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Abstract Tissue engineering which is applied in

regenerative medicine has three basic components:

cells, scaffolds and growth factors. This multidisci-

plinary field can regulate cell behaviors in different

conditions using scaffolds and growth factors. Scaf-

folds perform this regulation with their structural,

mechanical, functional and bioinductive properties

and growth factors by attaching to and activating their

receptors in cells. There are various types of biological

extracellular matrix (ECM) and polymeric scaffolds in

tissue engineering. Recently, many researchers have

turned to using biological ECM rather than polymeric

scaffolds because of its safety and growth factors.

Therefore, selection the right scaffold with the best

properties tailored to clinical use is an ideal way to

regulate cell behaviors in order to repair or improve

damaged tissue functions in regenerative medicine. In

this review we first divided properties of biological

scaffold into intrinsic and extrinsic elements and then

explain the components of each element. Finally, the

types of scaffold storage methods and their advantages

and disadvantages are examined.
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Introduction

Tissue engineering has appeared in the 1980s. This

multidisciplinary field is applied in regenerative

medicine to help various damaged tissues and organs,

and it is based on using of cells, scaffolds, and

bioactive factors. Scaffolds not only provide a sup-

portive template for cell attachment, but they also

create a biomechanical and physical environment. So

the scaffolds play an active role in the regulation of

cell behaviors (Qiu 2012).

Because of the toxic and inflammatory capacity of

synthetic polymers, which lead to reducing extracel-

lular matrix (ECM) remodeling and growth capacity,

the xeno-or allogeneic tissues are substituted to

biodegradable synthetic scaffolds (Thompson 1992).

The cells of xeno-or allogeneic tissues as biological

scaffolds, are removed, and their ECM remains as

3-dimensioal (3D) structure (Badylak et al. 2009).

These natural ECMs decrease immune and inflamma-

tory response in grafting through decellularization,

and serve as inductive means through their structural

and functional proteins and endogenous growth fac-

tors (Assmann 2013; Badylak et al. 2012).
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Collagen, elastin, and various glycosaminoglycans

(GAGs), are the main component of biological

scaffolds, in which collagen needs to form stable struc-

tures, then elastin provides elasticity and flexibility of

ECM, and eventually, GAGs cause adhesion, migra-

tion, proliferation, and differentiation of cells (Jackson

et al. (1991); Stringer and Gallagher 1997). Also,

bioactive factors that are preserved in biological

scaffolds, have an essential role in regulatory signals

and functions (Crapo et al. 2011; Gilbert et al. 2006).

During the decellularization process and preserva-

tion of biological scaffolds, the amount of these

elements, especially bioactive factors, may be dimin-

ished or led to the inactivation of bioactive factors

(Crapo et al. 2011; Gilbert et al. 2006). So using

exogenous bioactive factors can improve this defi-

ciency. Systematical and local application of exoge-

nous bioactive factors is not suitable options because

of the following reasons, including fast diffusion of

factors in body fluids, which may create unsatisfactory

side effects; rapid clearance of factors from applica-

tion site and low half-life of them in circulation, which

required repeated doses and caused raising remedy

cost (Nagase 2007; Moreno 2005; Liu 1994; Ohno

2007). So the researchers come to the point that the

loading of exogenous bioactive factors into various

scaffolds would be an alternative method (Singh et al.

2008).

In this review, we study the useful agents to have an

ideal biological scaffold. One of these agents is how to

prepare the scaffold, which can be divided into two

categories: intrinsic and extrinsic elements. Intrinsic

elements including the condition of factors which

belong to the ECM itself and should/not should be

preserved, and, extrinsic elements consist of various

biological and non-biological components that do not

belong to the ECM and must be added to or removed

from it Fig. 1. Another agent is how to store the

scaffold, which includes various methods of short-

term and long-term storages with their own advan-

tages and disadvantages.

Intrinsic elements

Immunological status

Decellularization process aims is to produce acellular

tissue, which has following properties: (1) without any

remnants of the cellular component such as cell

membrane, nucleic acids, and mitochondria; (2)

without any immunological elements; (3) without

any cytotoxic elements, and, (4) without any part

which triggers calcification process. Considering the

maintenance maximum natural state of ECM, it should

be emphasized that any decellularization methods or

combination of them do not remove 100% of cellular

components from tissues (Kawecki 2018). As a result,

the sufficient removal of cellular components from

xenograft tissues is vital to avoid an undesirable

immune response (Kim et al. 2002).

Before proceeding to discuss the sufficient removal

of cellular components from xenograft tissues, let us

characterize the difference between the host remodel-

ing and the host immunological reactions: degradation

of matrix proteins within xenogeneic scaffolds after

implantation, without any adverse immune reactions,

is needed for tissue reconstruction. But the deteriora-

tion must be at an appropriate rate, fast enough to

minimize the possible unwanted immune response,

and yet slow enough to retain the host matrix

remodeling process (Kim et al. 2002).

The materials of scaffolds cause changes in the

population of macrophages immediately upon implan-

tation. These changes include the conversion of M1

macrophages (pro-inflammatory and cytotoxic

agents), to M2 macrophages (anti-inflammatory and

pro-healing agents), and stimulate Th2 lymphocytes

which inhibit macrophages activation and generally

contribute in transplant acceptance (Brown

2009, 2012; Badylak 2008; Allman 2001, 2002).

Eventually, these immune response cascades promote

degradation and the constructive remodeling of

scaffolds.

So anti-inflammatory responses are associated with

host remodeling reaction, but pro-inflammatory

responses, which cause encapsulation and foreign

body rejection, are related to adverse immunological

responses (Daly 2012). Finally, it must be said that the

change of degradation rate can alter the host response.

The rate of degradation, in turn, can be changed by

different tissues and diverse tissue sources, which

include various quantities of immunological compo-

nents, and the age of tissue sources, which causes a

change in the composition of ECM (Record (2001);

Carey 2014; Tottey 2011).
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Cellular components

Based on the findings obtained from in vivo studies, in

which constructive remodeling response was observed

without host immunological response, the following

criteria are proposed to ensure decellularization

methods (Crapo et al. 2011): First, the absence of

intact cells and their nucleus are examined. In the next

step, the amount and the size of DNA fragments are

measured, and they should be less than 50 ng and 200

pb, respectively.

It should be considered that the remnants of cellular

debris, including hydrophilic and lipophilic antigens

Fig. 1 The categories of scaffolds’ properties
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in allogeneic or xenogeneic scaffolds, may promote

the rejection process upon implantation (Wong 2016).

The dominant histocompatibility complex class I

(MHC-I) or human leukocyte antigens I (HLA-I)

molecules in humans, which are presented on the

surface of almost all nucleated cells, especially are

considered to be xenoantigens or alloantigenics

respectively, and initiate the immune response and

inflammation (Cascalho and Platt 2001; Yang and

Sykes 2007). So the usage of lipophile solubilization

and hydrophile solubilization steps during the decel-

lularization process are a useful strategy for avoiding

fibrous encapsulation and immune rejection (Wong

2016). Eventually, it should be noted that the remain-

ing nucleic acids may trigger the calcification process,

so the extraction of residual DNA and RNA should be

considered (Poornejad 2016).

a-Gal epitopes

Galactose-a-(1,3)-galactose terminal carbohydrate

epitopes (a-Gal) exist in the tissues of all mammals

and most lower creatures except in old world primates

and humans, so in xenograft implantation, in primates

and humans, these epitopes should be considered

(Sandrin 1993). The lack of a-Gal epitopes in primates

and humans may result in a high level of a-Gal
antibody in the circulation during transplants, and in

turn, create a significant inflammatory response or a

hyperactive rejection response to xenograft scaffolds

(Xu 2009).

Several methods have been used to eliminate these

epitopes, and diminish the rejection response. These

methods include the following: transgenic modifica-

tion, structural masking and enzymatic removal of

xenogeneic epitopes (Xu 2009; Galili et al. 1997;

Stone et al. 1997). However, in commercial ECM

scaffolds, the remaining of a-Gal epitopes have been

found and have not been had any lousy effect during

in vivo ECM remodeling (Daly 2009; Raeder 2002).

Similar to the remaining DNA fragments, although the

residual a-Gal epitopes should be stimulated an

immune rejection, it is likely that a threshold amount

is likely needed to create adverse effect on the ECM

remodeling response (Badylak and Gilbert 2008). So

the low amount and highly scattered distribution of a-
Gal epitopes cannot activate immune response (Rae-

der 2002). Finally, it should be noted that none-a-Gal

epitopes have been seen, still produce immunogenicity

(Chen 2005; Lam 2004).

DAMPs

Damage associated molecular patterns (DAMPs), or

alarmins are multifunctional proteins. They exist in

the nucleus, cytoplasm or exosomes, preserve intra-

cellular homeostasis, and have no secretion signals

typically, but they can be secreted by macrophages or

released by necrotic cells and act as endogenous

danger signals to the immune system (Srikrishna and

Freeze 2009). However, they function as pro-inflam-

matory, chemotactic, proliferative, and tissue regen-

eration agents (Daly 2012). Heat shock proteins, high

mobility group box1 (HMGB1), S100 proteins,

hyaluronan and heparin sulfate belong to the DAMPs,

which are known to date (Rubartelli and Lotze

(2007)). Between them, HMGB1 is the best charac-

terized of the DAMPs and acts as a DNA binding

nuclear protein intracellularly (Thomas and Travers

2001). As already mentioned, complete removal of

cellular components and DNA is not achieved by a

variety of decelullarization methods, so that DAMPs

maybe existed in biological scaffolds.

The DAMPs do not just create a negative host

response upon implantation, but their effects are more

complex than this. For example, in addition to

inducing the release of pro-inflammatory cytokines

and chemokines by HMGB1 in some disease condi-

tions, it can also be a chemotactic and, or proliferative

agent for some cell types (Lolmede 2009; Ranzato

2009). These results may be due to the binding of

HMGB1 to a variety of molecules and receptors,

which in turn activate various intracellular signaling

pathways. On the other hand, this should be taken into

account that the content of HMGB1 within scaffolds

depends on tissue source, decellularization protocol,

and the crosslinking agents, which are used during

scaffold processing steps (Badylak 2014).

Structural properties

Microscopic and ultrastructural features of the scaf-

fold have an essential role in the regulation of cell

behaviors such as the ability of cell migration into the

scaffold (Brown 2006a) or determination of cell

phenotype (Gong 2008; Sellaro 2007). So the preser-

vation of the ultrastructure and 3D architecture of the
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scaffold is vital throughout processing steps of the

tissues during decellularization (Brown 2006a; Sacks

and Gloeckner 1999). But it should be noted that every

the decellularization method will alter ECM compo-

nents and create some disruption in its ultrastructure.

Therefore, one of the goals that should be considered

in decellularization process is to minimize these

unwanted results (Crapo et al. 2011).

State of ECM components

The maintenance of the state of major ECM compo-

nents, including the natural structure, regular arrange-

ment, and distribution of collagen fibers without any

obvious muss or tear, leads to the preservation of the

scaffold ultrastructure (Rashtbar 2018). Such condi-

tions can provide unique orientation, which will help

in vitro or in vivo recellularization (Scarritt et al.

2015). On the other hand, in some acellular tissues

involved in accommodation such as blood vessels,

bladder or skin, the evaluation of elasticity is also done

(Amiel 2006; Song 2014; Debels 2015). In addition to

collagen and elastin fibers, the maintenance of the

microvasculature and capillary bed will be a curtail

feature to successful recellularization (Rashtbar 2018;

Scarritt et al. 2015).

Porosity

Since dense structure can inhibit the ingrowth of host

tissue and neovascularization (Lee et al. 2015), a

certain degree of porosity of scaffold has an important

role in cell infiltration and proliferation (Cartwright

2006). The pores of scaffold create a larger surface

area for exchanging of nutrients and metabolic waste,

and make better the mechanical interlocking between

the scaffold and the surrounding tissue and may

facilitate the integration of them in implantation (Lee

et al. 2015; Karageorgiou and Kaplan 2005). Inter-

connections among pores facilitate cell migration into

internal pores, favorable transport of nutrition and

waste, and increase cell communication in different

pores (Yang 2008). Finally, scaffolds with appropriate

porosity and suitable pore size are ideal for loading

drugs and factors (Yan 2018).

Water absorption ability or swelling ratio of

scaffold is one of the critical factors, which is affected

by porosity and usually evaluated along with it (Ma

2004; Jiang 2013). The scaffold with highly porous

structure can retain a large amount of water within

itself, which in turn hold the nutrients and transfer the

metabolites to accelerate cellular infiltration, adhe-

sion, growth, and proliferation (Mao 2003; Zhang

2011).

Basement membrane

The basement membrane is a dense part of the ECM

and prevents cell migration into the underlying

connective tissue (Brown 2006a). This ultrastructure

is in contrast to the underlying matrix, which has

irregular fibrous architecture, and facilitates cellular

mobility and penetration of cells into the scaffold

(Brown and Badylak 2014). So if invasive growth of

cells into the scaffold is required, the scaffold with

meshwork surface should be used. Alternatively, if

noninvasive growth of cells is needed, such as

epithelial cells, the scaffold with an intact basement

membrane may be more practical (Brown 2006a).

Therefore in the study of some acellular tissues,

mainly derived from hollow organs (such as blood

vessels or bladder), evaluation of luminal and ablu-

minal side features is also done (Amiel 2006; Coakley

2015). The smooth, dense surface of the luminal layer

shows the status of the basement membrane, and a

network of collagen fibers of the abluminal side

demonstrates the porosity of this layer (Coakley

2015)..

Mechanical properties

The mechanical properties of scaffolds are directly

affected by the components of the tissue, such as

collagen fiber, GAGs, and elastin, and how they are

arranged within ECM (Du 2011). In modulation of

many cellular functions such as proliferation and

alignment of cells, ECM components expression and

biomechanical properties of tissue, the mechanical

forces are critical (Wang and Thampatty 2006;

Grenier 2005). So the mechanical properties of the

scaffold should be similar to those of the tissue at the

implantation site, or sufficient to supporting and

resisting against the surrounding pressure without

inhibiting suitable biomechanical conditions (Garg

2012).

Shortly after implantation, the strength of scaffold

typically decreases, which is temporally associated

with degradation of the scaffold in the defect site.
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However, after residing in the infiltrating cells, the

new ECM produces and rapid scaffold remodeling

occurs, which in turn increases the strength and

mechanical behavior until the normal function of

tissue has been restored (Badylak 2001,2005). So the

mechanical behavior of scaffold alters during the

remodeling process, and such changes are affected by

the rate of the scaffold degradation, and the speed and

extent to which the infiltrating cells deposit new ECM

(Badylak et al. 2009; Badylak 2001). Therefore, as

already mentioned, the optimal speed of degradation

of scaffold, in addition to adverse immunological

reactions, plays a role in its mechanical properties. So

that rapid degradation or absorption of scaffold along

with unbalanced new ECM production, results in the

formation of fibrotic scar tissue in the reparative

process (Xu 2009).

Also, according to the elastic modulus of matrices,

scaffolds mimicking the brain, muscles or bone, were

neurogenic, myogenic, and osteogenic, respectively

(Engler 2006). So the mechanical environment, which

is sensed by seeded cells, can affect the differentiation

of stem cells and the recellularization (Agmon and

Christman 2016). On the other hand, in some biolog-

ical condition such as filling and emptying of the

bladder the biomechanical factor is so critical (Boruch

2010); or since progressive weight-bearing and early

rehabilitation in tendon and ligament repair, the

mechanical properties of scaffolds should be superior

to the host tissue (Chen 2009).

During the preparation of acellular scaffold, a

concern with this process is the disruption of collagen

and elastic structure in the scaffold and some removal

of GAGs from it, which will decrease the mechanical

strength and viscoelasticity, and increase the biodegra-

dation rate of the scaffold (Kawecki 2018). So the

ideal scaffold should have enough mechanical prop-

erties to be appropriate for the surgical application,

and maintain its original strength and surface area

during remodeling process to prevent failure, shrink-

age, bulge, or stretch (Hammond 2008).

Considering that the alignment and organization of

collagen fibers are related to the function of the source

tissue, an understanding of these characterizations of

the collagen fiber is essential for the design of

scaffolds. Besides, the mechanical behavior of single

or multilayer of ECM is important for load-bearing

application in clinical use (Badylak 2007). Finally, it

should be noted that apart from the decellularization

process, there are other factors e.g., the age of the

animal, diet, or race, which influence the mechanical

strength of the scaffold (Rashtbar 2018).

Functional and bioinductive properties

In addition, to create structural integrity, the maximum

preservation of the ECM component during the

decellularization process, can provide necessary spa-

tial and contextual signals for various behaviors of

cells and the production of varied secreted mediators

(Booth 2012). So these components can turn cell-free

scaffolds into a niche that recruits stem or progenitor

cells and assist them in differentiating into functional

tissue (Kawecki 2018). The ECM is an extremely

dynamic structure that is continuously being replaced,

revised and restored, and varies in composition

according to the local and physiological situation of

tissue (Booth 2012; Boudreau et al. 1995; Ingber

1991).

Based on the tissue from which the scaffold is

derived, different types of collagens, glycoproteins,

sulfated GAGs, and bioactive factors exist in the ECM

(Yang 2010). Collagens are the most abundant com-

ponent in the ECM, and because of their Arg-Gly-Asp

(RGD) sequence, that is a usual ligand for different

integrins, they play an essential role in cell adhesion

(Hynes 1992; Kanematsu 2004; Khoshnoodi et al.

2008).

Two of the most important glycoproteins of ECM

are fibronectin and laminin. Fibronectin is abundant in

the RGD, which is essential for cell adhesion (Badylak

2004a,2002; Hirschi et al. 2002). Also, it plays a role

in growth, migration, and differentiation of cells

(Schwarzbauer 1991; Miyamoto 1998). It can bind

other proteins such as collagen and act as a chemoat-

tractant for fibroblast (Hirschi et al. 2002; Thibeault

et al. 2003). Laminin also plays a role in cell adhesion

through its YIGSR and IKVAV polypeptide

sequences (Arenas-Herrera 2013).

GAGs usually are found in the form of proteogly-

cans in the ECM. They can bind to various proteins of

ECM and modulate their functions (Stringer and

Gallagher 1997). One of the most essential roles of

GAGs is the protection of free growth factors from

degradation (Saksela 1988). Another purpose of them

is of importance in morphogenesis, which is vital for

the recellularization process. The last part includes the

maintenance of original phenotypes of repopulated
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cells, induction of cytoskeletal rearrangement, and cell

shape changes and motility (Brown 2006b). Finally,

they promote the retention of water and control the

hydration of the ECM, so they are vital to the

maintenance of intermolecular spacing for cell migra-

tion (Badylak 2004b).

After cell seeding and in vivo implantation of a

scaffold, the behavior of cells, and the remodeling

process will be affected by growth factors, and

bioactive molecules (Boruch 2010; Arenas-Herrera

2013; Badylak 1995,2011). These effects occur during

scaffold the degradation. The growth factors such as

VEGF, bFGF and TGF-b are dissociated from GAGs,

activated and exert their biological effects (Voytik-

Harbin 1997; Hodde 2001; McDevitt et al. 2003). On

the other hand, during degradation of the parent

molecule, such as collagen and fibronectin, some

fragments are produced. These products or cryptic

peptides (such as endostatin derived from collagen

XVIII) mediate a series of biological activities such as

angiogenesis, anti-angiogenesis, antimicrobial and

chemotactic effects (Kawecki 2018; Brennan 2006;

Li et al. 2004; Zantop 2006). Finally, it has to be said

that the age, in addition to structural changes, also

influences functional changes in scaffold; so that this

factor affects extracellular matrix composition and in

turn causes behavioral changes in cells that are placed

on the scaffold (Godin 2016; Smith 2017).

Extrinsic elements

Contaminations

Given that the scaffolds themselves have antibacterial

activity (Sarikaya 2002), sterilization is an essential

procedure in the preparation of biological scaffold.

The purpose of this step is to minimize unwanted

immune response by the elimination of any endotoxins

and intact viral and bacterial DNA (Crapo et al. 2011),

while preserving the structural, mechanical and bio-

logical properties of the scaffold (Kajbafzadeh 2013).

Although some studies have shown that the aseptic

process can remove the vast majority of microorgan-

isms from the scaffold (Mendenhall 2017), the ideal

decellularization process might not create enough

sterilization (Song and Ott 2011). Even the use of

antibiotics and antimycotics for disinfection of scaf-

fold has low decontamination efficacy, because a

percentage of donated scaffold has been rejected as a

result of contamination (By 2012). Finally, keep in

mind that unlike allogeneic tissues, xenogenic ECM

scaffolds are classified as medical devices (Nichols

et al. 2012); and because of endogenous viral-associ-

ated risk (Knight 2008), they require a validated

sterilization technique for the competent national and

international authorities such as Food and Drug

Administration (FDA) in US or Good Manufacturing

Practices (GMP) in EU (Nichols et al. 2012).

Therefore, before implantation or in vitro use of

biological scaffold, we required a sterilization method

that while safe for scaffold, also provides good

antiseptic results (Hussein 2016). For new methods

of sterilization, a careful examination is needed to

evaluate the effectiveness of the protocols.

Toxic residual materials

An ideal scaffold should possess acceptable cytocom-

patibility for adhesion, migration, and outgrowth of

various cells (Zvarova 2016). During the preparation

of the ECM scaffold, several factors are involved,

which can affect biocompatibility and toxicity pro-

files. These factors include the type and concentration

of reagent used for decellularization process (Wang

2015; Fermor 2015), the time of scaffold exposure to

the reagent (Sullivan 2012), the pH at which reagent is

used (Yang 2010), the duration of washing step

(Starnecker 2018), and the use of chemical material

for crosslinking and sterilization (Badylak et al. 2009).

Even different cells exhibit different cytotoxic thresh-

olds to various reagents (Zvarova 2016). So there is a

need to assess the presence of any toxic residual

materials in the ECM scaffold. For this purpose, there

are two methods: extract cytotoxicity assay and

contact cytotoxicity assay. In the latter method, in

addition to cell viability, the morphology of cells is

also examined (Wilshaw 2006). In addition to cell-

based cytocompatibility assessment, there are other

techniques that can detect the presence of residual

reagents in the scaffold (Zvarova 2016).

In addition, to reduce antigenicity and increase

mechanical properties (Xu et al. 2007), the chemical

crosslinking materials can influence the degradability,

and therefore, the host response to the scaffold

(Badylak et al. 2009). In other hands, some of reagents

that are used for the decellularization process (e.g.,

DNase, RNase, or trypsin), generally derived from
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bovine sources. These enzymes may potentially create

an unwanted immune response once implanted (Gil-

bert et al. 2006). So the in vivo investigation also will

be required. It should be noted that the evaluation of

the safety of extractable and leachable substances is

extremely important for authorities such as the FDA to

medical device submission (Jenke 2007).

Scaffold recellularization

Recellularization of scaffold is necessary for success-

ful tissue regeneration. This process can be done in

two manners: 1) in vivo implantation acellular the

scaffold and usage of host cells post-surgery, 2)

transplantation of cell-seeded scaffold ex vivo (Wil-

son 2013); these cells can include autologous, allo-

geneic and xenogeneic. Recellularization of the

scaffold has several benefits, such as preventing

thrombosis after endothelialization (Kasimir 2005),

allowing ECM to undergo turnover, repair, adaptive

remodeling, and growth (Park 2009; Nam 2012), gene

therapy and have biological functions which mediated

by special cell (Borschel et al. 2004).

In addition to mesenchymal stem cells, the differ-

entiated cells such as epithelial, stromal and endothe-

lial cells are also used in ex vivo recellularization.

Apart from the cell source, cell density and method of

cell delivery also vary in this process (Wilson 2013).

The cell density should be chosen to keep cells from

contact inhibition and cell aggregation, but also create

a confluent cell layer on or throughout the scaffold

(Scarritt et al. 2015; Proulx, S.p, et al. 2009).

Considering the basement membrane, the method of

cell delivery can be seeding or injection. As already

mentioned the basement membrane prevents cell

migration into the underlying connective tissue

(Brown 2006a). So even in vivo epithelialization can

be done rapidly without complication, but for stromal

cells intra-stromal injection ex vivo has shown better

results (Wilson 2013).

In the case of the contractile cells, it should be

borne in mind that the contraction effect can reduce

the pore size of scaffold, which in turn influences the

cell proliferation and diffusion of the nutrition and

waste (Ma 2004). So the cell-mediated contraction

(CMC) of the scaffold must be measured. Finally,

considering the limitation of oxygen diffusion, which

is 150–200 lm in the human body (Scarritt et al.

2015), the thickness of non-vasculature scaffold is a

critical feature in successful repopulation (Walles

2003). To determine success of scaffold recellulariza-

tion histological techniques including light and elec-

tron microscopic assay, cell proliferation and

cytotoxicity assay are used. Typical methods for cell

seeding on/within the scaffold are illustrated in Fig. 2.

Materials loading

Based on the results obtained from some studies there

are growth factors on some acellular scaffold which

may enhance the healing process (Voytik-Harbin

1997; Hodde 2001). But, due to the following

problems, loading of growth factors on the scaffold

can make them an ideal scaffold: the finite amount of

growth factors, inactivation of these bioactive factors

via decellularzation process and long-term preserva-

tion, and the uncertainty of growth factors remaining

uniformly at the optimal dose for regeneration process

(Crapo et al. 2011; Gilbert et al. 2006; Kanematsu

et al. 2003).

In addition to growth factors, other biological and

non-biological materials can also be loaded on the

scaffold. Biological materials such as fibronectin

(Assmann 2013), hyaluronan, secreted protein acidic

and rich in cysteine (SPARC) (Brown 2006c), anti-

body (Ye 2008) or siRNA (Vandegrift 2015) or

REDV-ELP peptide (Devalliere 2018), and non-bio-

logical materials such as adhesive polymer (Brodie

2011), bio-nanocomposite (Deeken 2012) or nanos-

tructured hydroxyapatite (Ge 2013) can impress cell

behaviors, local gene modulation and scaffold

properties.

The material loading is done in non-covalent and

covalent approaches. Non-covalent approach or phys-

ical absorption can be direct or indirect interaction.

Charge-charge interaction or existence of other sec-

ondary interaction between materials and scaffold is

responsible for direct non-covalent approach; while

for indirect non-covalent approach the coated inter-

mediate biological molecule on scaffold such as

heparin provides specific site to immobilization the

materials. This intermediate molecule can be coated

physically or chemically. But in covalent approach

there is immobilization of the materials to scaffold

directly through covalent bond (Lee et al. 2010).

Finally, in some cases especially in non-covalent

approach of material loading, only the amount of

materials which can be mixed into the scaffold should
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Fig. 2 Typical methods for cell seeding on/within the scaffold.

A1 epithelial/mesenchymal cell seeding on the scaffold with

basement membrane, A2 stromal/mesenchymal cell seeding

within the scaffold with basement membrane, B1 epithelial cell

seeding on the scaffold without basement membrane, and B2
stromal/mesenchymal cell seeding within the scaffold without

basement membrane
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not be considered, but also the material released from

the scaffold is important which is named ‘‘loading

capacity release kinetics’’ (Garg 2012). The material

release from scaffold must be done in appropriate

dose. So the initial part release that is termed ‘‘burst

release’’ creates the effective therapeutic dosage

(Huang and Brazel 2001), subsequently release kinet-

ics in a time-release fashion maintains therapeutic

dosage (Grassi and Grassi 2005). Typical approaches

for material loading on the scaffold are illustrated in

Fig. 3.

Storage

In order to achieve ‘off-the-shelf’ tissue-engineered

scaffold and transport it from the laboratory to the

clinic, we need a storage method which allows proper

bio-banking of the scaffold (Schuurman 2015). In

addition to all kinds of preparation methods, how the

scaffold is stored is another important factor in its

mechanical, structural and morphological properties

and residual protein content in it (Bonenfant 2013;

Wilczek 2018). Any changes to the above-mentioned

features of the scaffold, in turn, may cause the

following results: destruction of GAGs within tissue

and subsequently decreased material reabsorption

ability (Gilbert 2008; Hafeez 2005), changes in the

concentration of growth factors and cytokines

(Rodrı́guez-Ares 2009; Kim 2019; Phoomvuthisarn

et al. 2019), changes in cellular attachment, rate of

in vivo degradation, and infiltration, proliferation and

survivability of different kind of cells (Bonenfant

2013; Freytes 2008).

Currently, several methods have been developed to

preserve biological scaffolds. These techniques can be

used for short-term and long-term storages with the

aim of maximum preserving the component and

structure of the ECM (Urbani et al. 2017). Short-term

storage is used for several weeks and usually the

scaffold is kept at 4 �C in storage solutions (Urbani

et al. 2017; Perniconi 2011; Wagner 2014). Studies

have shown that this method does not affect the

mechanical and immunological properties of the

scaffold for up to two months, but it is advisable to

use a lower temperature to maintain more growth

factors (Phoomvuthisarn et al. 2019; Jungebluth

2009). It should be noted that antibiotics are usually

used in combination with storage solution such as

PBS. Therefore, considering the shelf-life of antibi-

otics, in longer storage time, timely replacement of

storage solution not be forgotten (Wagner 2014).

Lyophilization or freeze-drying, vacuum pressing

and storage in liquid nitrogen are common methods

used for long-term storage of biological scaffold

(Badylak et al. 2009; Urbani et al. 2017). In addition to

preserving the scaffold for months or years, these

Fig. 3 Typical approaches for material loading on the scaffold.A Indirect non-covalent approach,BDirect non-covalent approach, and

B Covalent approach
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methods each have their own benefits, along with the

effects they may have on the ECM. For example, in

freeze-drying method, although the morphology of

collage fiber and in vitro growth of cell after seeding

may be altered, removing water from scaffold makes it

easier to handle and transfer at room temperature

(Freytes 2008; Paolin 2016); or, in vacuum pressing

method, despite the change in the ultrastructural

morphology of ultimate construct and the decrease in

extensibility of scaffold, the several sheet of scaffold

can be laminated and can be fabricated into various 3D

shapes (Badylak et al. 2009; Freytes 2004,2005).

As for storage in liquid nitrogen technique, it has to

be said that its storage status has a significant effect on

biomechanical and morphological stability of the

scaffold and slow cooled in medium (SCM) has the

best effect on the preservation of the collagen/elastin/

GAGs composition of the ECM (Wilczek 2018;

Urbani et al. 2017). Finally, it should be noted that

the effect of storage solution on the properties of

scaffold should not be overlooked (Qureshi et al.

2010). Therefore, given the variety of storage methods

and the advantages and disadvantages of each, the

optimal method for scaffold storage should be deter-

mined based on its clinical application.

Conclusion

Selection of the best biological scaffold for safe

clinical use needs multidisciplinary evaluation, which

it can be demonstrated that immunologic agents,

endotoxins, microorganisms and toxic residual mate-

rials from the acellularization process are eliminated,

as well as structural, mechanical, functional and

bioinductive properties of ECM are preserved as

much as possible. After evaluating the product, it is

critical to understand how storage method affects the

nature of scaffold, which is important for long-term or

postoperative results. Even to improve the quality of

the scaffold, it is possible to seed different cell types or

load biological and non-biological materials on the

scaffold and give it unique features. What drives us to

choose the right scaffold is our goal of using the

scaffold in clinical use. With this goal in mind, it is

possible to determine which of the aforementioned

evaluations prevails and should focus more on, and

which one is less important and even eliminable. For

example, in bladder repair, the presence of scaffold’s

basement membrane is important so the evaluation of

this part of structural property must be done. But the

first step is to select a tissue as a scaffold that includes

the basement membrane. Or if the sterilization method

is used that is approved by the FDA, there is no need to

evaluate the effectiveness of this method. Therefore,

there is no requirement to perform all evaluation

procedures for all types of scaffolds; and it depend on

your goal, your equipment and your cost, which will

lead you to careful planning for choosing the right.
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