et al. 2012; Garcı́a-León et al. 2018). MAP

tau mutations are related to frontotemporal dementia

with parkinsonism which that linked to chromosome

17 but has also been reported in association with

progressive supranuclear palsy, Pick’s disease, pro-

gressive supranuclear palsy, corticobasal degenera-

tion, and globular glial tauopathies (Jack et al. 2013).

Most mutations occur in exons 9–12 encoding repeat

regions and adjacent introns with subsequent impact

on both protein levels and/or alternative splicing of

pre-mRNA (Garcı́a-León et al. 2018).

Over the last 10 years, therapeutic strategies pri-

marily focus on targeting the production of Ab by

identifying key molecular regulators of BACE1

expression (Cacquevel et al. 2012). Scientists have

also elucidated the role of human miRNA-339-5p

which negatively modulates BACE1 in primary

human brain cultures, and expression of miRNA-

339-5p is reduced in AD patients. The reduced

expression level of miRNA-339-5p in AD patients is

seen (Cacquevel et al. 2012). The scientist tried out to

demonstrate the efficacy of c-secretase inhibitors for

the treatment of AD patients by inhibiting the

production of toxic Ab42 peptides. However, side

effects including skin cancers, weight loss, cognitive

decline, and gastrointestinal infections were observed

in clinical trials due to inhibition of Notch processing

(De Strooper 2014; Coric et al. 2012). Current
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pharmacological therapies are oral administration of

rivastigmine, galantamine (cholinesterase inhibitors),

donepezil, and memantine (N-methyl-D-aspartate

receptor antagonist). Each has a therapeutic effect in

the early stage of AD (Long et al. 2014; Tong et al.

2015). Dementia prevention trials using vitamin E and

selenium, antihypertensive drugs, NSAIDs, and

Ginkgo biloba did not reduce the risk of AD (Mona-

celli and Rosa 2014). After the amyloid cascade

hypothesis, scientists began to develop drugs to target

this cascade. Most recent clinical trials target steps in

amyloid cascade via anti-tau approaches, BACE-1, b
secretase inhibitors, and b vaccines (Monacelli and

Rosa 2014). Besides, the cholinergic hypothesis

postulates recued amounts of neurotransmitter acetyl-

choline as the event in the development of AD (Davies

and Maloney 1976). Available treatments for AD such

as pharmaceutical therapy and blocking neurotrans-

mitter degradation, which that provide temporary

relief in symptoms as palliative agents without alle-

viating pathophysiological disease burden and inca-

pable to control disease progression (Monacelli and

Rosa 2014; Powers et al. 2008; Kang et al. 2016).

As yet, there is no efficient treatment for neurolog-

ical disorders which shows the shift to stem cell

therapy as a recent therapeutic method in the treatment

of neurological disease (Birks 2006). Recently, the

application of stem cells brought a huge revolution for

the treatment of neurological disorders such as AD

(Lindvall and Kokaia 2006; Bagheri-Mohammadi

et al. 2019a, b). By the advent of stem cell-based

therapy, various types of cells have been a candidate

for cell derivation and differentiation, cell therapy, and

drug screening for AD such as MSCs, induced

pluripotent stem cells (iPSCs), embryonic stem cells

(ESCs), and neural stem cells (NSCs) (Sundberg et al.

2013; Foltynie and Hariz 2010).

Stem cell therapy in Alzheimer’s disease

AD represents the most significant medical, economic,

and social crisis of our time. This condition of the

neuronal and synaptic deficit is characterized by

progressive neurodegenerative pathology (Song et al.

2017). Therapeutic approaches such as Pharmaceuti-

cal therapy to relieve symptoms of AD are palliative

and incompetent in counteracting the disease pro-

cesses and they can’t able to replace the lost cells or

effectively decelerate the neurodegeneration process

(Song et al. 2017). But by the advent of cell-based

therapy, it was suggested for the treatment of

neurodegenerative disease (Song et al. 2017) and

there are many experimental AD models to study the

possibility of development of efficient cell-based

therapies in animals (Hardy et al. 2008). Stem cells

are able to differentiate into various cell types of

different categories through self-mitosis and can be

classified according to their differentiation potential as

follows (Hardy et al. 2008). Stem cell characterization

sheds light on a better understanding of general

cellular processes and pathways related to develop-

ment and senescence. Stem cells are also used as tools

for predictive toxicology, drug target discovery, and

cellular therapies such as tissue regeneration. Classi-

fication of stem cells can be done by measuring and

quantifying distinct functional properties and/or

molecular markers (Table 1) (Appasani and Appasani

2010). Also according to their sources, all stem cells

can be categorized into five different groups (Fig. 1).

By now, various cells are a candidate for neuron

derivation and differentiation, cell therapy, and drug

screening for neurological disorders (Sundberg et al.

2013; Kirkeby et al. 2012; Danielyan et al. 2011). The

newly transplanted cells should incorporate and reca-

pitulate a neural network similar to the healthy brain

structure. Stem cells can provide environmental

support to residing neurons by creating further neural

networks and producing neurotrophic factors in

affected areas (Zhang et al. 2016). Also, stem cells

can modulation the environment with growth factors,

such as glial-derived neurotrophic factor (GDNF),

NGF, and, BDNF which would provide support at the

main site of disease (Zhang et al. 2016; Behrstock

et al. 2008; Blurton-Jones et al. 2009). Administrated

stem cells to AD animal models moved to the brain

passing through the blood–brain barrier (BBB) and

exerted positive neuropathological impacts such as

improvement in memory and scholastic skills (Lee

et al. 2015a, b; Lee et al. 2015a, b). Engrafted stem

cells are able to enhance neuronal differentiation,

improve dendrite safety and induce proliferation of

endogenous neural precursor cell and surrounding

cells in the hippocampus (Lee et al. 2015a, b; Kim

et al. 2012). Also, recent studies have suggested that

acute beneficial effects of stem cells depend instead on

their paracrine signalling actions which can modulate
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brain homeostasis (Lee et al. 2015a, b; Kim et al.

2012).

Over the last 10 years, scientists were showed that

the application of MSCs into the brain of an induced

AD animal model can reduce the Ab protein levels and

accelerated the activation of microglia cells, compared

to sham-transplanted animals (Oron and Oron 2016;

Gavish et al. 2008). Also, MSCs have the ability to

eliminate amyloid deposits by means of a cell-specific

phagocytic mechanism (Tuby et al. 2009; Thomson

et al. 1998). Based on the aforementioned observa-

tions, recent studies identified the positive effects of

MSCs administration in a progressive stage of the AD

animal model (Tuby et al. 2009). Thus, it may have a

possible effect in clinical practice for the application

of AD (Fig. 2). Hence, cellular therapy by different

types of stem cells such as iPSCs, NSCs, and MSCs

has emerged as an encouraging therapeutic route in

modern medicine.

Induced pluripotent stem cells

Human iPSC technology is a novel approach for the

assessment of neurological disorders. Compared with

other stem cells, iPSCs are available to create disease

models for purposes of drug discovery and patho-

physiological researches (Robbins and Price 2017).

This technology opened new horizons for studying

human cells without the need for immortalized or

embryonic cells (Doi et al. 2012). Human iPSCs

derived from patients’ somatic cells could serve as an

appropriate cell source for transplantation therapy

without induction of immunologic rejection. In this

Table 1 The most common features of stem cells

Types

of stem

cells

Surface markers Gene expression,

profiling, and

proteomics

Advantages of stem cells Disadvantages of stem

cells

Human

ESCs

EpCAM (CD326),

E-cadherin (CD324),

CD90, SSEA-3,

SSEA-4, SSEA-5, CD9,

TRA-1–60, and TRA-

1–81

box A2 (Foxa2)

b-III-tubulin, Arterial

Smooth Muscle

Actin (ASMA)

Oct-4, Sox2, Nanog

Ability to self-renew and neural cell

differentiation

Tumor formation, graft

failure,

immunorejection,

social, and ethical

limitation

Human

iPSCs

EpCAM (CD326),

E-cadherin (CD324),

CD90, SSEA-3,

SSEA-4, SSEA-5, CD9,

TRA-1–60, and

TRA-1–81

Oct3/4, Sox2,

Klf4 and c-Myc

Creation cell models for diseases Teratoma formation

Human

NSCs

GFAP (GLAST),

CD133/Prominin,

EGF receptor, CD15,

and Nestin S

Activator-type bHLH

genes: Neurogenin 2

( Ngn2), Mash1 and

Math

repressor-type bHLH

genes: Hes genes

Remarkable property to develop various

neural cells

Difficult process of

collection

Human

MSCs

CD90, CD73,CD105,

CD133, CD146,

CD271, stro1, and

MSCA1 (W8B2)

GPC4, LTBP1,

ECM2, CSPG2 I/B

[NFIB],

HOXA5, HOXB6,

inhibitor of

differentiation/DNA

binding

(ID1)., fibronectin 1

(FN1)

Ability to promote endogenous neural

growth, induce synaptic formation,

multipotency features, less

immunological reaction, feasibility of

preparation, and lack of gliosis

May be resulted in

mitochondrial

dysfunction
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way, ethical issues related to ESCs are not any more

concerns, but the risk of teratoma formation is still

present (Klincumhom et al. 2012; Xu et al. 2013).

Besides, transplantable neural progenitors or neurons

had generated from ESCs and iPSCs.

Neural progenitor cells (NPCs) derived from iPSCs

or ESCs can differentiate into astrocytes, neurons, or

oligodendrocytes. This is a good option for treatment

of various neurodegenerative disorders such as AD

(Wang et al. 2017; Zhang et al. 2018) and also for drug

screening for chemical agents with the ability to

prohibit neuronal toxicity induced by Ab (Emsley

et al. 2005; Shivraj Sohur et al. 2006). Recently, a line

of iPSCs generated from dermal fibroblasts of a patient

with APP gene mutation, which is useful for drug

screening and assessment of pathomechanism of AD

(Wang et al. 2017; Kohyama et al. 2008). Stem cell

technology by using iPSCs can represent a novel

strategy toward disease models for different types of

neurodegenerative disease and it can represent an

unlimited source of native phenotypes of cells which

that involved in neuronal death (Kang et al. 2016;

Bagheri-Mohammadi et al. 2019a, b).

Neural stem cells

In the brain of adult mammals, neurogenesis can

consider to occurring throughout life including

humans; it contributes thousands of new neurons each

day to the hippocampal formation to assist in the

maintenance of normal cognition and memory func-

tion in humans (Hamilton and Fernandes 2018). In AD

pathogenesis, neurogenesis can associate epigenetic

mechanisms which that altered due to changes in

intracellular programs and surrounding microenviron-

ments of stem cells (Winner and Winkler 2015). Adult

neurogenesis and NSCs activity are relevant regulators

of the adult brain and its impairment results in various

psychiatric and neurodegenerative conditions (L’epis-

copo et al. 2018; Spalding et al. 2013). NSCs produce

inhibitory neurons that can modulate existing circuits,

excitatory neurons with the ability to form neo-circuits

and or glial cells that are essential for neuronal

functions (Spalding et al. 2013; Bjorklund and Kor-

dower 2013). Human NSCs as the immune practical

value can be proper for scientists and their clinical

trials (Bjorklund and Kordower, 2013; Park et al.

2013). Researchers can obtain human NPCs from the

olfactory bulb and hippocampal formation (Kang et al.

2016; Xuan et al. 2008). In vitro acquisition and

expansion of enough NSCs from the brain into a

sufficient amount of donor cells is generally difficult.

The culture medium of NSCs should be supplement

with mitogenic growth factors, such as epidermal

growth factor and basic fibroblast growth factor

(Dhivya and Balachandar 2017; Parmar 2018). The

overexpression of NSCs showed to restore the synap-

tic integrity and cognitive performance in animal

models which attributed to changes in neurotrophins

(Birch et al. 2013; Tuszynski et al. 2015; Tincer et al.

2016). Adult NSCs from the subventricular zone

(SVZ) found out to be a promising candidate for

neurogenesis due to cell differentiation and migration

into damaged brain areas (Birch et al. 2013; Tuszynski

et al. 2015; Tincer et al. 2016). Potential NSC-based

therapies for AD aim to provide a convenient

microenvironment to suppress neurodegeneration

Fig. 1 Classification of stem cells based on their origin. Stem

cells can collect in many different sources, they share many

common properties, still differ in terms of rates of differenti-

ation, secretion of trophic factors, as well as the ability to be

stimulated by endogenous signaling mechanisms under patho-

logic conditions. According to their origin, all stem cells can be

categorized into five different groups including Adult stem cells,

iPSCs, perinatal stem cells, fetal stem cells, and embryonic stem

cells. Perinatal stem cells can be easily achieved at birth from

extra-embryonic structures such as amniotic fluid, umbilical

cords, and placenta membranes. Fetal stem cells are cell types

that can collect from fetal tissues and can differentiate into the

various organ systems of the body. Fetal stem cells can be

divided into, fetal hematopoietic stem cells, fetal mesenchymal

stem cells, and neural crest stem cells. Adult stem cells can be

categorized as neuronal stem cells, mesenchymal stem cells,

hematopoietic stem cells, hepatic stem cells, pancreatic stem

cells, and epithelial stem cells
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and to maintain the survival of mature neurons by

supplying neurotrophic factors (Birch et al. 2013). For

instance, infusions of NGF in aged murine models

have been shown to improve cognitive function (Birch

et al. 2013; Tuszynski et al. 2015; Tincer et al. 2016).

Phase 1 clinical trials of NGF gene therapy were

performed in AD patients and resulted in an improve-

ment in cognitive behavior and activation of neuronal

responses with no adverse effects (Tincer et al. 2016).

On a large scale of clinical application of NSCs is still

lacking and there are legal and ethical complications

of fetal tissue (Tuszynski et al. 2015; Tincer et al.

2016).

Mesenchymal stem cells

MSCs are negative for CD40, CD80, CD86, HLA-DR

which makes them immune-privileged and let them

suppress T-cell proliferation with subsequent tolero-

genicity (Yun et al. 2013; Kim et al. 2013; Ding et al.

2017). MSCs possess immunomodulation key markers

(HLA-G and indoleamine 2,3-dioxygenase). These

cells retain the safety aspect of decreasing telomere

length with increased passage number (Bagheri-Mo-

hammadi et al. 2020a, b; Park et al. 2015). Cell-based

therapies can be applied for the treatment of various

neurodegenerative disorders like AD. Among pro-

posed cells for clinical purposes, MSCs are good

candidates due to their versatility, ease of acquisition,

anti-inflammatory, and immunomodulatory properties

(Moradian Tehrani et al. 2018; Jun et al. 2019). MSCs

have good homing and integration capacity to injured

tissue following both intracranial and intravenous

transplantation as well as low immunogenic potentials

due to lack of major histocompatibility complex II

(MHC-II) (Bagheri-Mohammadi et al. 2019a, b; Lin-

droos et al. 2011; Emmerson and Gargett 2016). These

cells could afford more efficient gene delivery along-

side reduced systemic toxicity due to their preferential

tumor tropism and their local activities (Tincer et al.

2016; Lindroos et al. 2011). Human bone marrow-

Fig. 2 Stem cell therapy by using mesenchymal stem cells

(MSCs) in Alzheimer’s disease (AD) brain. Stem cell admin-

istration by using MSCs could enhance gene expression, protect

mitochondria, modulate calcium signaling, clear amyloid-beta

(Ab) in the synaptic cleft between neuron and astrocyte,

establish normal neuronal connectivity, decrease Ab generation,

integrate microtubules, regulate inflammation, regulate synaptic

neuroplasticity, and contribute to higher cognitive functions.

Moreover, administration of the transfected MSCs markedly

mitigated cognitive deficits, promoted amyloid plaque clear-

ance, decreased the activation of microglia, and reduced

neuronal cell death. However, the poor proliferation capacity

and low survival rate of engrafted MSCs in the hostile

microenvironment of AD limit their therapeutic efficiency
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MSCs (HBM-MSCs) are multilineage differentiation

into bone, clonogenicity, plastic adherence, and mar-

row lineages (osteocytes, chondrocytes, adipocytes)

in vitro and a surface phenotype (CD29 ?, CD44 ?,

CD73 ?, CD90 ?, CD105?, CD146 ?, CD312,

CD342, and CD452) distinguishing them from

hematopoietic stem cells (HSCs) also resident in the

marrow (Bagheri-Mohammadi et al. 2019a, b).

Human CD146 ? PDGFR-b ? and SUSD2 ? [sushi

domain containing-2 (previously W5C5 ?)] and

human endometrium-derived stem cells (HEDSCs)

have similar in vitro properties with HBM-MSCs

(Bagheri-Mohammadi et al. 2019a, b). In animal

studies, umbilical cord blood and bone marrow-MSCs

can use to generate new cells (Morandi et al. 2008; Wu

et al. 2007). Stem cell-based therapy with MSCs in

animal models of AD also contributed to the clearance

of abnormal Ab plaques via microglial activation and

prevented neuronal death (Wu et al. 2007). Further-

more, MSCs can safely restore cognitive ability such

as memory in animal analyses (Zhang et al. 2012;

Takata et al. 2007). Besides, Scientists show MSCs

can play roles in activating proinflammatory cytokines

that are beneficial to the recovery of damaged neuronal

microenvironments (Yun et al. 2013; Kim et al. 2013;

Takata et al. 2007). Many investigations by using

MSCs revealed they can promote endogenous neural

growth, induce synaptic formation, reduce levels of

free radicals in the microenvironment, and decrease

apoptosis and regulate inflammation (Kim et al. 2013;

Ding et al. 2017; Bagheri-Mohammadi et al. 2019a, b).

The safety and tolerability of intrathecal therapy using

MSCs-NPCs for patients were shown (Turgeman,

2015; Losurdo et al. 2020). MSCs are involved in

oligodendrogenesis, neuroprotection, and inhibition of

gliosis, thus this multitasking cell is considered a

promising tool for stem cell-based therapy in AD

(Turgeman, 2015; Losurdo et al. 2020).

Human umbilical cord-MSCs

The potential role of human umbilical cord-MSCs

(HUC-MSCs) in neural differentiation and their

released paracrine neutrophins make them promising

candidates for stem cell-based therapy for neurolog-

ical diseases (Park et al. 2015; Zhou et al. 2015; Harris

et al. 2018; Thomi et al. 2019). For recipient patients in

stem cell-based therapy, HUC-MSCs as allogeneic

stem cell has low immune reaction feature, so it cannot

motivate allocative lymphocyte proliferation

(Bagheri-Mohammadi et al. 2019a, b). HUC-MSCs

had collected with a noninvasive method (Bagheri-

Mohammadi et al. 2019a, b; Thomi et al. 2019). After

cell therapy in the animal models, HUC-MSCs have a

low risk for teratoma formation in the transplantation

region (Bagheri-Mohammadi et al. 2020a, b; Mennan

et al. 2016). Treatment of the APP/PS1 AD mice

model with HUC-MSCs, leading to a reduction of the

Ab burden in the cortex and the hippocampus which is

correlating with a reduction of the cognitive loss

(Obtulowicz et al. 2016). MSCs transplantation was

associated with attenuated Ab deposition in an AD

mouse’s brain with consequent improvement in

memory and learning capacity (Harris et al. 2018).

Besides, HUC-MSCs have the ability to increase

paracrine action and clear Ab by microglial cells

(Wang et al. 2018). HUC-MSCs can regulate GDF-15

secretion and promote the Ab clearance by microglial

cells, thus elucidating a therapeutic mechanism for AD

(Wang et al. 2018). As we know, the GDF-15 belongs

to the transforming growth factor b (TGF-b) super-

family which play key roles in immunosuppression,

neuroprotection, and regulation of cell growth and also

differentiation (Moradian Tehrani et al. 2018; Kim

et al. 2010, 2018; Boutajangout et al. 2017). In the

brain, GDF-15 is a powerful neurotrophic factor for

therapeutic aims, and its expression can important for

the treatment of brain disorder. Moreover, GDF-15

may increase hippocampal neurogenesis and synaptic

activity in AD animal models, whereas lacking GDF-

15 in animals show progressive motor and sensory

neuron loss after birth (Moradian Tehrani et al. 2018;

Kim et al. 2010; Weiss, and Attisano, 2013). Also, the

TGF-BRII is a member of the TGF–TGF-b superfam-

ily, and it is a receptor and mediator in the GDF-15

signalling pathway (Weiss and Attisano, 2013; Li et al.

2006; Caraci et al. 2012). Based on Kim et al. (2018)

study, the TGF-BRII is associate with the regulation of

insulin-degrading enzyme expression in microglia by

GDF-15 secreted by HUC-MSCs, and that GDF-15 is

able to promote TGF-BRII expression (Kim et al.

2018). It should be noted that the TGF-BRII can

mainly express in microglia and neurons. Interest-

ingly, scientists showed that the level of TGF-BRII

can decrease in human AD as well as in AD animal

models (Kim et al. 2018). Decrease the TGF-BRII

signalling and function in the AD patient can
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potentially promote Ab accumulation and neurode-

generation (Kim et al. 2018; Strelau et al. 2009). HUC-

MSCs, have emerged as relatively safe and effective

neuro-protectors and immune-modulators and showed

to diminish behavioral impairment in AD animal

models (Lee et al. 2015a, b). HUC-MSCs specifically

cells derived from mononuclear fraction, can reduce

amyloidogenic APP processing, b- amyloid plaques,

Ab levels, reactive microgliosis, and cognitive impair-

ment in animal models of AD (Lee et al. 2015a, b; Lee

et al. 2015a, b; Wang et al. 2014). These cells could

remain viable for years after cryopreservation. HUC-

MSCs retain their immunologically immature pheno-

type because they didn’t have exposure to immuno-

logic challenges (Tesseur et al. 2006; Das, and Golde,

2006). HUB-MSCs progenitor posse up to an eightfold

proliferative capacity compared to similar bone mar-

row cells and carries as much as four times as many

CD34 ? cells (Ehrhart et al. 2016). Therapeutic

benefits of HUC-MSCs are passes through the evoking

modulation of peripheral and central inflammatory

processes (Lee et al. 2015a, b; Lee et al. 2015a, b).

Besides, in stem cell-based therapy for a rat model of

neuronal injury, HUC-MSCs have the ability to

differentiating into target cells and it can improve

the disease (Potkin 2002; Cui et al. 2017).

The studies identify that the differentiation and

neuroprotection of neurons have related to the neur-

turin genes (Potkin 2002; Cui et al. 2017; Gasmi et al.

2007). Researchers can be transfected of HUC-MSCs

with neurturin gene by recombinant adenovirus, result

in increasing of neurturin concentration and neuron-

specific markers in cell differentiated such as Nestin,

TH, b-tubulin III, and MAP-2 caused the survival of

animal fetal midbrain (Potkin 2002; van de Ven et al.

2007; Yang et al. 2013). Another research revealed

that cell-based therapy can improve the symptoms of

neuronal injury in monkeys and by immunohisto-

chemistry analysis identified there were donor neu-

ronal-like cells that can survive in the brain (Yang

et al. 2013; Fu et al. 2006). Applied HUC-MSCs can

reduce Ab deposition in AD animal’s brain and

improve memory. Similarly, the beneficial effects of

transplanted neuronlike cells differentiated from

MSCs have also been demonstrated (Yang et al.

2013). Ultimately, stem cell-based therapy using

HUC-MSCs can introduce a new gateway of hope

for the treatment of neurological diseases like AD.

Human bone marrow-MSCs

Human bone marrow-MSCs (HBM-MSCs) with self-

renewal properties, rapid proliferation, pluripotency,

tissue regeneration, ability of repair, immunosuppres-

sion, and low immunogenicity features, can use in

regenerative medicine (Li et al. 2014; Naaldijk et al.

2017; Tirino et al. 2011). Besides, bone marrow-

MSCs have the ability to homing in lesion tissues,

secreting different neurotrophic growth factors, and

they can promote regeneration and neuroprotection in

CNS (Yu et al. 2018; Bagheri-Mohammadi et al.

2020a, b). In AD animal models, HBM-MSCs capable

of enhancing memory by reducing the level of Ab in

the hippocampal formation and Ab deposition through

the activation of M2-like microglia and modulation

neuroinflammation in an AbPP/PS1 transgenic AD

mouse model (Yu et al. 2018). Moreover, HBM-MSCs

were improved Ab immunoreactivity and autophago-

some induction decreased intracellular Ab levels, and

promoted Ab clearance in AD models, leading to

increase neuronal survival against Ab toxicity (Yu

et al. 2018). Cell therapy could trigger selective AD

indicator-1 (Seladin-1) is an important neuroprotec-

tive effector. Seladin-1 and Nestin expression showed

to be enhanced after stem cell therapy with BM-MSC

through activation of extracellular signal-regulated

kinase (ERK1/2) signalling pathways and phospho-

inositide 3-kinase/protein kinase B (PI3K/Akt) in AD

animal models (Yu et al. 2018). Also, a recent study

revealed that the anti-apoptotic role of let-7f-5p in Ab
25–35-induced cytotoxicity, as well as the protective

effect of let-7f-5p on the survival of grafted MSCs by

targeting caspase-3 in AD models (Fig. 3) (Frederik-

sen et al. 2019; Han et al. 2018). Therefore, stem cell-

based therapy using HBM-MSCs has promise trans-

lational significance as evidenced by emerging scien-

tific data showing therapeutic benefits in AD

(Frederiksen et al. 2019).

Human adipose-MSCs

Recently, adult adipose cells were showed by several

scientists to be a source of multipotent stem cells from

progenitor cells including adipocytes, osteoblasts,

chondrocytes, and myocytes for cell therapy while

others reported adipose cells may also have sub-

populations of stem cells with neurogenic potential
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in vitro (Chang et al. 2014; Gerth and Thaller 2019;

Bagheri-Mohammadi et al. 2020a, b). The term

adipose-MSCs (AD-MSCs) was the original term

used to refer to these stem cells based on their potential

for multi-lineage specification (McCoy et al. 2008).

Despite significant progress in the characterization of

cell surface markers for AD-MSCs (Safford et al.

2002), the therapeutic benefit derived from transplan-

tation of AD-MSCs has yet to be demonstrated in

animal models of neurological disease such as AD

(Chang et al. 2014; Gerth and Thaller 2019). Trans-

plantation of AD-MSCs can improve animal models of

neuronal injury, like tremor recovery and motility in

combination-transplanted monkeys (Guilak et al.

Fig. 3 AD-associated neuronal death in in-vitro mouse models

(KEGG pathway). Cell death can be achieved in a variety of

ways in AD. Both extracellular amyloid deposits and intracel-

lular Ab protein may activate caspases, leading to cleavage of

nuclear and cytoskeletal proteins, including tau protein. Also,

after stress to the endoplasmic reticulum (ER), including the

release of Ca2? from intracellular stores, caspase-12 is

activated. Activated initiator caspases, such as caspase-8,

activate executioner caspases, including caspase-3. The acti-

vated caspase-3 may be a factor in functional decline and may

have an important role in neuronal cell death and plaque

formation in AD brain. Proteolysis of tau may be critical to

neurofibrillary degeneration, which correlates with dementia.

Fas receptors and Fas ligand are expressed on both astrocytes

and neurons in normal rats and the human brain. The binding of

Fas to its receptor leads to the trimerization of the receptor and

results in the recruitment of an intracellular adapter protein,

FADD. FADD also contains a separate death effector domain at

its N-terminal, which interacts directly with a homologous

region in the prodomain of pro-caspase-8. Pro-caspase-8

subsequently undergoes autocatalytic cleavage to yield its

active form. Caspase-8 may then cleave and activate caspases-

3, caspases-6, and caspases-7 directly, thereby leading to cell

death. Alternatively, caspase-8 may cleave Bid to form

truncated Bid. Based on studies, scientists were revealed that

there are at least two signaling pathways that occur after death-

inducing signaling complex formation. One pathway involves

mitochondrial amplification of caspase activation, while the

other results in mitochondrial dysfunction that occurs only after

activation of caspases-8 and caspases-3. The protective effects

of stem cells on the survival of grafted MSCs could be induced

by targeting caspase-3 in AD models. Many stem cell therapies

showed their effects as a powerful tool to modulate calcium

signaling in neurological diseases which can be considered as a

proper strategy for the treatment of Alzheimer’s disease.

Abbreviations: APP, Amyloid precursor protein; Apo-E,

Apolipoprotein E; Oli. Ab, Oligomeric amyloid-beta; LRP,

Low-density lipoprotein receptor-related protein; TNF-R,

Tumor necrosis factor receptor; Fas, Cell surface death receptor;

NMDA-R, N-Methyl-D-aspartate receptor; FADD, Fas-associ-

ated protein with death domain; BACE, Beta-secretase; PSEN,

Presenilin; AICD, Amyloid precursor protein intracellular

domain; Ab.aggr, Ab Aggregation; CASP, Caspase; No, Nitric

oxide; NOS, Nitric oxide synthase; ER, Endoplasmic reticulum;

SERCA, Sarco/endoplasmic reticulum Ca2?-ATPase; Ry-R,

Ryanodine receptor; IP3-R, Inositol 1,4,5-trisphosphate

receptor.
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2006). AD-MSCs treatment can restore the increased

serum TGF–TGF-b, BDNF, and monocyte chemoat-

tractant protein 1 (MCP-1) levels in animals (Zhou

et al. 2013). Also, AD-MSCs transplantation in the

lesioned brain showed beneficial effects on adult

neurogenesis in the SVZ and dentate gyrus (DG),

memory function, and peripheral cytokines in an

animal model (Chang et al. 2014). AD-MSCs can

localize around blood vessels or in the arachnoid

mater, and provide a protective condition for the

survival and differentiation of stem cells due to their

stem cell niche-like characteristics (Chang et al.

2014). AD-MSCs can increase the generation and

survival of neurons in the DG (Schwerk et al. 2015).

Furthermore, the treatment of animal models with

neuronal injury using AD-MSCs, revealed that in the

hippocampus not only neurogenesis was increased,

but also in the subventricular area it can be increased

(Chang et al. 2014).

The therapeutic potential of intracerebral or intra-

venous administration of human AD-MSCs was

previously reported by Chang et al. (2014), in an AD

mouse model (Tg2576 transgenic mice). Besides, their

investigation showed that intravenously transplanted

AD-MSCs can be passed the BBB and migrated into

the brains of transgenic mice (Chang et al. 2014;

Schwerk et al. 2015; Janvin et al. 2006). Intracerebral

or intravenous administration of AD-MSCs signifi-

cantly improved learning and memory and restored

neuropathology conditions including Ab deposition in

transgenic mice (Schwerk et al. 2015; Johnston et al.

2008). Besides, elevating endogenous neurogenesis

and synaptic and dendritic stability were showed in

AD-MSCs treated transgenic mouse brains (Schwerk

et al. 2015; Johnston et al. 2008). However, IL-10 and

vascular endothelial growth factor (VEGF) were up-

regulated in AD-MSCs-treated animals (Schwerk

et al. 2015; Johnston et al. 2008). Among stem cells,

autologous human AD-MSCs elicit no immune rejec-

tion responses, tumorigenesis, or ethical problems

(Kim et al. 2012). Also after the injection of human

AD-MSCs in transgenic mice brain (AD model), the

number of amyloid plaques and Ab levels significantly

decreased (Kim et al. 2012). In addition, human AD-

MSCs can decrease the Ab generation and reverse up-

regulated p53 and foxo3a protein levels in the AD

mice brain (Liu et al. 2017). Furthermore, AD-MSCs

transplantation can reduce oxidative stress and allevi-

ated cognitive impairment in the AD mice model (Ma

et al. 2013a, b; Yan et al. 2014). Taken together, stem

cell-based therapy using AD-MSCs shows a novel

advanced tool for the treatment of AD (Ma et al.

2013a, b; Yan et al. 2014).

In conclusion, advances in the field of stem cell-

based therapy can improve the quality of life for

patients suffering from AD. Though our understanding

of the AD, brain functions, and mechanism action of

stem cells can provide a long way, there are still

significant challenges for future researches.
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