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Abstract. An overview of the results obtained within the algebra of algorithms and tools for the

automated development of programs for multiprocessor platforms is presented. Algorithmics is

based on the theory of algorithmic algebras and is focused on solving a wide range of applied

problems and developing software tools for automated design and synthesis of classes of algorithms

and programs. The generality of algorithms is based on the variety of interpretations of algorithm

schemes and provides the possibility of applying algorithms and their tools for solving problems

related to various subject domains. The combination of algorithmics and rule rewriting technique

made it possible to develop methods and tools aimed at automated design, transformation, synthesis,

and tuning of programs for various platforms (multicore processors, graphics processing units, and

field-programmable gate arrays).

Keywords: algebra of algorithms, parallel computating, program design and synthesis, software

autotuning.

INTRODUCTION

Currently, parallel computing on multiprocessor systems is the main source of ensuring high computing

performance when solving complex scientific and technical problems. In recent years, the architecture of multiprocessor

systems has become significantly more complicated due to the diversification of their components, which include

multicore central microprocessors, graphic accelerators, multiprocessor clusters, and other structural elements. One of the

promising areas of development and research of parallel and distributed computing systems is the construction of

software abstractions in the form of formal languages and models using an algebraic-algorithmic approach in particular.

Algebra-algorithmic programming is a direction of the Ukrainian algebra-cybernetic school of automation of

programming and design, which is based on the fundamental ideas and results of academician Viktor Mikhailovich

Glushkov, which were obtained in the 60s of the last century from the theory of automata and formal transformations of

programs to optimize calculations [1, 2]. Subsequently, this direction was developed by his colleagues, students, and

followers, in particular, in the works of the team of the V. M. Glushkov Institute of Cybernetics of the National Academy of

Sciences of Ukraine, headed by K. L. Yushchenko and G. O. Tseitlin [3–5] from the development of systems of algorithmic

algebras (SAAs) and the “Multiprocessist” program synthesizer, as well as in the works of the team of the same institute

headed by A. A. Letichevsky and Yu. V. Kapitonova [6–8] on the automation of the design of computing machines and

algebraic programming. In recent decades, under the leadership of I. V. Sergienko, O. M. Khimich, and V. G. Tulchinsky,
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a powerful scientific and technical base was created in the institute for the research of information technologies and the

application of high-performance computing, in particular, and their algebraic aspects [9–13]. Research on

algebraic-algorithmic programming was also carried out at the Institute of Software Systems of the National Academy of

Sciences of Ukraine by the team headed by P. I. Andon and A. Yu. Doroshenko in the direction of developing the theory,

methods, and tools for automating the design of parallel programs [14, 15].

A specific feature of the Algorithmic Algebra (AA) [16] is the formalization of the processes of designing and

synthesizing algorithms and programs. These objects are designed in terms of regular schemes, which are the algebraic

representations in SAAs. The latter are used for the formalized design of algorithms, programs, and objects (abstract

types of data and memory) in terms of uninterpreted and partially interpreted schemes, which are called processing

strategies. Schematic presentation of objects forms knowledge about means of their design and generation. Along with

the synthesis of knowledge in AA, there are means of forecasting and decomposition, as well as modeling and checking

the efficiency of the behavior of models.

In [14, 15], the theory, methodology, and tools for the automated design, generation, and transformation of

sequential and parallel programs based on the means of algorithmic algebras and rewriting rules are proposed. The

purpose of this work is to review the results obtained over the last decade in the algebra of algorithms and corresponding

programming tools for multiprocessor computing systems and networks.

1. ALGEBRAS OF ALGORITHMS AND TOOLS FOR DESIGNING

HIGH-PERFORMANCE PROGRAMS

Similar to algebraic specifications in general, Glushkov’s SAAs are oriented towards the analytical form of

algorithm representation and the formalized transformation of these representations, in particular, to optimize algorithms

according to the given criteria. Therefore, the SAA of Glushkov (Glushkov algebra) is a bibasic algebra

GA Pr Op GA� � �{ }, ; � where the bases Pr and Op are sets of logical conditions and operators defined on the information set

IS , and �GA is a signature of operations. Operators are mappings of the information (potentially partial) set into itself and

logical conditions are predicates on the set IS , which acquire the values of three-valued logic E
3

{ }� 0 1, , � where 0 is false, 1

is true, and � is an uncertainty. The signature � � �GA � �
1 2

consists of a system �
1

of logical operations that acquire

values in the set Pr and a system of �
2

operations that acquire values in the set of operators Op.

Generalized Boolean operations belong to the logical operations of the system � �
1

� GA , such as disjunction

u u� 	, conjunction, and u u
 	 objection u , as well as the prediction operation A u� (of the left-hand side multiplication of

the condition u on the operator A), which consists in checking the condition u after executing of the operator A.

The main operations, which are included in the system � �
2

� GA and generate operators from the basisOp, are

the following:

— a composition A B� is a binary operation on a setOp, which consists of the sequential application of operators

A Op and B Op ;

— an alternative (branching) ([ ] , )u A B is a a ternary operation that depends on the condition u Pr and the

operators A Op and B Op . This operation produces such an operator C u A B� ([ ] , ) that
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�
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if

if

if

1

0
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for each m IS where W is an undefined operator;

— a loop { }[ ]u A is a binary operation that depends on the condition u Pr and the operator A Op . The essence of

this operation is the cyclic application of the operator A for a false u as long as the condition u is not true.

A system of generators is fixed in the SAAs, which is a finite and functionally complete set of logical conditions

and operators. With the help of this aggregate and the superpositions of operations included in �GA , arbitrary operators

and logical conditions are generated from the sets Pr and Op. Let us fix the SAA basis as A � �Pr Op.

A regular scheme is a superposition of operations included in the signature �GA and of elements of the basis A .
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Parallel calculations in SAAs are formalized using asynchronous disjunction operations, control points, and

synchronizers [3, 14].

SAA tools form the basis of the SAA/I language [3–5, 14, 15] intended for multilevel structural design and

documentation of sequential and parallel algorithms and programs. The advantages of the SAA/1 language are the ability

to describe algorithms in a style close to natural language, as well as the availability of automated translation into an

arbitrary programming language.

The main operator constructions of the language are the following:

— the composition of “operator1” and “operator2;”

— alternative IF ‘condition’ THEN “operator1” ELSE “operator2” END IF;

— loop FOR (counter FROM start TO fin) “operator” END OF LOOP.

Representation of algorithms in the SAA/1 language is called a SAA scheme.

Note the conceptual closeness of AA to algebraic algorithms (AlgA) [18], and generative programming (GP) [19],

as well as to formal methods of program development [20–22].

AlgA can be attributed to methods of top-down design of algorithms and programs, while GP can be attributed to

to their top-down design. The specified AlgA is a formalized approach to the description of methods of processing

mathematical (algebraic) objects. It combines various algebras and data processing algorithms used in the proof of basic

theorems in the corresponding algebras.

The purpose of GP is to create different subject areas (SAs) and their integration using abstractions, biology, and

programming ecology. An abstraction is an analytical representation of knowledge for a selected SA (for example,

formulas in the corresponding algebras). The biology of programming in GP consists of the presence of “genetic”

connections between close GPs. Ecology is a means of automating the construction of various SAs and their integration.

Similar to the above directions, AA is designed to solve the same problems, i.e., to formalize knowledge about SA

by algebraic means [16, 17]. The biological aspect in AA is reflected in the theory of clones (families of algebras), and

the ecological aspect is reflected in the system of tools for automating the design and synthesis of software. However,

unlike AlgA and GP, AA considers three interdependent forms of presentation of algorithmic knowledge [14, 15],

namely, the analytical in the form of an algebraic formula (regular scheme), the natural-linguistic, i.e., a text close to

natural language, and the visual with the help of a graph (graph diagram).

Noting the closeness of AA to AlgA and GP, it is worth paying attention to the conceptual integrity of its

paradigm, which largely determines the advantages of this paradigm compared to the above directions.

Instrumental means of AA support include dialog syntactically correct constructors (DSC-constructors), syntactic

analyzers, object synthesizers (Fig. 1). The problems of analysis and synthesis were developed in the classical theory of

automata. We note the need for decomposition (analysis) of objects for the possible subsequent collection (synthesis) of

new knowledge (schematic patterns, strategies for processing, interpretation, etc.). Unlike traditional parsers, the DSC

method is not focused on finding and correcting syntactic errors, but on preventing their appearance in the process of

building an algorithm.

It is known that the synthesis process consists of the following two main stages:

— fixation of containers, i.e., basic concepts in the selected SA (semantic identifiers, interpretations, their

implementations, etc.);

— generation of processing strategies and algorithms using programming languages and synthesis of programs

based on the corresponding algorithmic algebras.

Schemes are forms of presentation of projected objects based on the application of certain metarules, such as

convolution (abstraction), sweep (detailing), reinterpretation (convolution-unfolding), and transformation (application of

equalities–identities, quasi-identities, and ratios characterizing the properties of operations that are included in the SAA

signature).

The correctness of the modifications follows from the functional equivalence of the schemes obtained as a result

of the modifications based on the use of the above metarules, which determines their semantic correctness.

Depending on the signature of the operations, the algebra underlying the selected design tools can be oriented to

the sequential or parallel functioning of the designed objects. Multiprocessing is closely related to solving the problem of

deadlocks (clinches) at the circuit level, and the occurrence of events is related to solving closed conditions for passing
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the corresponding control points. Thus, the stated problem of clinches turns out to be related to the problem of identifying

fictitious iterative constructions. Solving both problems requires recognizing the appropriate location of control points

and synchronizers. In other words, it is necessary to ensure the verification of the execution of events and the means of

delaying the calculation processes in interdependent parallel branches. The organization of parallelism at the level of

schemes also depends on the use of means developed in the theory of closed and locally closed logical conditions (or

monotonic operators and their generalizations).

Note that the instrumental means of designing objects that belong to various SAs have already been created and

are being further developed. At the same time, the projected objects have a general structure given by transformations, as

well as the above integrated forms of presentation, such as analytical, textual, and graphical. These forms reflect various

complementary and instrumentally supported aspects of object design. In particular, the integrated toolkit for designing

and synthesis of IDS (Integrated Toolkit for Designing and Synthesis of Programs) programs was developed [14]. The

tools are intended for the design of sequential and parallel schemes of algorithms in SAAs and the generation of

corresponding programs in the target programming languages like C++, Java, etc.

One of the important problems within the algebraic-algorithmic approach is increasing the adaptability of

programs to the specific conditions of their use. In particular, it is solved by using a parametrically controlled generation

of algorithms based on higher-level specifications, i.e., hyperschemes [14, 15], as well as means of automatic adjustment

(autotuning) of programs to the target execution environment [23].

The object design process involves the integration of AA tools with other design tools (UML language, Rational

Rose [24, 25], and object libraries). Note the complementarity of integrated tools from the point of view of their

independent and joint use, in particular, for the development of special libraries aimed at supporting the synthesis of

objects of various SAs.

In the mid-90s as part of the further development of AA, meta-algebras (clones) [14, 16] covering families of

algorithmic algebras (structural, non-structural, etc.) were constructed and studied on the basis of known programming

methods and technologies. Each of the algebras included in one or another clone can be associated with its own tools that

correspond to the selected SAs and design methods. The first SAs created using the developing approach were associated

with the algorithmization of a number of symbolic processing tasks (sorting, searching, and language processing). Then,

the above integrated toolkit of design and synthesis of programs was developed, which provides automated construction

of parallel multi-threaded and distributed programs in various SAs (in particular, meteorological forecasting).
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Recent publications on the application of SAAs also include the generation of subject uniterms of formulas of the

algebra of algorithms [26], the grammatical analysis of symbolic computations of expressions of the logic of statements [27],

and the application of Johnson’s algorithm for finding the shortest paths between all pairs of graph vertices [28].

Schemes of algorithms and interpretations form a knowledge base (KB), which reflects the essence of the selected

SA. The KB also includes relations, identities, and quasi-identities, which are used in the process of transformation of

schemes. In [29], the results of an experiment on the use of ontologies for presenting the base of algebraic-algorithmic

knowledge are presented. With the help of ontology, the main objects of the developed program from the selected SA are

described, namely, the data, functions, and relationships between functions.

The design and synthesis of objects with the help of algebraic schemes helps solving the following number of

problems that also arise in GP:

— the formation of specialized libraries of basic concepts of the selected SA corresponds to the concept

of generic programming, which provides the interpretation of the variables included in the designed schemes;

— object-oriented extensions are derived language constructions that ensure the fixation of object-oriented

abstractions and can be interpreted as the creation of appropriate libraries-sections of the KB consisting of circuit projects

(superpositions of signature operations of a given algebra of circuits) often used in this SA, i.e., analogs of extension

libraries in GP;

— the specified extension libraries contain, in particular, optimization transformations, testing and debugging

methods, editing, etc., effective for the selected SA;

— syntactic analysis of schemes is provided, firstly, by the presence of object analyzers in the corresponding

design and synthesis language processors, and, secondly, by the presence of dialogue constructors of syntactically correct

schemes or trees of their grammatical analysis. Note that ensuring syntactic correctness applies to all interdependent

forms of object presentation (analytical, textual, and graphical-schematic);

— creation of synthesizers of objects and libraries of extensions (abstractions) oriented towards application in

various SAs. Libraries of schemes (abstractions) significantly expand the capabilities of language processors and

facilitate the understanding of program code. In addition, the algebraic (schematic) approach formalizes methods and

technologies, is a tool for the integration of environments, and contributes to the creation and accumulation of various

libraries that are part of the KB.

Thus, the algebraic approach to the design and synthesis of objects corresponds to the basic principles of GP and,

at the same time, has a number of significant advantages, namely, the following:

— algebra is not only a convenient, understandable, accurate, and compact language for describing objects, but

also oriented on formalized transformations of objects for their qualitative improvement according to selected criteria

(memory, speed, hardware resources, etc.);

— algebraic formalism and tools based on it that are oriented towards the construction of objects (including not

only schemas, but also input and target languages, as well as a variety of different SAs);

— the algebraic theory of clones was developed [14, 16], within which families of algebras of various types and

subject orientations, which are the basis of super-high-level specification languages, were constructed in accordance with

known object design methods. In the future, this means that application programmers have the opportunity to create their

own convenient design languages and object synthesis tools that correspond to the selected SA and the target

implementation environment.

2. APPLICATION OF ALGEBRA OF ALGORITHMS TOOLKITS

Instrumental means of automated design, generation, and optimization of algorithms and programs based on the

use of SAAs have been applied to the development of software for general-purpose multicore processors [23], cloud

platforms [29], graphics accelerators [30], programmable logic integrated circuits (PLICs) [31].

2.1. Designing and Automatic Tuning of Programs for Multi-Core Processors. In [23], a method is proposed

that combines the means of algorithmic algebra and program autotuning, and is aimed at maximizing the efficiency of

parallel programs in terms of execution time. The application of the approach is demonstrated on the example of

designing and optimizing a parallel sorting program for execution on a multi-core processor.
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Autotuning [32] is an automatic adjustment of the program to the execution environment, which uses an empirical

approach to obtain a qualitative assessment of the optimized program (quality usually means speed and accuracy of the

result). It automates the search for the optimal program variant from a set of predicted possibilities, executing each variant

and measuring its performance on a given parallel architecture. The main advantage of this approach is a high level of

abstraction, i.e., the program is optimized without knowing the details of the hardware implementation, such as the number

of processor cores, cache size, and memory access speed. Instead, auto-tuning operates with high-level concepts from SAs,

such as the number and dimension of independent problems or features of the problem-solving algorithm.

The developed auto-tuning system of TuningGenie program [23] accepts the source code of the program marked

with pragmas (Fig. 2) at the input. Pragmas describe program configurations and transformations that affect its

performance. Pragmas are manually defined by application developers using special-style Java language comments. First,

information from all pragmas in the input program code is collected by the parser and based on it, all possible

configurations of the application are generated. Next, for each configuration, a corresponding variation of the program is

generated, and the speed is measured. Based on the obtained results, the optimal configuration is determined and the

optimal version of the application is generated. For source code transformations, the TermWare system is used, which is

based on the technique of rewriting rules [33], and processes program texts presented in the form of terms.

One of the pragmas is tuneAbleParam, which specifies the search area for the optimal value of a numeric variable.

For example, for the threadCount variable and the selection limits [1…16] with a step of 1 are set as follows:

“Comment (tunableParam name�threadCount start�1stop�16 step�1)”

“Declare a variable (threadCount) of type (int) with initial value (1)”.

This pragma is primarily used for algorithms using geometric parallelisms as it allows us to easily choose the

optimal decomposition of the calculation area, that is, the “granularity” of the algorithm. With the help of the

tuneAbleParam pragma, we can also select some threshold value for changing the program calculation scheme.

The following is an example of a SAA schemes of a hybrid parallel sorting algorithm subject to further tuning

with TuningGenie. The algorithm applies merging or insertion sort depending on the block size (insertionSortThreshold)

of the input numeric array. The scheme contains two tuneAbleParam pragmas that specify the search area for optimal

values of the insertionSortThreshold and mergeSortBucketSize variables. Based on the scheme, code is generated in Java,

which is further optimized in TuningGenie.
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“Parallel Hybrid Sorting (arr)”

���� “Comment(tuneAbleParam name�insertionSortThreshold start�10 stop�200

step�10)”;

“Declare a variable (insertionSortThreshold) of type (int) with

initial value (100)”;

“Comment(tuneAbleParam name�mergeSortBucketSize start�5000

stop�1000000 step�5000)”;

“Declare a variable (mergeSortBucketSize) of type (int) with

initial value (5000)”;

IF ‘Length of the array (arr) is less or equal to (insertionSortThreshold)’

THEN “insertionSort(arr)”

ELSE IF ‘Length of the array (arr) is less or equal to (mergeSortBucketSize)’

THEN “sequentialMergeSort(arr)”

ELSE “concurrentMergeSort(arr)”

END IF

END IF

Based on the above, increasing the adaptability of algorithms to the specific conditions of their use can also be

carried out with the help of hyperschemes, which are parameterized algorithms for solving a certain class of problems.

Setting parameter values and further interpretation of hyperschemes makes it possible to obtain algorithms adapted to

specific application conditions [14, 15]

2.2. Programming Automation Tools for Graphic Accelerators. In [30], a software tool for optimizing

calculations (LoopRipper) was developed, which enables parallelization of cyclic program operators in a semi-automatic

mode for performing calculations on graphic accelerators. Data buffering, synchronized with the execution of the main

loop, was carried out, and the tool, which was built using the TermWare rewriting rule system, is integrated with the IDS

program design and synthesis toolkit.

The toolkit parallelizes the input sequential loop of the form

“SEQUENTIAL LOOP”

���� FOR (i
0

FROM 0 TO I
0

)

FOR (i
1

FROM 0 TO I
1

)

�

FOR (in FROM 0 TO I N )

“F i p i p i
in out

( , ( ), ( ))”

END OF LOOP,

where I I I N0 1

, , ,� are sets of index values i i iN0 1

, , ,� ; N �1 is a nesting depth of cycles; i i j Nj� �{ }| , ,0 � ;

p i P p i j Pj

� � � �

� � �( ) ( ) | #{ }0� , and �{ }in out, are sets of input and output variables describing the data

processed in the loop; F is a function that processes data; loop iterations are independent.

Let T be the number of threads that is used to perform the core function of the graphics accelerator. The cycle

obtained as a result of parallelization is as follows:

“PARALLEL LOOP”

���� FOR (e FROM 0 TO L)

“fill( )inBuf ”;

“push( )inBuf ”;

“kernel ( , , )e inBuf outBuf ”;

“pull outBuf( )”;

“unpack outBuf( )”

END OF LOOP,

where L is the number of kernel calls, which is chosen as the smallest possible and such that L T G� � (here, G is

the total number of iterations in the initial cycle); fill is the function of filling the inBuf initial data buffer; push

is the movement of the the initial data buffer to the device memory; kernel is a call to the core function (the latter
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contains a call to the body of the initial loop “ ( , ( ), ( ))F i inbuf i outbuf iid id ” where id is a stream number), pull is

a function that moves the processed data from the device memory to the processed data buffer outBuf , and unpack

is copying data from the processed data buffer into the appropriate variables.

Figure 3 shows the process of program parallelization using the LoopRipper toolkit.

Using the lists of input and output variables, LoopRipper generates kernel, fill, and unpack functions, from which

a parallel program is composed using the program design and synthesis toolkit. Functions are generated by replacing

parameters with input and output data buffers and recalculating iterators in a given initial loop. Thus, the user is required

to provide a loop and parameter lists.

The proposed method is applied to the parallelization of a sequential cycle with a nest depth equal to four, and it is

included in the program of numerical weather forecasting, namely, the cycle of interpolation of initial data in local grid

nodes. The developed system was tested on a heterogeneous multicore cluster.

2.3. Parallel Programming Automation Tools for PLIC. In [31], means of automated design and generation of

programs for PLIC based on the algebra of algorithms are proposed, and their application to the development of a genetic

algorithm and an artificial neuron is demonstrated. The technology of developing applications for PLIC is based on the

presentation of the algorithm in the hardware description language, such as VHDL [34], and the automatic translation of

this description into a specification at the level of logic tables and other functional components of the PLIC. The VHDL

language provides a high-level abstraction for hardware description by having a set of predefined data types and the

ability to create user-defined and hierarchically organized data types based on the basic ones built into the language.

Elementary functions in the PLIC are usually implemented as separate projects or modules containing information about

the data transfer rate and the internal structure of the system.

Parallel computations characteristic of neural networks are efficiently implemented using the VHDL language.

Each process in the VHDL has a list of signals whose change causes the process to run. Based on this, neurons

(individual processes) are naturally combined into a network where the outputs of the previous layer of the network

trigger the processes corresponding to the next layer. Each neuron is represented as a separate block consisting of several

parallel processes, and a neural network is a multiprocessor system.

Let us consider the genetic algorithm block (Fig. 4) as an example. It consists of the following ports: in1, in2, and

in3, which receive such input signals as zout, which stores the value obtained as a result of training and Nout (output

port) showing the current value of the output after each training iteration. The CLC signal has a delay of one picosecond.

The description of the ports of this block is represented by the following SAA scheme:
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ENTITY genVHDL is

“Signal (in1) direction (in) of type (integer) and range (�100 to 100)

with initial value (63)”;

“Signal (in2) direction (in) of type (integer) and range (�100 to 100)

with initial value (� 82)”;

“Signal (in3) direction (in) of type (integer) and range (�100 to 100)

with initial value (70)”;

“Signal (zout) direction (in) of type (integer) and range (0 to 100)

with initial value (77)”;

“Signal (CLC) direction (inout) of type (bit) with initial value (‘1’)”;

“Signal (Nout) direction (inout) of type (integer) and range

(�1048575 to 1048576);

END OF ENTITY

The block implements the operators of crossover, the mutation, and selection of the next generation of

chromosomes. The process implemented by the neuron is designed in the form of the following SAA scheme:

PROCESS neuron ( )start is

DECLARATIONS (

“Variable ( )LocalOut of type ( )integer and range (0 to 1023)”;

“Variable ( )lin of type ( )integer ”);

(LocalOut :� 100);

(lin in W in W in W: ( ( ) ( ) ( )) /� � � � � �1 1 2 2 3 3 16 );

FOR (a FROM 0 TO 49)

IF (abs ( ) ( )lin x a�� ) AND ( ( ) ( )abs lin x a� �1 )

THEN (LocalOut a:� �50 ); EXIT LOOP;

END IF

END OF LOOP;

IF (lin � 0) THEN (LocalOut LocalOut: –�100 );

END IF;

IF (NOT ( )finishTeaching ) THEN

( ( ) : )lout i LocalOut� ;

NFinish � � NOT NFinish;

END IF;

Nout� � LocalOut;

END OF PROCESS.

Here, LocalOut is the current output of the neuron, which is further compared with the expected result of the zout

variable, W ( )1 , W ( )2 , and W ( )3 are synaptic weights of the neuron, and i is the number of the chromosome, on the

basis of which the weighting coefficients were formed before starting the process that forms the output of the neural

network.

Code generation in VHDL language was performed on the basis of the constructed SAA schemes in the integrated

toolkit.

CONCLUSIONS

The article provides an overview of the results obtained within the scientific direction of algebra of algorithms and

means of automating the design of high-performance programs for multiprocessor platforms initiated by academician

V. M. Glushkov. Algorithmics is based on the theory of algebra of algorithms and is focused on solving a wide range of

applied problems and developing software tools for automated design and synthesis of classes of algorithms and

programs. The generality of algorithms is based on the variety of interpretations of algorithm schemes and provides

opportunities for the application of algorithms and its tools for solving problems in various subject areas. The efficiency

of such an application largely depends on the depth of understanding of the semantics of the developed algorithms. Only

under this condition is it possible to adequately interpret algorithmic tools and their efficiency during the design of
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algorithms and programs. The combination of algorithms and the technique of rewriting rules made it possible to develop

methods and tools aimed at automated design, transformation, synthesis, and customization of programs for various

platforms (multicore processors, graphics accelerators, and programmable logic integrated circuits).
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