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Abstract Breastmilk is a dynamic, multi-faceted,

and complex fluid containing a plethora of biochem-

ical and cellular components that execute develop-

mental effects or differentiation program, providing

nourishment and immunity to newborns. Recently, it

was reported that breastmilk contains a heterogeneous

population of naı̈ve cells, including pluripotent stem

cells, multipotent stem cells, immune cells, and non-

immune cells. The stem cells derived from breastmilk

possess immune privilege and non-tumorigenic prop-

erties. Thus, breastmilk may represent an ideal source

of stem cells collected by non-perceive procedure than

other available sources. Thus, this ‘‘maternally orig-

inating natural regenerative medicine’’ may have

innumerable applications in clinical biology, cosmet-

ics, and pharmacokinetics. This review describes the

efficient integrated cellular system of mammary

glands, the impressive stem cell hierarchy of breast-

milk, and their possible implications in translational

research and therapeutics.
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Introduction

Human milk is an optimized in vivo product that

contains a series of nutritional agents and an array of

bioactive factors that confers nutrition and protection

to infants (Fig. 1). This relevant source includes

various components: (1) genetic materials (such as

microRNAs); (2) stem cells; (3) organic substances;

and (4) components like immunoglobulins, cytokines,

chemokines, cytokine Inhibitors, growth factors, hor-

mones, oligosaccharides, glycans, mucins, and HLA-

free antigens (Ballard and Morrow 2013). It has been

reported that, compared to maternal serum and plasma

the concentration of many growth factors is higher in

breastmilk (Kaingade et al. 2017). Among them,

vascular endothelial growth factor (VEGF), hepato-

cyte growth factor (HGF), epidermal growth factor

(EGF), insulin growth factor (IGF), and transforming

growth factor-b (TGF-b) have been extensively stud-

ied. The sophisticated bioactive factors present in

human milk synergistically facilitate the normal

development of the offspring via targeted

programming.

Recent investigators have revealed that breastmilk

contains several cell types, including colostral cor-

puscles, polymorphonuclear leukocytes, mononuclear

phagocytes, and lymphocytes including different

types of transitory stem cells such as mesenchymal

stem cells (MSCs), mesenchymal stem-like (MSC-

like) cells, pluripotent embryonic stem (ES)-like cells,

hematopoietic stem cells (HSCs), mammary stem cells
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(MaSCs), neuroprogenitor cells, and myoepithelial

progenitor cells (Aoyama et al. 2010; Kaingade et al.

2017). Stem cells present in breastmilk are able to

cross the gut epithelia of the infant in an unknown way

and integrate into the newborn’s tissues (Dutta and

Burlingham 2010). Thus, this ‘‘materno-neonatal relay

system’’ provides protection to the newborn from

infection, inflammation, and oxidative stress as well as

from overweight and obesity in adolescence and

adulthood possibly by the recombination of cells or

DNA of maternal origin in offspring via maternal–

fetal microchimerism (Melnik et al. 2013; Ozkan et al.

2012).

It is not possible to envisage clearly the cellular

environment of lactating breasts by using biopsy of the

resting breast tissue. It is also difficult to collect tissues

from lactating breast and characterize their complex

cellular architecture owing to ethical issues associated

with it. Accumulating evidences suggest that the

complete cellular hierarchy of lactating breasts is

reflected in breastmilk (Hassiotou et al. 2012; Has-

siotou and Hartmann 2014).. Thus, breastmilk may act

as an excellent model for studying the biology and

pathology of breasts. The presence of stem cells makes

breastmilk a clinically relevant source for regenerative

medicine, cell and tissue engineering, and future

stemapeutics. Taking all these into account, the prior

work of established milk banks is to develop new

methodologies that can store the novelty of breastmilk.

This review summarizes the dynamic features of

mammary glands, key signaling pathways, and the

local cellular cross-talk that orchestrates tissue remod-

eling and mammary morphogenesis. The cellular

components in breastmilk are identified, and the

investigation of breastmilk stem cells reveals some

of their unique attributes, suggesting potential appli-

cations in cell-based therapies, pharmacokinetics, and

clinical biology.

Mammary gland development in human

Mammary gland development in females is dynamic

and orchestrated in response to systemic hormonal

secretion influenced by local paracrine interactions

between the developing epithelial ducts and their

adjacent embryonic mesenchyme or postnatal stroma

(Sternlicht 2006). Mammary glands undergo struc-

tural and functional changes at defined stages of

human life, namely, embryonic, prepubertal, and

pubertal stages, and pregnancy, lactation, and involu-

tion (Fig. 2). First a pair of mammary glands appears

at 5 weeks as ectodermal mammary streaks that

extend bilaterally from the axilla to the groin during
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embryogenesis. Two weeks later, the mammary ridge

or milk line develops in the thoracic portion of the

primitive streaks (Fig. 3). Then epithelial mammary

gland buds are induced in the ventral epidermis by

mammary mesenchyme and ectodermal cells migrate

along the mammary line and coalesce to form

Lactation

Pregnancy

InvolutionMature virginPuberty
Birth

Schematic of a duct

Myoepithial 
progenitor

Luminal 
progenitor

Common 
progenitor

Myoepithelial cells
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Stem cell

Fig. 2 Different phases of mammary gland development. The nascent cells of mammary gland are represented by closed circles and

mature alveoli are symbolized by open circles
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epithelial placodes (Veltmaat et al. 2004). The mam-

mary placodes go underneath the mesenchyme where

epithelial cells advance into the underlying stromal

matrix to produce primitive rudimentary ductal struc-

tures. This elegant process is chiefly mediated by

epithelial–mesenchymal interactions (Macias and

Hinck 2012).

The stromal constituents like mesenchymal cells,

fibroblasts, blood cells, and leukocytes and extra-

cellular matrix (ECM) consisting of laminin, fibro-

nectin, collagen, proteoglycans, etc., further accelerate

this process of development (Kass et al. 2007). The

temporal and spatial coordination of many signaling

pathways requires for directing the change in cell

shape and cell movement. These phenomena also play

a critical role in establishing communication between

cell to cell that is necessary for the development of the

mammary gland and tissue morphogenesis (Hens and

Wysolmerski 2005). The versatile cellular pattern of

the mammary gland is influenced by many signaling

pathways from several cell types along with mechan-

ical cues and cell rearrangements (Gjorevski and

Nelson 2011).

The tissue architecture of the mammary gland

changes with age in response to hormonal and local

cues. It undergoes partial remodeling at the onset of

puberty and complete remodeling during pregnancy

and lactation cycles. The apparent migration, prolif-

eration, and differentiation of cells ultimately results

in cellular transformation, rearrangements, commit-

ment, and ultimately converts to a fully functional

gland during lactation from a rudimentary organ at

birth (Fig. 4a–i). During embryogenesis, cellular

morphogenesis is directed by signals from the mes-

enchyme and is independent of hormonal input

(Sternlicht 2006). Thus, at the ‘‘resting state,’’ the

mammary gland consists of a network of bilayered

epithelial ducts embedded within supporting stromal

and adipose tissue (Fig. 5a). At the onset of puberty

and subsequent adulthood, the development of the

mammary glands is controlled by circulating hor-

mones released from the pituitary and ovary (Macias

and Hinck 2012). At the pubertal stage, marked

changes in hormonal and local cues rapidly establish a

ductal network (Fig. 5b). Onset of pregnancy results in

a gradual remodeling of the gland. Dynamic reciproc-

ity (DR) exists between the cells, and the extracellular

matrix (ECM), associated change in the hormonal

cues, as well as various signaling pathways and growth

factors (GFs) further fuel this remodeling process

(Thorne et al. 2015). Further, the alveolar develop-

ment advances toward the establishment of a gland

Mammary ridge

Epidermis

Mesenchyme

A

Nipple

Epidermis

Lactiferous duct

Mesenchyme

B

Fig. 3 Development of human embryonic breast. aDevelopment of early epidermal mammary ridge. b From themammary ridge, solid

epithelial shoots grow into underlying mesenchyme to form lactiferous ducts
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that is profusely filled with alveolar structures by the

end of pregnancy (Hovey and Trott 2004). After

parturition, milk expulsion is regulated by oxytocin in

response to mechanical cues provided by the suckling

of newborns from fully functional mammary glands

(Fig. 5c).

The complete indulgence and knowledge regarding

mammary gland development may significantly con-

tribute to the study of cellular and molecular mech-

anisms regulating the branching process of other

organs and pathways regulating tissue morphogenesis

and functional differentiation. Readers are suggested
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Fig. 5 Branching morphogenesis of mammary gland
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to refer to the excellent review by Javed and Lteif

(2013) for a detailed understanding of the precise

mechanisms governing the process of development.

Key signaling pathways regulating mammary

gland development

The signaling pathways are pivotal players that

regulate cellular activities and coordinate different

cellular actions through a complex series of events in

response to the available cellular microenvironment.

b-catenin signaling is imperative for placode forma-

tion and its maintenance (Boras-Granic et al. 2006;

Zhang et al. 2008). Canonical Wnt signaling is also

important for executing the cell movements into the

placode. The mammary placode expands and rivets

through a series of sequential and reciprocal interac-

tions between the epithelial cells and the surrounding

mesenchyme is instructed to form the mammary bud.

Furthermore, parathyroid hormone-related protein

(PTHrP), Wnt, insulin-like growth factor-1 (IGF1)

signaling pathways, and the combination of two

homeodomain transcription factors, Msx1 and Msx2,

are anticipated to control this event. Sprouting of the

mammary buds initiates the formation of the rudi-

mentary ductal tree (Cowin and Wysolmerski 2010).

In the case of humans, instead of a single epithelial

sprout extending from the mammary bud, several

sprouts form, creating multiple mammary trees that

unite at the nipple. PTHrP is a critical developmental

factor for embryonic mammary development and

pubertal ductal morphogenesis (Dunbar and

Wysolmerski 1999).

Another study identified that mice lacking growth

hormone (GH), Igf1, or estrogen receptor (alpha)

(Esr1) genes fail to show pubertal development of the

mammary gland (Macias and Hinck 2012). Earlier

studies suggest that the administration of GH and

prolactin (PRL) can enhance mammogenesis and

lactogenesis (Trott et al. 2008). It is presumed that

GH and IGF1 mediate the post-natal development of

the mammary gland. Both GH and IGF act in a

coordinated manner and regulate cell proliferation.

These act together with estrogen secreted from the

ovary to induce epithelial cell proliferation. Estrogen

also shows other functions. Growth and maintenance

of alveolar cells is maintained by estrogen during

pregnancy (Nandi 1959).

Estrogen signaling occurs through its receptor

(ESR1). This works in a paracrine manner to stimulate

the release of various GFs. AREG, a member of the

epidermal growth factor (EGF) family, proceeds to

bind its receptor on stromal cells and induce the

expression of fibroblast growth factors (FGFs). FGFs,

in turn, stimulating luminal cell proliferation. Other

factors, such as TGFß1, Reelin (RELN), Slit2, and

Netrin1 (NTN1), contribute significantly to the mam-

mary architecture by either positively or negatively

regulating cell proliferation or maintaining cell–cell

interactions (Macias and Hinck 2012). Extensive side-

branching and alveologenesis is required to create a

lactation-competent gland. Progesterone (Pg) and

prolactin (PRL) are mainly responsible for activating

the ‘‘alveolar switch,’’ a genetic program that syn-

chronizes proliferation, migration, differentiation, and

deletion of mammary epithelial cells within the many

tissue types of the mammary gland (Oakes et al. 2006).

Pg stimulates secondary and tertiary branching, which

has been confirmed from a study conducted on mice

(Atwood et al. 2000). PRL integrates many signals,

including those from the extracellular matrixes

(ECMs) by interacting with integrin through the

transmembrane signal regulatory protein alpha

(SIRPA) (Galbaugh et al. 2010). Again PRL acts as

a transducer mediated by the JAK2/STAT5 pathway,

whose downstream targets include milk genes casein

beta (Csnb) and whey acidic protein (Wap) (Macias

and Hinck 2012).

Upon weaning, the gland is remodeled back to its

pre-pregnancy state. At involution, the redundancy of

the mammary gland occurs as it removes the milk-

producing epithelial cells. This occurs in two phases.

Stage one is reversible and is regulated largely by

STAT3, which is induced by the leukemia inhibitory

factor (LIF) and opposes pro-survival STAT5 signal-

ing by upregulating the expression of numerous

proteins, including lysosomal proteases, cathepsins,

insulin-like growth factor binding protein 5 (IGFBP5),

and two regulatory isoforms of phosphatidylinositol 3

kinase, viz., p50alpha (P50A) and p55alpha (P55A).

Cell death and limited proteolysis of the extracellular

matrix (ECM) occurs during this stage as plasminogen

(PLG) is converted to plasmin through the actions of

plasma kallikrein (KLK1), yet the alveoli largely

retain their shape (Schedin et al. 2004). The changes

occur during stage two, which is irreversible and

characterized by alveolar collapse and
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redifferentiation of adipocyte (Watson 2006). The

mammary gland returns to its pre-lactation state by

active participation of matrix metalloproteinases

(MMPs), tissue inhibitors of metalloproteinases

(TIMPs) along with plasmin for releasing GFs and

remodeling the ECM (Macias and Hinck 2012).

Stem cells in mammary gland

Stem cells are primarily defined as precursor cells of

every tissue, which have the potential for unlimited or

prolonged self-renewal, as well as the ability to give

rise to at least one or more types of mature differen-

tiated cells (Chagastelles and Nardi 2011). Pluripotent

stem cells present within the embryo have the ability

to give rise to differentiated progeny representatives of

all three embryonic germ layers, even to haploid germ

cells (Kuijk et al. 2010). In mammals, pluripotency is

restricted to the oocyte, blastocyst, early embryonic

cells, primordial germ cells, and stem cells of tumors

(embryonal carcinoma cells) (Reubinoff et al. 2000).

Pluripotent embryonic stem cells (ESCs) are derived

from the inner cell mass (ICM) of pre-implanted

blastocyst-stage embryo. All these resources provide a

unique tool to study the functional expression of

developmentally regulated genes and to identify

polypeptide factors involved in the differentiation

and proliferation of committed embryonic progenitor

cells. These can also be used in many therapeutic

approaches for treating a wide range of diseases.

However, the ethical issues around this pluripotent

source of cells restrict the exploration of its full

potential.

In the last decade, it was found that somatic cells

can revert to the pluripotent state by the reprogram-

ming or reactivation of pluripotency-related genes

(Oct4, Sox2, Klf4, c-Myc) and inactivation of tissue-

specific genes (Takahashi et al. 2007). Consequently,

this pluripotential reprogramming may provide an

easily accessible cell source for the treatment of

diseases without any ethical debate. However, the

mechanisms underpinning cellular reprogramming are

still largely unidentified (Kim et al. 2011). Now it is

well established that all postnatal organs and tissues

contain adult stem cells (ASCs) (Kørbling and Estrov

2003). ASCs chiefly constitute hematopoietic stem

cells (HSCs) and non-hematopoietic stem cells (Berz

et al. 2007). Current medicine predominantly uses

MSCs’a type of non-hematopoietic stem cells may be

due to their effective immunomodulatory function and

immunotolerant characteristics (Weil et al. 2011).

Bone marrow (BM) is supposed to be the most potent

source of both HSCs and MSCs. Rather than BM,

MSCs can be derived from the adipose tissue,

periosteum, synovial membrane, synovial fluid (SF),

muscles, dermis, deciduous teeth, pericytes, trabecular

bone (TB), infrapatellar fat pad, articular cartilages,

umbilical cord blood (UCB), and peripheral blood

(Klingemann et al. 2008). However, the collection of

tissue samples for the isolation of stem cells from such

sources involved an intense invasive procedure.

Recently, it has been confirmed that physiological

fluids like breastmilk (Hassiotou et al. 2012), men-

strual blood (Mou et al. 2013), and urine (Qin et al.

2014; Long et al. 2015) also contain stem cells. Most

notably, the samples can be collected via a non-

invasive procedure. Breastmilk is supposed to be a

novel source for the isolation of different types of stem

cells, progenitors, and MSCs that can be used safely in

many therapeutic applications than other contempo-

rary sources (Hassiotou 2012).

Development of mammary gland and its homeosta-

sis is a stem-cell-driven process that depends on age-

related hormonally driven cues. There is presence of

slow cycling stem cells, long- and short-term repop-

ulating cells, and unique fetal MaSC population within

the mammary gland (Fu et al. 2014). The cycle of

pregnancy, lactation, and involution can repeat itself

multiple times during the reproductive lifespan of a

woman, suggesting the presence of stem/progenitor

cells and original antecedent that supply cells at each

new cycle of expansion and for subsequent pregnancy

(Smith and Chepko 2001). However, these phenomena

are directed in accordance with the niche available to

them.

These stem cells are proposed to serve three

functions: (1) to give rise to the tissues of the adult

mammary gland during development; (2) to allow the

enormous tissue expansion and remodeling that occurs

in the mammary gland during multiple cycles of

pregnancy, lactation, and involution; and (3) rarely, to

serve as a reserve for repair in the event of tissue

damage. The bipotent mammary stem cells might give

rise to both luminal and basal progenitors, from which

the morphogenesis of the mammary ductal tree takes

place. During pregnancy, alveoli are formed by

alveolar precursors to form an external network of
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myoepithelial cells (Blanpain et al. 2007). Functional

expression of milk occurs owing to the contractile

properties of mammary myoepithelial cell, which

helps to eject milk during lactation (Deugnier et al.

2002). During pregnancy, differentiation of alveolar

epithelial cells occurs into groups of small terminal

ductal alveolar structures, which are collectively

termed as terminal ductal lobular units (TDLUs)

(Fig. 6).

Different investigations conducted on mouse mod-

els demonstrate that a single normal mouse mammary

stem cell can regenerate an entire glandular tree

capable of producing milk (Kordon and Smith 1998).

An experimental study also identifies that a single cell,

marked with a LacZ transgene, can reconstitute a

complete mammary gland in vivo (Shackleton et al.

2006). The transplanted cell contributed to both the

luminal and myoepithelial lineages and generated

functional lobuloalveolar units during pregnancy. The

self-renewing capacity of these cells was demon-

strated by serial transplantation of clonal outgrowths.

However, human mammary stem cells seldom form

complete ductal trees across the fat pad upon trans-

plantation (Villadsen et al. 2007; Visvader and Stingl

2014). Current experimental analysis has shown that

the pragmatic behavior of fully functional mammary

gland with all the cellular characteristics is supposed

to be expressed in breastmilk.

Mid
pregnancy

Myoepithelial 
cells 

Alveolar 
epithelial cells

Ductal
epithelial cells 

Fig. 6 Terminal ductal

lobular unit (TDLU). Here,

alveolar and ductal

epithelial cells are

surrounded by a layer of

overlapping myoepithelial

cells

123

474 Cell Tissue Bank (2019) 20:467–488



Cellular nature of breastmilk

Human milk secretion occurs at three distinct phases,

namely, colostrum, transitional milk, and mature milk.

Colostrum is the first fluid produced by a mother

immediately after delivery, which has a distinct

volume, appearance, and composition. It is observed

that mature milk contains more nutritional products

required for children’s growth, but poor cellular

components, whereas early milk has rich cellular

constituents (Kaingade et al. 2017). The cellular

composition of breastmilk is highly heterogeneous.

Many internal and external factors, such as genetic

makeup, maternal diets, and environment, are respon-

sible for creating variability in the composition of

breastmilk.

Some investigators explain this cellular makeup of

breastmilk as epithelial, others as immune/mesenchy-

mal or a mix of both types (Engel 1953; Indumathi

et al. 2013). Epithelial cells and their cell clusters are

predominantly present in human milk. The first

evidence of the presence of epithelial cell clusters of

various sizes in mammary secretions during preg-

nancy and the first week postpartum comes from the

study of milk smears (Holmquist and Papanicolaou

1956). These epithelial cells can be isolated and

cultured in in vitro condition. In specific growth

conditions, epithelial cells form three distinct types of

colonies, namely, open, closed, and mixed; these

colonies are supposed to contain luminal (CK18?),

ductal (CK19?), and myoepithelial cells (CK14?/

SMA?) expressing specific cell surface markers. The

experimental analysis of the breastmilk identified

three different epithelial cell types, namely, lacto-

cytes, squamous epithelial cells, and ductal cells.

These cells are profusely present in human milk at

different stages of lactation (Brooker 1980). This may

be because breastmilk epithelial cells originate from

different areas of breast epithelium, both ductal and

alveolar. These might enter the milk by exfoliation

through breast-feeding. However, a study suggests

that epithelial detachment is an active phenomenon

that occurs owing to the modification in gene expres-

sion for a short interval (Hassiotou 2012). This may be

because during this interval the gene expression

pattern is governed by stages of lactation, requirement

of dyads, and mobility of cells.

In human colostrum, macrophages are the predom-

inant leukocyte type (40–50% of total leukocytes)

followed by polymorphonuclear neutrophils (40–50%

of total leukocytes) and lymphocytes (5–10% of total

leukocytes), and T cells constitute the major cell

percentage (approximately 83%) in contrast to B cells

(4–6%) of lymphocytic population. In breastmilk, B

cells displayed a phenotype of class-switched memory

B cells, with few IgD(?) memory and naive B cells.

All these leukocytes are active and motile and work

precisely in an integrated manner. However, recent

analysis of milk cells revealed that mature human milk

contain only a smaller fraction (\ 2%) of leukocytes,

when both mother and infant are healthy. Thus, it

clearly indicates that the main cell types the infant

receives via breastfeeding for the majority of the

lactation period are non-immune cells (Hassiotou and

Hartmann 2014).

An investigation revealed that there is incidence of

CD34? hematopoietic stem/progenitor cells in the

colostrum (Fan et al. 2010). A flow cytometry study

also accounted for the fact that breastmilk expresses

the markers for HSCs (CD 34, CD 133, CD 117),

MSCs (CD 90, CD 105, CD 73), myoepithelial cells

(CD 29, CD 44), immune cells (CD 209, CD 86, CD

83, CD 14, CD 13, HLADR, CD 45), as well as cell-

adhesion molecules (CD 31, CD 54, CD 166, CD 106,

CD 49d) and other markers (ABCG2, CD140b). The

data further show a lower expression of CD 34

(13.07 ± 2.0%), CD 90 (7.79 ± 0.8%) and CD 73

(2.19 ± 0.41%), indicating the presence of negligible

amount of HSCs and MSCs in human milk. This study

further illustrates that human milk is an integral

cellular system of putative stem cells, immune cells,

and non-immune cells (Indumathi et al. 2013).

Stem cells subsist in many organs, and tissue

systems exhibit a high degree of heterogeneity. In part,

this heterogeneity may depend on the origin of tissues

and stages of development (Villadsen et al. 2007). The

same may hold true for breastmilk and its cellular

counterparts. Recent studies have demonstrated that

stem cells and differentiated cells from the lactating

epithelium enter breastmilk either through cell migra-

tion and turnover and/or as a consequence of the

mechanical shear forces of breastfeeding. Accumulat-

ing evidences from in vitro analysis indicates that a

number of morphologically distinct stem cells that

include HSCs, MaSCs, MSCs, neuro-progenitor cells,

epithelial, myoepithelial progenitor cells, ductal, and

alveolar progenitors exist in breastmilk (Fan et al.
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2010; Indumathi et al. 2013; Hassiotou and Hartmann

2014).

In vitro analysis of breastmilk stem cells

In vitro cultured breastmilk stem cells have been

analyzed by using different methods. The general

procedure adapted to perform in vitro culture and

characterization of stem cells from breastmilk is

depicted in Fig. 7. Briefly, after collection, breastmilk

was processed, isolated cells were seeded in culture

dishes, and cultivated along with a specific growth

medium designed by the concerned researchers.

Subsequently, investigations were conducted to eval-

uate the stemness of in vitro cultured cells by

subjecting these to different stem cell markers. The

expression of these markers was mainly recorded by

following different techniques such as immunofluo-

rescence assay, immunocytochemistry, quantitative

real-time polymerase chain reaction, and flow cytom-

etry analysis (Briere et al. 2016).

Role of breastmilk stem cells in the infant

after ingestion

Do these stem cells possess similar functions and

properties like other stem cells in in vivo and as well as

in vitro condition? It is hypothesized that these

maternal breast-derived stem cells are able to integrate

into the newborn’s tissues and differentiate into

functional cells. Thus, maternal milk might play a

relevant role in the postnatal development of multiple

organs, including the brain, of every neonate under-

going breastfeeding (Fig. 8). Notably, this hypothesis

has been recently demonstrated in a mouse model

where breast-milk-derived maternal stem cells were

identified, 3 weeks after birth, in the stomach wall, in

the thymus and in the liver of lactating pups

(Hassiotou et al. 2014).

Pioneering studies demonstrate that most leuko-

cytes present in the milk bolus were differentiated

myeloid cell precursors. The maternal cells transferred

to the offspring via breastmilk allocate themselves in

crucial anatomical regions of the intestine ‘‘Peyer’s

patches (PPs)’’ of the nursed infant, which are

involved in immune surveillance of pathogenic

microbes entering the intestinal tract. The major

constituents of breastmilk leukocytes localized to

PPs are T lymphocytes and cytotoxic T cells (CTLs).

Maternal CTLs found in breast milk are directed to the

PPs to compensate for the immature adaptive immune

system of the infant in order to protect it against

constant oral infectious risks during the postnatal

phase (Cabinian et al. 2016). Breastmilk stem cells

integrate into tissues of the neonate and persist for

longer periods, potentially providing protection

against infection and allergy. Simultaneously this

could potentially prevent incidences of necrotizing

enterocolitis, obesity, and chronic conditions such as

type I diabetes, celiac disease, Crohn’s disease, and

even faster psychomotor development (Kramer 2010;

Hassiotou and Geddes 2015; Bion et al. 2016;

Witkowska-Zimny et al. 2017). The integration of

the maternal genome into the neonate genome though

ingestion of milk might also result in permanent

correction of genetic disorders (Irmak et al. 2012).

Transitional properties of human breastmilk

derived stem cells (hBMDSCs)

Similarity with ESCs

Accumulating evidences suggest that hBMDSCs show

hallmarks of stemness. These stem cells express

characteristics similar to those of ESCs. The colony-

forming ability is one of the distinguishing features of

human ESCs. Similar to ESCs, hBMDSCs also form

compact colonies. Their undifferentiated status of

ESCs are marked by the consistent expression of

stage-specific embryonic antigen-3 (SSEA-3), stage-

specific embryonic antigen-4 (SSEA-4), tumor-rejec-

tion antigen-1-60 (TRA-l-60), and tumor-rejection

antigen-1-81 (TRA-1-81).

It is quite interesting to note that positive expres-

sions of SSEA4, SSEA3, and TRA-1-60/TRA-1-81

are shown by hBMDSCs. These colonies typically

express the pluripotency genes OCT4, SOX2,

NANOG, and downstream targets KLF4, REX1, and

GDF3 (Hassiotou et al. 2012; Twigger et al. 2015) as

expressed by ESCs (Thomson et al. 1998; Ginis et al.

2004). Subsequently, another study observed that a

subpopulation of hBMDSCs express TRA 60-1, Oct4,

Nanog, and Sox2 but not SSEA-1 or SSEA-4 (Sani

bFig. 7 Culture and characterization of hBMDSCs

123

Cell Tissue Bank (2019) 20:467–488 477



Stem cells

Stem cells
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Fig. 8 Incorporation of stem cells in various regions of infant’s body after breastmilk ingestion helps in growth and development
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et al. 2015). Concordantly, like other multipotent stem

cells, hBMDSCs also exhibit extensive proliferation,

differentiate into multiple lineages, and undergo

replicative senescence after a limited number of cell

doubling. The differential gene expression pattern

shown by hBMDSCs ranging from early-stage

pluripotent stem cells to more committed progenitors

to terminally differentiated cells might represent

peculiar stem cell heterogeneity that is observed in

in vivo lactating mammary glands. This may be due to

the fact that the generation of cells that produce milk

also takes place at the time of conception as governed

by hormonal cues (share the same timing with the

embryo from which ESCs are derived) and function-

ally expressed mammary epithelial stem cells, a type

of ASCs after parturition (Pang and Hartmann 2007).

Thus, breastmilk may represent a valuable source of a

series of transitory stem cells shuttling between two

different functionally active cellular compartments.

The other reason for this peculiar property shown by

hBMDSCs could be that the expression of pluripotent

genes at a certain stage of mammary gland develop-

ment may be controlled by the epigenetic mechanism

(Hassiotou 2012).

Similarity with MSCs

The approach of examining the cell fate of in vitro

cultured human milk indicates that these cells initially

form irregularly shaped epithelial-like cells, but later

attain typical slender fibroblast-like MSC phenotypes.

The presence of MSCs was first hypothesized in the

late nineteenth century by Cohnheim (1867). A

century later, for the first time isolation of MSCs and

elucidation of its in vitro characteristics was done from

BM (Friedenstein et al. 1968). These cells are plastic

adherent, show multilineage differentiation potential,

and express a cluster of designation or classification

determinant (CD) molecules such as CD90, CD44,

CD271, and CD146. CD73, and CD105 and lack the

expression of CD 14, CD19, CD31, CD34, CD45, and

HLA-DR (Sani et al. 2015). However, to date, MSCs

lack a unique identifying phenotypic marker (Baer

et al. 2013).

The immunofluorescence study of hBMDSCs for

specific cell surface markers clearly indicates that

these cells express mesenchymal markers like CD44,

CD29, and Sca-1 and cytoskeletal protein markers

such as smooth muscle actin (SMA), vimentin, and

nestin. Negative expression of CD33, CD34, CD45,

and CD73 was observed, further confirming their

identity as MSCs (Buescher and Pickering 1986).

Further, these cells also manifest the presence of

E-Cadherin, an epithelial-to-mesenchymal transition

marker in their early passages (Patki et al. 2010;

Pichiri et al. 2016). It may be because the phenomenon

of epithelial to mesenchymal transition (EMT) that

occurs during mammary gland branching morphogen-

esis also recapitulates in the in vitro culture of

breastmilk. During EMT, epithelial cells lose their

apico-basal polarity (Micalizzi et al. 2010). Tight

junctions that typically maintain apico-basal polarity

dissolve, allowing the mixing of apical and basolateral

membrane proteins.

Adherens and gap junctions are disassembled and

cell surface proteins such as E-cadherin and epithelial-

specific integrins are replaced by N-cadherin and

integrins specific to extracellular components. The

actin cytoskeleton is remodeled into stress fibers,

which accumulate at areas of cell protrusions. The

epithelial intermediate filaments, cytokeratins, are

replaced by vimentin. Meanwhile, the underlying

basement membrane is degraded and the cell invades

and moves into the surrounding stroma, devoid of

cell–cell contacts (Fig. 9). A recent study also reports

that in vitro breastmilk-derived MSCs are likely to be

mediated through epithelial–mesenchymal transition

(Kaingade et al. 2016).

Analysis of pluripotent gene expression profile

of breastmilk stem cells versus normal resting

breast

It has also been observed that a rare subpopulation of

the normal resting breast (from non-pregnant, non-

lactating women) also express pluripotent genes

(OCT4, SOX2, NANOG) and display many features

of pluripotency, such as formation of teratoma and

capability to differentiate into cell types of the primary

three-germ layer in both in vitro and in vivo condi-

tions (Dontu et al. 2003; Roy et al. 2013). It is

noteworthy that embryonic TFs like OCT4, SOX2,

NANOG, and KLF4 are also expressed in the resting

mammary tissue of males (Richter et al. 2013).

However, during pregnancy and lactation, a significant

upregulation of these genes occurs at specific cell

populations of the female breast, an event that is
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potentially driven by hormone and a fuel to transform

the gland into a milk-secretory organ (Seymour et al.

2015).

Breastmilk gene expression varies

with characteristics of infant and mother

The demographic gene expression profile of breast-

milk varies with infant and maternal characteristics.

Infant gestational age at delivery and changes in

maternal bra cup size between pre-pregnancy and

postpartum lactation were also associated with expres-

sion of genes controlling stemness as well as milk

synthesis. A study demonstrates that higher expression

of a-lactalbumin (a-LA) and NESTIN was observed

for infants with greater gestational age at delivery

(Twigger et al. 2015). This may be due the fact that the

mammary gland is more mature in mothers of term

infants, containing more milk-secretory cells, more

cells with progenitor properties that are able to

maintain some level of plasticity. Additionally, the

expression levels of the stem cell marker SOX2 were

much higher in milk from mothers of preterm infants

and associated with lower-level expression of a-LA
and NESTIN than in mothers of full-term infant

(Rasmussen 2007).

Moreover, women with a larger body mass index

(BMI) have less epithelial tissue that is capable of

synthesizing milk. A number of studies report that

maternal obesity before conception leads to several

complications in the postnatal breastfeeding period,

including delayed onset of lactogenesis, impairment of

lactogenesis II, late initiation of breastfeeding to

infant, and short breastfeeding duration (Rasmussen

et al. 2001). A recent study revealed a speculative fact

that changes occurring in bra cup size in women

between pre- and post-pregnancy periods were asso-

ciated with lower expression of SOX2 and higher

expression of REX1, a-LA, and epithelial cell adhe-

sion molecule (EPCAM) (Twigger et al. 2015). This

may be because there is an increase in breast volume

during the lactation period that reflects the presence of

more epithelial cells resulting in higher milk

production.

Differentiation of hBMDSCs

Upon induction of appropriate inducers, hBMDSCs

could be able to differentiate and generate into cell

types representative of three embryonic germ layers

under conditions. During initial period, it was illus-

trated that MSCs could differentiate only into tissues

of mesodermal origin (Friedenstein et al. 1968).

Apical membrane components

Tight junction

Epithelial 
integrin

Gap junction

E-cadherin

Basement membrane

EMT

MET

Cytokeratin intermediate filaments
Actin-stress 
fibers 

Mesenchymal
integrin

N-cadherin

Basement 
membrane

Vimentin

Fig. 9 Cellular changes that occur during EMT-MET
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However, recent experimental analysis on MSCs has

transformed this doctrine. It has been observed that

MSCs could be successfully differentiated into a

variety of cell lineages like neurons, muscle cells,

epithelial cells, hepatocytes, including osteoblasts,

chondrocytes, and adipocytes. This may result owing

to the presence of particular soluble factors in the

culture medium that induce reprogramming of gene

expression patterns leading to differentiation of

specific lineages. The recent tracking of differentiation

hierarchy of hBMDSCs concludes that hBMDSCs

also exhibit ‘‘stem cells plasticity.’’ These cells

contribute to neurons, myoepithelial cells, luminal

cells, pancreatic beta cells, and hepatocytes, apart

from traditional MSCs differentiation into osteoblasts,

chondroblasts, and adipoblast. These differentiated

cells also express lineage-specific markers (Patki et al.

2010; Hassiotou et al. 2012).

Several studies conducted on in vitro cultured

breastmilk cells demonstrate that when hBMDSCs are

cultured on ultralow-binding plates, these actively

participate to form spheroids. These spheroids express

elevated levels of pluripotent genes associated with

ESCs (Hassiotou et al. 2012). Three-dimensional (3D)

multicellular spheroids resemble ‘‘embryoid bodies

(EBs) to a certain extent. These 3D structures provide

a congenial environment that increases structural

integrity, high surface area, and porosity, which

further promotes tissue remodeling and facilitates

cell–cell regulatory mechanisms and signaling net-

works. These have improved capacity of differentia-

tion into mammary, neuroectodermal, mesodermal,

and endodermal lineages (Cui et al. 2017). In addition,

the differentiated cell types releases cytokines and

angiogenic factors, facilitates angiogenesis, replen-

ishes damaged tissues, and enhances cell survival rate

after implantation. Thus, hBMDSCs may be consid-

ered as a therapeutically effective cell source for

clinical applications. Various strategies, such as

hanging drops, spinner flasks, non-adherent surfaces,

and micro-fabricated scaffolds, have been followed

for efficient and reliable generation of spheroids (Han

et al. 2015).

The gene expression analysis of breastmilk cells

identified core genes such as cytokeratin (CK) CK5,

CK14, ESRRB, and a-LA responsible for organizing

the behavior of the mammary gland during lactation

and development of infants. In in vivo conditions,

breastmilk stem cells may integrate and differentiate

into neural cells as well as other cell types in the

infant’s body, potentially secreting neurotrophic fac-

tors. Further, these integrated stem cells are involved

in tissue homeostasis and development (Twigger et al.

2015). Evidence suggests that a common regulator

TBX3 plays a central role in the development of both

the mammary gland and neuroepithelium. This is also

involved in ESCs differentiation and self-renewal

(Esmailpour and Huang 2012). It is demonstrated that

hBMDSCs are extensively differentiated into neural-

like cell lineages including neurons, oligodendrocytes,

and astrocytes. These neural-like cells show exclusive

features of neuronal lineages and express neural stem

cells markers nestin and CD 133, neuron marker b-
tubulin, oligodendrocyte marker O4, and astrocyte

marker GFAP (Hosseini et al. 2014).

Cregan et al. (2007) identified the expression of

CK5 (marker mammary stem cell), CK14 (marker of

myoepithelial cells), CK18 [marker of alveolar cells

(lactocytes)], and CK19 (marker of ductal non-secre-

tory epithelial cells) in breast-milk-derived cell culture

for the first time. hBMDSCs also express markers of

differentiated cells like epithelial progenitor marker

p63, mammary stem-like cell markers a-6 integrin

(CD49f), epithelial cell marker (EPCAM), myoep-

ithelial cells marker (SMA), and milk proteins such as

a-lactalbumin (a-LA)15 and b-casein are also identi-

fied (Thomas et al. 2011; Twigger et al. 2015). The

overwhelming characteristics of hBMDSCs to differ-

entiate into hepatocytes, cardiomyocytes, neuronal

cells, and pancreatic lineages intricately by appropri-

ate stimulus may provide a suitable alternative to

replace classical animal models that are currently

being used for pharmacological studies (Hassiotou

2012).

Role of stem cells in preterm breastmilk

Premature babies suffer from several complications

such as lower birth weight, cerebral palsy, sensory

deficits, learning disabilities, respiratory illness, gas-

trointestinal disorders, and other diseases. Breastfeed-

ing is the most preferred way to fulfill the requirement

of preterm infants from the nutritional, gastrointesti-

nal, immunological, developmental, and psychologi-

cal point of view. The composition of preterm milk

depends on the degree of prematurity. As the preterm

milk enhances immunity, facilitates neurological
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development, smoothens gastrointestinal function,

and improves delayed developmental responses that

occur in premature infants.

Continuous studies reported that if preterm infants

feed on breastmilk so often, it improves the feeding

tolerance, lowers infection risks, and a decreased rate

of necrotizing enterocolitis. All these behaviors

exhibited by preterm breastmilk may be due to the

presence of ideal cellular/non-cellular constituents

like epithelial/mammary stem cell population,

hematopoietic/mesenchymal stem/progenitor cells,

cell adhesion molecules, and pluripotent markers that

most likely favor immunity, growth, and cell fate

development of premature infants (Kaingade et al.

2017).

Current status and future prospective

of breastmilk stem cells

The remarkable presence of stem cells from both

hematopoietic stem cells (HSCs) and mammary origin

reveal that hBMDSCs may be a suitable alternative to

MSCs derived from BM (BMMSCs) (Hassiotou and

Geddes 2015; Hassiotou et al. 2015). Recent techno-

logical advances further characterize the cell types

present in breastmilk from protein and messenger

RNA levels (Irmak et al. 2012). The details regarding

significant work conducted thus far on stem cells

present in breastmilk are given in Table 1.

Breastmilk banking

Milk acts as an inexhaustible source in a breastfeeding

mother. Establishment of a breastmilk bank is another

approach to save the life and intellectual abilities of

premature babies, as they have not received mother’s

milk in sufficient amount right after birth. Such a milk

bank should follow the rules and regulations laid by

the government. The major concern to establish such a

bank is that the (1) donation of milk should be done

voluntarily, (2) selection of donors includes healthy

and well-nourished women, with no incidence of

tuberculosis/human immunodeficiency virus (HIV)/

hepatitis or any other infection. Donors should not be

taking any kind of medication such as hormonal

treatment or drugs. Thus, donated milk distributed

through milk banks is becoming an alternative to

formula feeding for working ladies and considered an

ideal nourishment for hospitalized preterm infants in

North America, Germany, and Australia (Ewaschuk

et al. 2011; Smith 2015). The process of banking of

milk starts with expressions and collection of milk and

collection in the specified container. Each container

must be labeled with the name, date, and time of

collection. In the bank, milk is preserved at - 20 �C.
On the day before processing, milk is thawed by

keeping the containers in a refrigerator (4 �C) over-
night. After pooling essential nutrients such as protein,

fat, and other substances, the pasteurization of milk is

conducted in a water bath at 62.5 �C for 30 min

(Underwood 2012). Pasteurized milk stored in the

freezer should be used within 6 months from the date

of expression. Therefore, new preservation methods

should be develop that can store all the cellular and

biochemical ingredients of breastmilk. The first

mother’s milk bank in Asia was established in

Mumbai on November 27, 1989. Efforts should be

undertaken to establish such banks worldwide. From

the observations of rich cellular content in breastmilk

and its significant effects on neonates in the long term,

it is concluded that every mother’s priority should be

to breastfeed her child. Therefore, the need of the hour

is to educate families, especially mothers, regarding

the advantages of breastfeeding, as this support babies

at the physical and intellectual levels. The advantages

of such milk banks may be seen especially in very low

weight babies (LBW) in the first few days, lower

segment Caesarean section (LSCS) deliveries, multi-

ple pregnancies, babies of mothers with problems,

mothers who are not in a position to feed, babies with

some diseases such as necrotizing enterocolitis, etc.

(Kaingade et al. 2017). However, the technology

regarding extraction and long-term preservation of

stem cells from breastmilk is not yet well established.

This may be due to isolation of stem cells from

breastmilk being at an initial stage in the field of stem

cell science. Investigations are going on globally to

preserve this invaluable product that has potential use

in future regenerative medicine (Hassiotou 2012).

Implication of breastmilk in current practice

and research

The beneficial effects of breastfeeding for infants and

mothers are well documented. Statements like ‘‘breast
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feeding saves lives’’ and ‘‘breastmilk is the best food

for babies’’ have been proved true (Dieterich et al.

2013). However, the recent finding of stem cells in

breastmilk introduces a novel aspect in the field of

human milk research. After this evidence, it is most

appealing for all healthcare professionals, clinical

practitioners, and medicos to make the public aware of

the potential of breastmilk and its impact on infant

health.

hBMDSCs may be a pertinent source that can help

to replenish, repair, and regenerate damaged brain

tissue. In regenerative approaches for neurological

diseases, MSCs are delivered via intracerebral or

intrathecal injection to patients (Joyce et al. 2010).

Upon transplantation into the brain, MSCs promote

endogenous neuronal growth, decrease apoptosis,

reduce levels of free radicals, encourage synaptic

connection from damaged neurons, and regulate

Table 1 Role of breastmilk in stem cell research

S.

no.

Purpose of study Characterization of stem cells Experimental finding References

1 Identify expression of pluripotent

gene in in vitro culture of breast

milk-derived cells

OCT4, SOX2 and NANOG Human milk contains population

of progenitor/stem cells that

express pluripotency gene

Witkowska-

Zimny

et al.

(2017)

2 Characterization of breastmilk from

mothers of pre-term and full-term

infants

OCT4, SOX2, NANOG, TRA-1-60

and nestin are expressed in both

pre-term and full-term mother milk

Pre-term milk contains

development factors that help

pre-term infant to grow and

recover

Briere et al.

(2017)

3 Investigate differential gene

expression pattern in breastmilk

Stem cell markers ESRRB and CK5,

myoepithelial marker CK14, and

lactocyte marker a-lactalbumin

Heterogeneity cell population of

breastmilk influenced by

characteristics of both mother/

infant

Twigger

et al.

(2015)

4 Examine different cell population

in human milk

CD90, CD44, CD271, and CD146,

TRA 1-60, Oct4, Nanog and Sox2

but not SSEA1 or 4

Heterogenous population of cells

like MSCs, ESCs are present in

breastmilk

Sani et al.

(2015)

5 Investigation of differentiation of

in vitro cultured breastmilk cells

toward neural stem cells (neuron,

neuroglia and astrocytes

Neural cell morphology and neural

cell marker such as neuron marker

b-tubulin, oligodendrocyte marker

O4 and astrocyte marker GFAP

Breast milk-derived stem cells

efficiently differentiated into

neural cell lineages show similar

property as ESc and MSCs

Hosseini

et al.

(2014)

6 Characterization of human milk CD34, CD90, CD117, CD105,

CD133, CD 29, CD 44 and CD73

Presence of MSCs, HSCs, side

population (SP) and endothelial

cells and so on

Indumathi

et al.

(2013)

7 Examination of self-renewal

activity, their plasticity and

differentiation potential into cell

types outside the mammary

lineage

Pluripotent transcription factors

(TFs) OCT4, SOX2, NANOG, and

KLF4 were expressed

The presence of both pluripotent

and multipotent stem cell

population were identified in

human milk

Hassiotou

et al.

(2012)

8 Clarification about presence of

adult stem/progenitor in human

milk further to explore its

differentiation potential

Positive expression of nestin, CK5,

CD133 and the presence of SP cells

were identified

Human breast milk reveal MSCs,

HSCs and neuroepithelial cells

like cell in cuture

Fan (2011)

9 Establishment of long-term MSCs

culture from breastmilk and

explore its multilineage

differentiation potential

CD44, CD29, SCA-1, nestin,

vimentin and smooth muscle actin

like MSCs specific markers were

identified. Tri-lineage

differentiation potential of these

cultured MSCs also verified

Breastmilk is a rich source of

multipotent MSC-like cells

Patki et al.

(2010)

10 Investigation regarding presence of

mammary stem cells in human

milk

CK5, CK 14, CK 18, CK 19 and

nestin by immunofluroscence study

and RT PCR analysis

Nestin positive cells were

profusely present

Cregan

et al.

(2007)
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inflammation, primarily through paracrine actions

(Fig. 10). It may be because the mammary gland and

nervous system share the same developmental origin

(ectoderm). Thus, breastmilk cells may be a pertinent

contender for neural cell lineage differentiation and

enteric neurons differentiation (Witkowska-Zimny

and Kaminska-El-Hassan 2017).

Recent study also show that when the spheroids-

derived cells were injected into severe combined

immune deficient mice (SCID), there was no sign of

teratoma formation. This feature is quite similar to that

of the Multilineage Differentiating Stress Enduring

Cell (MUSE cells) characteristic (Simerman et al.

2016). Thus, hBMDSCs are anticipated to be of great

medical importance, from advanced clinical deliber-

ation to diseases and development, and may create

novel therapeutic possibilities for treating many

congenital abnormalities and developmental disorders

in contrast to ESCs and iPSCs. As accumulating

evidence suggests that MSCs contribute the lower

level of side effects without provoking immunological

response after engraftment (Dehghanifard et al. 2013).

Furthermore, a recent study reported that genetically

modified MSCs are able to overexpress antitumor

genes, indicating that MSCs can be used in anticancer

therapy effectively (Sage et al. 2016). Thus, human

milk may be a novel source for the derivation of MSCs

that can be used to treat neurodegenerative diseases,

chronic disorders, acute brain injuries, and cancer.

Conclusion

The profound cellular hierarchy of breastmilk repre-

sents a valuable model to study the paraphernalia of

mammary gland and pathologies of breast. However,

the substantial use of hBMDSCs in regenerative

medicine relies on revealing the detailed mechanisms

of interaction, integration, and incorporation of stem

cells of maternal origin in the infants. In addition to the

available information in literature, clinical studies are

necessary to determine the efficacy of hBMDSCs in

treating those disorders for which no treatment are

available in current medicine.

Synapse

Restored axon

Damage axons Dendrites

Fig. 10 MSC-mediated neurotrophic factor secretion repairing damage neuron
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