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Abstract

Introduction Transplantation of a cell-seeded graft

may improve wound healing after radiotherapy.

However, the survival of the seeded cells depends on

a rapid vascularization of the graft. Co-culturing of

adult stem cells may be a promising strategy to

accelerate the vessel formation inside the graft. Thus,

we compared the in vivo angiogenic potency of

mesenchymal stem cells (MSC) and endothelial

progenitor cells (EPC) using dorsal skinfold chambers

and intravital microscopy.

Materials and methods Cells were isolated from rat

bone marrow and adipose tissue and characterized by

immunostaining and flow cytometry. Forty-eight rats

received a dorsal skinfold chamber and were divided

into 2 main groups, irradiated and non-irradiated. Each

of these 2 groups were further subdivided into 4 groups:

unseededmatrices,matrices ? fibroblasts ? pericytes,

matrices ? fibroblasts ? pericytes ? MSCs and

matrices ? fibroblasts ? pericytes ? EPCs. Vessel

densities were quantified semi-automatically using FIJI.

Results Fibroblasts ? pericytes - seeded matrices

showed a significantly higher vascular density in all

groups with an exception of non-irradiated rats at day

12 compared to unseeded matrices. Co-seeding of

MSCs increased vessel densities in both, irradiated

and non-irradiated groups. Co-seeding with EPCs did

not result in an increase of vascularization in none of

the groups.

Discussion We demonstrated that the pre-radiation

treatment led to a significant decreased vascularization

of the implanted grafts. The augmentation of the

matrices with fibroblasts and pericytes in co-culture

increased the vascularization compared to the non-

seeded matrices. A further significant enhancement of

vessel ingrowth into the matrices could be achieved by

the co-seeding with MSCs in both, irradiated and non-

irradiated groups.

Keywords Graft vascularization � In vivo
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Introduction

Soft tissue defects caused by trauma or tumor resec-

tion provide a challenging problem to reconstructive

surgery and tissue engineering. Tissue engineering
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techniques offer the development of bioactive tissue

constructs that can regenerate soft tissue in both

structure and function (Choi et al. 2010). Cell-seeded

biodegradable natural materials like acellular dermis

may be used for soft tissue augmentation (Krauss

1999). Nonetheless, the absence of a vascular network

within such a graft may have a negative effect on the

viability of the seeded autologous cells in the graft due

to an inadequate supply with nutrients and gas

exchange after implantation (Laschke et al. 2006;

Phelps and Garcia 2010). Thus, a rapid vascularization

of the biomaterial plays a pivotal role in the survival

and proliferation of the seeded cells to gain a

successful integration of the graft into the host tissue.

In addition, a neoadjuvant irradiation treatment has

deleterious effects on neoangiogenesis and can delay

the vascularization of the biomaterial (Kesler et al.

2013; Mao 2006; Martin 2013; Reinhold et al. 1990).

The advantage of in vivo vascularized tissue

engineered grafts is the formation of a native complex

branched vascular network with physiologically func-

tional vessels within the engineered implant. How-

ever, a major drawback of this method is that the

neovascularization of the implanted matrix needs

several days to weeks, depending on the size of the

implant and the implantation site (Rouwkema et al.

2008). Hypoxic areas within an implant may have

negative impact on the cell survival and proliferation

after implantation (Vitacolonna et al. 2015b). Several

strategies have been investigated in order to enhance

the in vivo vascularization of an engineered graft

(Phelps and Garcia 2010). A promising approach is the

co-cultivation of adult stem cells with stromal and

perivascular cells inside a matrix (Baiguera and

Ribatti 2013; Baldwin et al. 2014; Kirkpatrick et al.

2011; Phelps and Garcia 2010; Schumann et al. 2014;

Shepherd et al. 2006). Numerous wound healing

studies demonstrated that adult stem cells are capable

to improve significantly chronic and acute wound

healing (Parekkadan and Milwid 2010). The currently

most widely studied adult stem cells for the recon-

struction of musculoskeletal structures are mesenchy-

mal stem cells (MSC) (Bianco et al. 2001; Maxson

et al. 2012). MSCs can differentiate into a variety of

different cells of the mesoderm (Farini et al. 2014;

Vater et al. 2011) and are able to induce indirect

trophic effects by secretion of a large number of

different growth factors and cytokines (Phinney and

Prockop 2007). Endothelial progenitor cells (EPC)

participate in vivo in the renewal of the vasculature

and promote de-novo vessel formation (adult vascu-

logenesis), their therapeutic potential for revascular-

ization of ischemic tissue or tissue-engineered

implants have been intensively studied (Asahara

et al. 1997; Zammaretti and Zisch 2005). Perivascular

or mural cells like pericytes are an additional essential

cell type in vascular formation. They regulate the

maturation and stabilization of new formed vessels

(Abramsson et al. 2002; Alajati et al. 2008; Bryan and

D’Amore 2008; Hegen et al. 2011; Rouwkema et al.

2006). Stromal cells like fibroblasts play also an

important role in wound healing by autocrine and

paracrine secretion of growth factors and cytokines

such as e.g. TGF-ß, FGF and VEGF (Costa-Almeida

et al. 2015; Novaes et al. 2007; Wenger et al. 2005).

To investigate whether MSC and EPC co-seeded

with autologous pericytes and fibroblasts are capable

to accelerate the vascularization of a human acellular

dermis in radiated and non-irradiated tissues in vivo,

we established a dorsal skinfold chamber model in

rats. The vessel ingrowth was examined in vivo using

intravital microscopy at day 0, 3, 9 and 12. Unseeded

matrices and matrices seeded with fibroblasts and

pericytes served as control groups.

Materials and methods

Animals

Forty-eight male Fisher-344 rats (150 g, Charles-

River, Germany) were used for this study. All animals

were held in the vivarium of the University Medical

Centre Mannheim (Study approval by state authori-

ties: Regierungspräsidium Karlsruhe, Germany: AZ

35-9185.81/G-187/09).

Study design

The study comprised a total of 6 treatment groups and

2 control groups. The rats were divided initially into 2

main groups (n = 24 rats) of equal size. One main

group received neoadjuvant irradiation prior to the

implantation of the skinfold chamber, the other does

not. Each of the two main groups were subdivided into

four groups each with n = 6 rats. Group 1 and 2

(control groups 1) received dermis without cells.

Animals in group 3 and 4 (control groups 2) received a
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fibroblast/pericytes augmented-dermis to assess the

effects of the fibroblasts/pericyte co-culture on the

neovascularization. Rats in group 5 and 6 received

dermis seeded with fibroblasts, pericytes and MSCs in

co-culture. Rats in group 7 and 8 received dermis with

EPCs in co-culture with fibroblasts and pericytes. The

matrices were microscopically examined at day 3, 6, 9

and 12 after transplantation. The rats were sacrificed

thereafter. Table 1 details the study design.

Human acellular dermis

Epiflex� (German Institute for Cell and Tissue

Replacement (DIZG), Berlin, Germany) was used as

human acellular dermis (hAD). The mechanical

processing, decellularization, sterilization, preserva-

tion methods (Rossner et al. 2011; Vitacolonna et al.

2014) and composition (Roessner et al. 2012) are

described in detail elsewhere.

Isolation and culture conditions of fibroblasts

from rat subcutaneous fat

Autologous fibroblasts were obtained from the subcu-

taneous fat as described previously (Vitacolonna et al.

2015b). Briefly, the adipose tissue was digested using

2 mg/ml collagenase type 2 at 37 �C for 2 h. The

suspension was washed twice with Dulbecco’s mod-

ified Eagle medium (DMEM). After digestion, the

suspension was centrifuged at 400 g for 5 min. The

resultant cell pellet was plated onto 100 mm2 tissue

culture plates (Greiner Bio One, Germany) supple-

mented with DMEM (with 10% FBS and 1%

penicillin/streptavidin solution (PAA, Germany))

and maintained at 37 �C in an incubator with 5% CO2.

Isolation and culture conditions of primary

endothelial progenitor cells (EPC) from rat bone

marrow

EPCs were isolated from tibia and femur of fischer-

344 rats as described modified elsewhere (Kahler et al.

2007). Bone marrow was flushed out with DMEM

supplemented with 10% FBS, 1000 U/ml Heparin

(Sigma-Aldrich, USA) and 100U/ml penicillin G and

100 mg/ml streptomycin using a 20G needle (Becton–

Dickinson, USA). To remove bone fragments and to

obtain a single cell suspension, bone marrow was

filtered through a 100 lm cell strainer (Becton–

Dickinson, USA). The mononuclear cell fraction was

obtained by a density gradient centrifugation using

HSITOPAQUE�-1083 (Sigma-Aldrich, USA) for

30 min at 400 g. The mononuclear cell fraction was

transferred into a new 50 ml tube, washed 39 with

30 ml DMEM and centrifuged at 250 g for 10 min.

The resultant cell pellet was then suspended in EBM2-

MV Medium (Lonza, USA) supplemented with 5%

FBS and 100 U/ml penicillin G and 100 mg/ml

streptomycin. Cells were plated on 6-well plates

coated with 5 lg/cm2 rat-derived fibronectin (Sigma-

Aldrich, USA), 10 lg/cm2 collagen I (Sigma-Aldrich,

USA) and 2 lg/cm2 laminin (Sigma-Aldrich, USA).

After 24 h the non-adherent cell population was

transferred to new coated wells. The cells were

cultured for further 24 h. This procedure was repeated

to remove rapidly adherent cells such as mature

endothelial cells or MSCs. The resultant fraction was

cultured in EBM-2-MV medium containing vascular

endothelial growth factor (VEGF), human fibroblast

growth factor-B (hFGF-B), insulin like growth factor

(IGF-1), human epidermal growth factor (hEGF), stem

cell growth factor (SCGF), ascorbic acid, hydrocorti-

sone, gentamycin and amphotericin B (MV-Kit,

Table 1 Tabular summary

of the treatment groups

Each group consisted of

n = 6 animals

hAD human acellular

dermis, MSC mesenchymal

stem cells, EPC endothelial

progenitor cells

Group Treatment Radiation

1 (Control group 1) hAD unseeded -

2 (Control group 1) hAD unseeded ?

3 (Control group 2) hAD ? fibroblasts ? pericytes -

4 (Control group 2) hAD ? fibroblasts ? pericytes ?

5 (MSC group) hAD ? fibroblasts ? pericytes ? MSC -

6 (MSC group) hAD ? fibroblasts ? pericytes ? MSC ?

7 (EPC group) hAD ? fibroblasts ? pericytes ? EPC -

8 (EPC group) hAD ? fibroblasts ? pericytes ? EPC ?
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Lonza, USA). In addition, rat-specific rFGF and

rVEGF (both R&D Systems, USA) were supple-

mented at a concentration of 100 ng/ml each. Medium

was changed every 3 days. After 20 days of cultiva-

tion, cells were characterized by immunofluorescence

staining and flow cytometry.

Characterization of EPCs from rat bone marrow

EPCs were characterized by immunofluorescence,

flow cytometry and the incorporation of acetylated

low density lipoprotein (acLDL; Biomedical Tech-

nologies, USA). Immunofluorescence staining was

performed using antibodies against rat CD11b-biotin

(AbD Serotec, USA), CD31 (Genetex, USA), CD34-

AlexaFluor488 (Santa Cruz Biotechnology, Inc.,

USA), CD45-biotin (Cederlane, USA), CD106 (Bec-

ton–Dickinson, USA), CD133 (Abnova, USA), FLK-1

(Santa Cruz, USA) and Von Willebrand factor (vWF)

(Santa Cruz, USA). Secondary FITC-labeled antibod-

ies goat anti-mouse-IgG, goat anti-rabbit-IgG and

streptavidin were purchased from Rockland (Rock-

land Immunochemicals, USA). Cells were fixed with

ice cold acetone for 10 min. Stainings were performed

in 8-well culture slides (BD FalconTM, Becton–

Dickinson, USA) using manufacturers protocol. After

blocking for 20 min with PBS containing 1% BSA

(PAA, Germany), cells were incubated with primary

antibodies for 2 h at room temperature (RT). After

incubation, cells were washed 3 times with PBS for

5 min and incubated with secondary antibodies for

1 h. After 3 subsequent washing steps with PBS for

5 min VECTASHIELD mounting medium with DAPI

(Vector Labs, USA) was used to prevent fading.

Staining with acLDL was performed using manufac-

turer’s protocol. For additional characterization, flow

cytometry (FACS) analyses were performed using

standard protocol. Antibodies against rat CD11b-

biotin (AbD Serotec, USA), CD31 (Genetex, USA),

CD34-AlexaFluor488 (Santa Cruz, USA), CD44-Fitc

(Immunotools, USA), CD45-biotin (Cederlane, USA),

CD54-Biotin (Cederlane, USA), CD73 (Becton–Dick-

inson, USA), CD106 (Becton–Dickinson, USA),

CD133 (Abnova, USA) and FLK-1 (Santa Cruz,

USA) were used. Secondary FITC-labeled antibodies

goat anti-mouse IgG, goat anti-rabbit IgG and strep-

tavidin were purchased from Rockland (Rockland

Immunochemicals, USA). Briefly, 1x106 cells/ml

were incubated for 30 min at 4 �C with the primary

antibodies. After three washing steps with PBS

supplemented with 1% FBS, cells were incubated for

further 30 min at 4 �C with the secondary antibodies.

Measurements were done with a FACScalibur

cytometer equipped with a 488 nm argon laser (Bec-

ton–Dickinson, USA) using BD CellQuest software.

At least 10,000 events were collected andWinMDI 2.8

software was used to create the histograms.

Isolation and culture conditions of primary

mesenchymal stem cells (MSC) from rat bone

marrow

MSCwere isolated from tibia and femur of fischer-344

rats based on the plastic adherence of these cells

(Schumann et al. 2009). Subsequently, an enrichment

using the surface marker CD90 as described elsewhere

(Zhang and Chan 2010) was performed in order to

increase the purity of the MSCs. Bone marrow was

isolated and processed as described in the EPC

section. After density gradient centrifugation, the

mononuclear cells were plated in 10 cm dishes and

cultured overnight in DMEM supplemented with 10%

FBS, 100U/ml penicillin G, 100 mg/ml streptomycin

and 50 ng/ml rat fibroblast growth factor (bFGF)

(R&D Systems, Germany). After 24 h, the supernatant

was aspirated and 10 ml of fresh medium was added.

The cells were incubated for 1 week at 37 �C in a 5%

CO2 incubator and the medium was changed every

3 days. Once the plates were approximately 80%

confluent, the purity of the MSCs was increased by a

positive isolation using CD90-biotin (Cederlane,

USA) and streptavidin-coupled Dynabeads (Dyn-

abeads� system; Invitrogen-Dynal, Sweden). The

purification was performed according to the manufac-

turer’s instructions. Briefly, 1 9 107 cells/ml were

incubated with CD90-biotin for 10 min at 4 �C. After
3 washing steps, cells were incubated for 20 min at

4 �C with the streptavidin-beads and washed after-

wards three times. After the magnetic isolation

procedure, cells were resuspended in DMEM supple-

mented with 10% FBS and 50 ng/ml rbFGF and plated

at a density of 500cells/cm2 in 10 cm dishes. The cells

were incubated at 37 �C in a 5%CO2 incubator and the

medium was changed every 3 days. Once the cells

were approximately 80% confluent, they were trypsi-

nized and diluted to a concentration of 500cells/cm2 in

10 cm dishes.
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Characterization of MSC from rat bone marrow

For immunofluorescence characterization, cells were

stained with rat anti CD29-biotin (Becton–Dickinson,

USA), CD90-biotin (Cederlane, USA), CD73 (Bec-

ton–Dickinson, USA), CD44-Fitc (Immunotools,

USA), CD34-AlexaFluor-488 (Santa Cruz, USA),

CD45-biotin (Cederlane, USA), CD31 (Genetex,

USA), CD106 (Becton–Dickinson, USA), vWF (Santa

Cruz, USA), fibronectin (Abcam, USA) and collagen I

(Rockland, USA). Secondary FITC-labeled antibodies

goat anti-mouse-IgG, goat anti-rabbit-IgG and strep-

tavidin were purchased from Rockland (Rockland

Immunochemicals, USA). Flow cytometry analyses

were performed as described above. Antibodies

against rat anti CD29-biotin, CD90-biotin, CD73,

CD44-Fitc, CD34-AlexaFluor-488, CD45-biotin,

CD31, CD106, fibronectin and collagen I were used.

To proof the preservation of multi-potency, two

different differentiation assays were performed fol-

lowing the manufacturers protocol. For the differen-

tiation of MSC into osteoblasts, cells were cultured

21 days in OsteoPrime� Induction Medium (Invitro-

gen-Gibco, USA) supplemented with ascorbic acid

2-phosphate, ß-glycerophosphate and dexamethasone.

To show calcium deposition, cultures were washed

once with PBS and stained for 5 min at RT with

Alizarin Red S (Sigma-Aldrich, USA). To induce

adipogenic differentiation, MSCs were cultured for

21 days in StemPro�Adipogenesis Differentiation Kit

(Invitrogen-Gibco, USA). To stain the adipocytes,

cells were fixed in 10% paraformaldehyde (Merck,

Germany) for 1 h at RT and subsequently stained

20 min at RT with Oil-Red-O (3 volumes of 0.5% Oil-

Red-O in isopropanol added to 2 volumes of aqua dest)

(Sigma-Aldrich, USA).

Isolation and culture conditions of primary

pericytes from rat bone marrow

Pericytes were isolated from tibia and femur of

fischer-344 rats as described above in the EPC

section. After density gradient centrifugation, deple-

tion of MSC by negative magnetic separation with the

MSC marker CD73-biotin (Becton–Dickinson, USA)

was carried out as described above. The resultant cell

pellet was plated in 10 cm dishes and cultured in

EBM2-MV medium supplemented with 5% FBS,

VEGF, hFGF-B, IGF-1, hEGF, SCGF, ascorbic acid,

hydrocortisone, gentamycin and amphotericin B (MV-

Kit, Lonza, USA). In addition, rat-specific rFGF and

rVEGF (both R&D Systems, USA) were supple-

mented at a concentration of 100 ng/ml each. After

about 10–15 days, isolated colonies were identified

with different morphologies, containing presumably

mature endothelial cells, EPC and MSC. Pericytes

were identified based on their typical round nucleolus

and numerous cell extensions as described in the

literature (Bryan and D’Amore 2008; Dore-Duffy and

Cleary 2011; Tigges et al. 2012). To purify the

pericytes, isolated colonies were trypsinized using

cloning rings (Sigma-Aldrich, USA). The detached

cells were pooled and transferred into a collagen I,

fibronectin, and laminin-coated 6-well plate. This

procedure was repeated 2-4 times in order to obtain a

homogeneous pericyte culture. EBM2-MV medium

was changed every 3 days. After 20 days of cultiva-

tion, cells were characterized by immunofluorescence

staining.

Characterization of primary pericytes from rat

bone marrow

For immunofluorescence characterization, cells were

stained with different markers typically expressed by

pericytes (Farrington-Rock et al. 2004; Lamagna and

Bergers 2006). Since there exists no specific marker

for pericytes, antibodies against rat anti CD54 (Ced-

erlane, USA), desmin (DAKO, Germany), smooth

muscle actin (a-SMA) (DAKO, Germany) and plate-

let-derived growth factor receptor-ß (PDGFR-ß)

(Becton–Dickinson, USA) were used. Secondary

FITC-labeled antibody goat anti-mouse-IgG and

streptavidin were purchased from Rockland (Rock-

land Immunochemicals, USA).

Irradiation

Twenty-four animals were assigned to the irradiation

group. The radiation has been described previously

(Vitacolonna et al. 2015b). Dorsal skin of the

anesthetized animals was positioned under the irradi-

ation apparatus and fixed using surgical clips. Twenty

gray were administered topically 14 days prior to the

implantation of the chamber in a single dose with an

Intrabeam� device (PEC Photoelectronic Corporation

PRS400; Voltage 50 kV, Current 40 lA; Run Time

6 min).
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Implantation of the dorsal skinfold chamber

The surgical implantation of the skinfold chamber has

been described previously in detail (Vitacolonna et al.

2015b). Briefly, after anesthesia the back skin was

shaved, depilated and disinfected. Using an operation

microscope (Zeiss OPMI 9-FC, Zeiss, Germany) an

area (15 mm diameter) of the top layer of the dorsal

was circularly excised and the underlying fascial

layers were removed carefully from the thin skin

muscle layer (panniculus carnosus). The remaining

layer of the striated muscle, the subcutaneous tissue,

the dermis and the epidermis, were covered with the

counterpart of the dorsal skinfold chamber and

screwed together. The observation window was filled

with Ringer’s solution and covered with a detachable

cover glass (Menzel, Germany). After preparation, the

animals were allowed to recover from anesthesia and

surgery for 48 h before the implantation of the

scaffolds. During the period of study, the chambers

and the implanted biomaterial underwent qualitative

daily assessment. Animals with pathological findings

or chamber defects were excluded from the experi-

ment. Inflammation, hemorrhage, edema and persist-

ing restriction of movement with consequent

impairment of nourishment were termination criteria.

Cell seeded acellular dermis

Human acellular dermis (Epiflex�, DIZG, Berlin,

Germany) with a thickness of 0.5–0.8 mm were cut

into 5 mm 9 5 mm pieces and rehydrated in DMEM

for 2 h at 37 �C in 48-well plates. The rehydrated

hADs were initially degassed with a chamber evacu-

ation method to remove air trapped within the matrix

(Hasegawa et al. 2010; Vitacolonna et al. 2013) and

subsequently seeded with fibroblasts, pericytes and

MSCs or EPCs in co-culture dynamically at a

concentration of each 5x105 cells/hAD. Dynamic

seeding (centrifugal cell immobilization) is described

modified in a previous work (Vitacolonna et al.

2015a). Briefly, scaffolds were placed in a 48-well

plate and a cell suspension with the above mentioned

concentration was pipetted onto the scaffolds. The

plate was then centrifuged at 300 g for 5 9 1 min in a

common plate centrifuge, in order to allow a deeper

penetration of the cells inside the dermis. Culture

plates were incubated after the seeding procedure at

37 �C with 5% CO2 for 2 h to enable cell attachment.

Immediately thereafter, the matrices were implanted

into the skinfold chamber.

Implantation of the seeded dermis

The animals were anesthetized as described before.

The cover slip was removed, the seeded graft was

attached to the striated muscle in the centre of each

chamber window with an 8/0 suture (Ethicon, USA).

The window was closed with a sterile coverslip

avoiding air bubbles.

In-situ fluorescence microscopy

Microscope examination was performed under anes-

thesia (as described above) at days 0, 3, 6, 9 and 12

using an Axiotech� Vario 100 intravital microscope

(Zeiss, Germany). The 4 borders of the implanted

dermis were defined as regions of interest (ROIs). Five

pictures were taken from each ROI using a 59

objective (each ROI corresponded an area of

5 mm 9 1 mm). The images were captured with a

digital camera (AxioCam ICm1, Zeiss, Germany).

Images were acquired with Axiovision LE V4.8.2

software (Zeiss, Germany). Images were stitched

together using ICE (Image Composite Editor,

V1.4.4.0, Microsoft, USA) to an edge-to-edge view

of the full width of each ROI.

Quantification of vessel density

To quantify the vascularization of the implanted

matrices, vessel density per ROI was analyzed. Whole

photographs of each ROI (composed of each 5 single

pictures) were binarized and segmented using FIJI and

the advancedWIKA segmentation plug-in (Schindelin

et al. 2012). Vessel density in the observed area was

calculated automatically and expressed as % area

occupied by blood vessels per ROI. A total of n = 24

ROIs per group were evaluated.

Statistics

All statistical tests were conducted with GraphPad

Prism V6 (GraphPad Software Inc, USA). The data

were analyzed by two-way ANOVA and a subsequent

Bonferronís multiple comparisons test (\0.05 at a

confidence level of 95%. p\ 0.05 was considered

significant).
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Results

Characterization of EPC from rat bone marrow

Figure 1a1–2 shows representative colonies of EPCs

typically growing between 10 and 15 days in culture.

To confirm the endothelial phenotype, the cells were

stained after 20 days in culture for immunofluores-

cence characterization using specific antibodies and

Dil-Ac-LDL. The cells were positive for Dil-Ac-LDL,

CD11b, CD31, CD106, CD133, VEGFR2, vWF and

CD34 (Fig. 1a3–10). The cells showed no expression

of CD29, CD73 and the hematopoietic markers CD45

(data not shown). The cytometry analysis demon-

strated the expression of CD11, CD31, VEGFR2,

CD133, CD34 and CD54, but they were negative for

CD29, CD73 und CD45 (Fig. 1b). The absence of

CD29, CD45 and CD73 indicates that neither

Fig. 1 a1–2 EPC from bone marrow 10 and 20 days after

isolation, cultured in EBM-2 medium; a3–10 Immunofluores-

cent characterization of the isolated EPC. Cells were positiv for

Dil-AC-LDL, CD11b, CD31, CD34, CD106, CD133, FLK-1

and vWF. Cell nuclei were stained bluewith DAPI. b The FACS

analysis of the EPC illustrates the different degrees of

expressions of the endothelial marker CD11b, CD31, VEGFR2,

CD133, CD34 and CD54. The absence of CD29, CD73 and

CD45 shows the high purity of the culture. Red represents the

respective isotype control. (Color figure online)
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hematopoietic cells nor MSC or fibroblasts were

present in the culture.

Characterization of MSC from rat bone marrow

Adherent MSCs were present after 5–7 days in culture

with spindle-shaped fibroblastoid morphology. The

MSCs grew in colonies clearly defined from each

other (Fig. 2a1–2). Immunofluorescence characteri-

zations demonstrated expression of MSCs marker

CD29, CD73, CD90, CD44, fibronectin and collagen-I

(Fig. 2a3–8). Staining with CD14, CD45, CD31 and

CD34 were negative (data not shown). Using flow

cytometry, the cells expressed the stromal antibodies

CD29, fibronectin, CD44, CD90 and CD73, whereas

neither the macrophage marker CD14 nor CD31 and

CD34 were expressed. The hematopoietic stem cell

marker CD45 was weakly detected (\5%) (Fig. 2b).

The majority of the MSCs cultured in osteogenic

differentiation medium exhibited significant morpho-

logical changes including the production of a miner-

alized matrix, typically formed by osteoblasts (stained

red with Alizarin Red) (Fig. 2c1). Cells incubated in

adipogenic medium expressed lipid vacuoles

Fig. 2 a1–2 Phase contrast microscopic images of MSC

colonies after 20 days of culture. a3–8 Immunofluorescence

staining of MSC with antibodies against CD73, CD90, CD29,

CD44, fibronectin and collagen-1. Cell nuclei were stained blue

with DAPI. b FACS analysis of the MSC. The cells were

positive for CD29, fibronectin, CD44, CD90, CD73 and

negative for CD45, CD14, CD31 and CD34. Red represents

the respective isotype control. c1 Cell culture in osteogenic

differentiation medium led to cell differentiation into osteo-

blasts. Cells were stained with alizarin red to visualize the

formed mineralized matrix. c2 Culture in adipogenic differen-

tiation medium led to cell differentiation into adipocytes. The

lipid droplets were stained by the lipid dye Oil-Red-O. (Color

figure online)
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formations of different sizes. The vacuoles were

stained with the lipid dye Oil-Red-O to prove the

differentiation into adipocytes (Fig. 2c2). Thus,

accordingly to the International Society of Cellular

Therapy (ISCT) the common set of minimal criteria

for defining MSCs were confirmed in our study

(Dominici et al. 2006).

Characterization of pericytes from rat bone

marrow

After isolation of the pericytes using cloning rings, a

relatively homogeneous population could be cultured

for numerous passages (Fig. 3a, b). The characteristic

prominent nucleus, irregular triangular cell bodies and

long extensions of pericytes (Hirschi and D’Amore

1996; Liu et al. 2014) were present in all cells used in

this experiment (Fig. 3b). All cells expressed desmin,

a-SMA, CD54 and PDGFR-ß (Fig. 3c–f).

Quantification of vessel densities

The vessel densities were analyzed semi-automatic

using the WEKA segmentation plugin and FIJI and

expressed as % vessel density per observed region.

Group 1 and 2 (unseeded hAD; ±radiation) were

compared with group 3 and 4 (hAD seeded with

fibroblasts and pericytes; ±radiation) to assess the

influence of the co-cultured fibroblasts and pericytes

on dermis vascularization. The control groups 3 and 4

(hAD seeded with fibroblasts ?pericytes; ±radiation)

were compared with the stem cell-augmented matrices

(group 5–8) to evaluate the influence of EPCs and

MSCs on the vascularization.

Figure 4 shows representative intravital micro-

scopic pictures of an observed ROI between day

6–12 (group 5: ?fibroblasts ?pericytes ?MSC -ra-

diation). Perfused macro-vessels were clearly distin-

guishable from the high intrinsic fluorescence of the

dermis without fluorescent staining. In all groups first

vessel ingrowth were observable at day 6 with an

exception of group 5 (?fibroblasts ?pericytes ?MSC

-radiation). In group 5 first vessel ingrowth became

visible at day 3 within the border zones.

At any time point the macrovascular density of cell

seeded scaffolds was significantly higher compared to

the unseeded control groups with an exception at day

12 in the non-irradiated groups. In addition, we found,

that the irradiation caused a significant decrease of

vessel density in all groups compared to the non-

irradiated groups during the entire observation.

Figure 5 displays the calculated vessel densities of

the non-irradiated groups (group 1, 3, 5 and 7).

The comparison between the control group 1 (group

1; -cells -rad) and control group 2 (group 3;

?fibroblasts ?pericytes -rad) showed no differences

at day 3 (both groups 0%). At day 6 the vessel density

in group 3 was significant higher than in group 1

(group 1: 3.6 ± 0.4% and group 3: 16.2 ± 1.3%;

p = 0.0217). At day 9 a significant higher vessel

ingrowth was detectable in the seeded hAD (group 3:

35.6 ± 4.6%) compared to the unseeded hAD (group

1: 14.7 ± 5.3%) (p\ 0.0001). At day 12 there were

no differences between both non-irradiated control

groups (group 1: 28.4 ± 5.4% and group 3:

39.2 ± 19.5%).

Co-seeding with MSCs (group 5) leads to an earlier

detectable vessel ingrowth starting at day 3

(3.1 ± 2.2%) compared to the other groups. The

EPC group (group 7) achieved none visible vascular-

ization at day 3. At day 6 vessel density in group 5

(23.9 ± 1.9%) was significant higher than in group 3

(p = 0.0324). Group 7 (?EPC) showed no differences

(14.2 ± 2.2%) compared to the control group 2. At

day 9 vessel density in group 5 (?MSC) was

significant higher (47.6 ± 2.1%) than in group 3

(p = 0.0327) while group 7 (?EPC) showed no

significant difference (38.0 ± 4.5%). At day 12 nei-

ther MSCs nor EPCs increased the vessel density

compared to group 3 (group 5: 46.6 ± 13.9% and

group 7: 41.1 ± 24.1%).

Figure 6 depicts the vessel densities from the

irradiated groups 2, 4, 6 and 8.

The comparison at day 3 between control group 1

(group 2; -cells ?rad) and control group 2 (group 4;

?fibroblasts ?pericytes ?rad) showed in both groups

none visible vessel ingrowth. At day 6 vessel ingrowth

was not detectable in the unseeded matrices (group 2)

while matrices of control group 2 (group 4; ?fibrob-

lasts ?pericytes ?rad) achieved a vessel density of

3.1 ± 0.4% per ROI (p = 0.0004). At day 9 vessel

density in group 2 (2.2 ± 1.3%) was significant lower

than in group 4 (8.4 ± 0.7%) (p = 0.0008). At day 12

vascular density in group 4 (12.9 ± 5.2%) increase

compared to the non-seeded matrices (group 2;

4.3 ± 3.1%) (p\ 0.0001).

In none of the stem cell-augmented groups (group 6

and group 8) and control group 2 (group 4) were
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vessels detectable at day 3. At day 6 matrices co-

seeded with MSCs (group 6) achieved a higher vessel

density (9.6 ± 1.2%) than control group 2 (group 4;

p = 0.0004). EPCs (group 8; 2.5 ± 0.8%) had no

beneficial effect on dermis vascularization compared

to the fibroblasts ?pericytes-seeded control group.

MSCs showed also at day 9 a superior vessel

growth (21.8 ± 1.2%) in comparison to group 4

Fig. 3 Phase contrast microscopic images of pericytes after a 7 and b 14 days in culture. c–f Immunofluorescent staining of pericytes

were positiv for Desmin, a-SMA, CD54 and PDGFR-beta. Cell nuclei were stained blue with DAPI. (Color figure online)
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(p\ 0.0001). Even at day 9 EPCs were not able to

increase vascular density significantly (group 8;

6.3 ± 1.5%). At day 12 the co-seeding of MSCs lead

to a higher vessel density (group 6; 22.4 ± 10.0%)

(p\ 0.0001). As well as seen at earlier time points no

improvement of vascularization could be detected in

the EPC group 8 (11.0 ± 3.7%).

Discussion

In the present study we compared the vascularization

potential of EPC and MSC in co-culture with fibrob-

lasts and pericytes seeded on an acellular human

dermis. We were further simulating a multi-modal

neoadjuvant therapeutic approach by pre-implantation

Fig. 4 Representative intravital microscopic picture of the

observed ROI between day 6 to 12 (group 5: hAD ?fibroblasts/

pericytes ?MSC -radiation). Perfused macro-vessels were

clearly distinguishable from the high intrinsic fluorescence of

the dermis. Vessel ingrowth started to be visible at the borders of

the hAD. Newly formed macro-vessels interconnect with each

other and form a dense microvascular network within the border

zones until day 12

Fig. 5 Vessel densities in %/ROI of the non-irradiated groups at day 3–12
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irradiation to investigate the effect of radiation on the

vessel ingrowth.

Our study demonstrates that the pre-irradiation

treatment results in a significant weaker graft vascu-

larization in all groups. The augmentation with

fibroblasts and pericytes in co-culture significantly

enhanced the vascularization at the border zones of the

matrices compared to the unseeded matrices in both,

irradiated and non-irradiated groups. These results are

consistent with previous findings showing that vital-

ization of scaffolds with cells causes a significant

improvement in blood vessel formation in vivo

(Kampmann et al. 2013; Laschke et al. 2013; McFad-

den et al. 2013; Schumann et al. 2014). In manywound

healing studies the transplantation of vital, non-

irradiated fibroblasts resulted in normal wound healing

or an improvement of wound breaking strength after

radiation (Chen et al. 2010; Dantzer et al. 2003;

Ferguson et al. 1999; Roessner et al. 2013, 2011).

Fibroblasts act as important indirect supporting cells

during angiogenesis by constitutively expressing

angiogenic factors, which regulate endothelial tube

formation (Baldwin et al. 2014). As well, perivascular

cells like pericytes provide direct support to endothe-

lial cells and are essential to stabilizing and maturing

new vessels and capillaries in tissue engineered

implants (Golas et al. 2013; Jain 2003; Stratman and

Davis 2012; Yamamoto et al. 2010; Yang et al. 2012).

The co-seeding of MSCs leads into a further

significant increase of vessel density. Their regen-

erative effects seem to induce the vascular growth

in hypoxic tissue in both non-irradiated and irradi-

ated tissues. MSCs demonstrated the capability to

improve wound healing in both animal models and

humans in the treatment of acute and chronic

wounds (Falanga et al. 2007; Kwon et al. 2008; Liu

et al. 2006; McFarlin et al. 2006; Shin and Peterson

2013; Wu et al. 2007; Yoshikawa et al. 2008). The

reparative and angiogenic properties of MSCs were

also intensively studied in the recent years (Au

et al. 2008; Hegen et al. 2011; Sanz et al. 2008).

For example, MSC were used to engraft and

ameliorate limb ischemia or to enhance angiogen-

esis in different stroke models (da Cunha et al.

2013; Hoffmann et al. 2010; Honmou et al. 2012;

Madonna et al. 2013; Martins et al. 2014; Watt

et al. 2013; Wu et al. 2007). Recent studies indicate

that the involvement of MSCs in wound healing is

not limited by engraftment and differentiation, but

also by broad immunoregulatory effects, possessing

immunosuppressive and anti-inflammatory proper-

ties (Baiguera et al. 2012; Bernardo and Fibbe

2013; English 2013; Salem and Thiemermann 2010;

Yagi et al. 2010). In addition, MSCs secret a

variety of bioactive factors that have angiogenic

and antiapoptotic properties and serve to limit tissue

Fig. 6 Vessel densities in %/ROI of the irradiated groups at day 3–12
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damages at the injured sites, regenerating blood

supply, and recruiting progenitor cells (Murray

et al. 2014). MSCs have as well been shown to

be an effective therapy option in the treatment of

acute radiation injuries by enhancing the recovery

of hematopoiesis and reducing apoptosis (Chang

et al. 2013; Hu et al. 2010; Lange et al. 2011;

Semont et al. 2006). Although we have demon-

strated a significant increase in the vascularization

in the MSC groups, the exact mechanism behind is

still unclear. However, we hypothesize that a

multifactorial interaction of their varied properties

may be responsible for this effect. To elucidate the

exact mechanism, further studies are needed.

The co-seeding with EPCs had no effect on the

vessel density, although they were used in numerous

studies to improve vascularization of wounds after

transplantation or injection in vivo (Hess et al. 2002;

Kocher et al. 2001; Takahashi et al. 1999). In contrast

to these results, there are some studies, in which

transplanted EPCs caused an aggravation of the

disease or injury (Pearson 2010). EPCs consist of at

least two subtypes, the ‘‘early’’—and ‘‘late’’-out-

growth EPCs with different morphologies and growth

patterns. Late-EPCs exhibit a high proliferative

capacity and typical endothelial antigens (Mukai

et al. 2008). It was reported, that late-EPCs augment

the angiogenesis by direct incorporation into the

neovasculature and the secretion of angiogenic growth

factors, while early-EPCs are very short-lived in

culture and not able to form tubular structures (Hur

et al. 2004; Suh et al. 2005). Instead, it was postulated

that these cells are involved rather in inflammatory

processes than in angiogenesis (Fadini et al. 2008).

The EPCs used in this study were derived from the

non-adherent fraction of mononuclear bone marrow

cells, which grew after 48 h in fibronectin-coated cell

culture plates to angioblast-shaped cells as reported

before (Salazar et al. 2001). The cells presented within

the first 5 days in culture an elongated, thin spindle-

shaped morphology, as described in the literature as

‘‘early-outgrowth’’ EPCs. Between day 8–15 the

proliferation rate increased and the cells showed an

endothelial cell-like shape, which may be typical for

‘‘late outgrowth’’ EPCs. FACS analysis of the trans-

planted EPCs demonstrated a weak expression of the

monocyte marker CD14 after 15 days in culture. After

more than 2 weeks in culture, the ‘‘late’’—subtype

dominated. These cells expressed typical antigens of

endothelial origin, such as CD34, CD31, or vWF.

Although we have seeded late-subtype EPCs onto the

hADs, they did not increase the vessel density

compared to the groups with fibroblast/pericyte-

seeded matrices. The results suggest that the in vitro

expansion decreased the migratory capacity of the

EPCs and led to a maturation of the cells into

endothelial cells which resulted into a partial loss of

their vasculogenic ability, as reported elsewhere

(Ingram et al. 2004; Khan et al. 2006; Melero-Martin

et al. 2007; Singh et al. 2011).

Limitation of the study

The unequivocal verification of purity of the pericyte

culture with antibodies against desmin, SMA,

PDGFR-ß and CD54 may be critical due to the lack

of unique pericyte-specific markers. So far, known

pericyte markers are also expressed in various other

cell types (Kloc et al. 2015). Therefore, the identifi-

cation may rely on multiple criteria including mor-

phology and co-expression of several different

pericyte markers.

Conclusion

We demonstrated that the co-seeding of fibroblasts,

pericytes and MSCs have the potential to accelerate

the vascularization of an implanted matrix. Since

MSCs are easy to isolate, possess an extraordinary

plasticity and retain their ability to differentiate even

after massive in vitro expansion, their co-seeding with

target cells into a graft prior the surgical intervention

could represent a promising vascularization strategy to

increase the vessel number within the construct in vivo

after implantation.
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