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Abstract. The problem of the approach of controlled objects with different inertia in dynamic game

problems is considered. Modified sufficient conditions for ending the game in a finite guaranteed

time when Pontryagin’s condition is not satisfied are formulated. Some shift functions are

considered instead of the Pontryagin selector, and special multi-valued mappings are introduced

with their help. They generate the upper and lower resolving functions of a special type, and based

on them, two types of modified schemes are proposed: the scheme of Pontryagin’s first method and

the method of resolving functions. This ensures the completion of the conflict-controlled process for

objects with different inertia in the class of quasi-strategies and counter-controls. New theoretical

results are illustrated by a model example.

Keywords: controlled objects with different inertia, quasi-linear differential game, multi-valued

mapping, measurable selector, stroboscopic strategy, resolving function.

INTRODUCTION

We will analyze the problem of the approach of controlled objects with different inertia and target interception in

dynamic game problems based on the Pontryagin’s first method [1], as well as the method of resolving functions [2] and

its modern version [3]. The problem is important due to the need for a theoretical justification of Euler’s pursuit curve

methods, beam pursuit method, and, in particular, parallel approach, well-known to rocket and space designers.

Pontryagin’s condition [1] is a key one in the Pontryagin’s first method and the method of resolving functions, and if it is

not satisfied, these methods fail. Controlled objects with different inertia are characterized by the fact that Pontryagin’s

condition is not satisfied on some time interval, which significantly complicates the application of the method of

resolving functions to this class of dynamic game problems. The problem “boy and crocodile” [2] can be an example.

We will describe the case where Pontryagin’s condition is not satisfied, and some shift functions are considered

instead of the Pontryagin selector, which are used to introduce special multi-valued mappings. They generate upper and

lower resolving functions of a special type, and based on them, modified schemes of the Pontryagin’s first method and

the method of resolving functions are proposed. This ensures the completion of the conflict-controlled process for objects

with different inertia in the class of quasi-strategies and counter-controls. We will illustrate the new theoretical results

with a model example.

The article continues the studies [1–5], is related to the publications [6–12], and expands the class of game

problems of approach of controlled objects with different inertia, which have a solution.
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MODIFIED SCHEME OF THE PONTRYAGIN’S FIRST METHOD

Consider a conflict-controlled process whose evolution can be described by the equality

z t g t t u d

t

( ) ( ) ( , ) ( ( ), ( ))� �

�
� � � � � � �

0

, t � 0 , (1)

where z t R
n

( )� , function g t( ), g R R
n

:

�

� , is Lebesgue measurable [9] and bounded for t 	 0 , the matrix function

� ( , )t � , t � �� 0, is measurable with respect to t and is summable with respect to � for each t R�
�

. The control

unit is specified by the function � �( , )u , �:U V R
n


 � , which is assumed to be continuous over the set of

variables on the direct product of nonempty compact sets U and V ; and m, l, and n are natural numbers.

Players’ controls u( )� , u R U:

�

� , and � �( ), �: R V
�

� , are measurable functions of time.

Along with process (1), a terminal set M *

of cylindrical form is given:

M M M*

� �
0

,

(2)

where M
0

is a linear subspace from R
n
, and M is a compact set from the orthogonal complement L to subspace

M
0

in R
n
.

The goals of the first ( )u and second ( )� players are opposite. The first player (pursuer) tends to bring the

trajectory of process (1) to the terminal set (2) in the shortest time, and the second player (evader) tries to postpone as

much as possible the time when the trajectory hits the set M
*

or even to avoid the meeting.

Let us take the side with the first player and assume that when the game (1), (2) continues on the interval [ , ]0 T ,

we choose the control of the first player at time t based on information about g T( ) and � t ( )� , i.e., in the form of

a measurable function

u t u g T t( ) ( ( ), ( ))� �� , t T�[ , ]0 , u t U( )� , (3)

where � �t s s t( ) { ( ): [ , ]}� � � 0 is the previous history of control of the second player up to the time t, or in the form

of counter-control

u t u g T t( ) ( ( ), ( ))� � , t T�[ , ]0 , u t U( )� . (4)

If, in particular, g t e z
At

( ) �
0

, � ( , )

( )

t e
A t

�
�

�

�

, z z( )0

0

� , and e
At

is a matrix exponent, then we assume that

control u t u z t( ) ( , ( ))� �
0

� implements a quasi-strategy [7], and counter-control [6] u t u z t( ) ( , ( ))�
0

� is a manifestation of

the Hajek stroboscopic strategy [8].

Let us formulate the necessary facts from the convex analysis [1, 10] in the form of a lemma.

LEMMA 1. Let X R
n

� be a convex compact set and � �( ) be a nonnegative bounded measurable numerical

function. Then � � � � � �( ) ( )

0 0

T T

Xd d X
� �

� , T 	 0. Moreover, if 0�X , f X( ) ( )� � �� , and � � �( )

0

1

T

d
�


 , then f d X

T

( )� �

0

�
� ,

f ( )� is a measurable function, ��[ , ]0 T .

Denote by � the operator of orthogonal projection from R
n
into L . Having put � �( , )U �{ ( , ) : }� �u u U� , we

consider the multi-valued mappings

W t t U( , , ) ( , ) ( , )� � � � � �� � , W t W t

V

( , ) ( , , )� � �

�

�

�

�

on the sets �
�


V and �
�

, respectively, where � �
�

� 
 
 
 � �{( , ): }t t� �0 , � is some positive number.

Suppose that the multi-valued mapping W t( , , )� � has closed values on the set �
�


V .

Pontryagin’s Condition. The nulti-valued mapping W t( , )� takes non-empty values on the set �
�

, � is some

positive number.
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Taking into account the assumptions about the matrix function � ( , )t � , we may conclude that for any fixed t 	 0

the vector function � � � �� ( , ) ( , )t u is L B� -measurable with respect to ( , ) [ , ]� � � 
0 t V and continuous with respect to

u U� . Therefore, based on the direct image theorem [9] for any fixed t 	 0, the multi-valued mapping W t( , , )� � is

L B� -measurable with respect to ( , ) [ , ]� � � 
0 t V . If Pontryagin’s condition is satisfied, then on the set � there exists

at least one selector � �
0

( , )t of the mapping W t( , )� , � � �
0

( , ) ( , )t W t� . We will call it Pontryagin’s selector. Let us

formulate Pontryagin’s condition in an equivalent form.

In the set �
�

, where � is some positive number, there exists a Pontryagin’s selector � �
0

( , )t , for which the

inclusion is true:

0

0

� �

�

[ ( , , ) ( , )]W t t

V

� � � �

�

� .

Pontryagin’s condition is the key condition for Pontryagin’s first method, and if it is not satisfied, the method

fails. Let us formulate a modified Pontryagin’s condition for controlled objects with different inertia.

Let � �( , )t , � :�
�

� L, be some (almost everywhere) bounded function, measurable with respect to t

and summable with respect to �, ��[ , ]0 t , for each t 	 0, which we will call the shift function,

� �
�

� 
 
 
 � �{( , ): }t t� �0 , � is some positive number. Let M
1

be a convex compact set from the orthogonal

complement L to the subspace M
0

in R
n
, such that for m M�

1

we get � �m M
1

, and M M M m L
2 1

� � �* { :

m M M� � �
1

} �
m M

M m

�

� ��

1

( ) , where * is the Minkowski geometric difference [1]. The shift function � �( , )t and

sets M
1

and M
2

for which the above conditions and properties are true will be called admissible.

Consider the compact-valued multi-valued measurable mappingV t( ) , V t V( ) � , and continuous matrix function

B t( ) with the values of order k , where k is the dimension of the vector � �V t( ) , t �[ , ]0 � , � is some positive number.

Note that for the mapping V t( ) there exists a measurable selector � s t( ), � s t V t( ) ( )� , t �[ , ]0 � . In what follows, we

assume that the multi-valued mapping V t( ) is a compact-valued measurable mapping, and the matrix function B t( ) is

a continuous function.

DenoteW t t U B tB ( , , ) ( , ) ( , ( ) )� � � � � � �� �� , � � �B t u( , , , ) � �� � � � �( , ( , ) ) ( , )u B t u , ( , )t � ��
�

, u U� , � �V ,

� �V t( ) and consider for ( , )t � ��
�

, � �V , � �V t( ) the multi-valued mapping

� �B Bt t t U M( , , , ) { : ( , ) ( , , , ) }� � � � � � � � � �� � �0

1

.

If the condition �B t( , , , )� � � �� is satisfied on the set �
�


 
V V t( ), then we consider the scalar function

� � � � � � � � �B Bt t( , , , ) : ( , , , )}� �inf { � , ��[ , ]0 t , � �V , � �V t( ) . We will show [12] that the multi-valued mapping

�B t( , , , )� � � is closed-valued, L B B� � -measurable with respect to the set ( , , )� � � , ��[ , ]0 t , � �V , � �V t( ), and

function � � � �B t( , , , ) is L B B� � -measurable with respect to the set ( , , )� � � , ��[ , ]0 t , � �V , � �V t( ) ; therefore, it

is superpositionally measurable [12], i.e., � � � � � �B t( , , ( ), ( )) is measurable with respect to �, ��[ , ]0 t , for any

measurable functions � �( ) and � �( ), �( ) ( )� � �V , �( ) ( )� � �Vt , where V ( )� is the set of measurable functions � �( ) ,

�� ��[ , ]0 , with values fromV ,Vt ( )� is the set of measurable functions � �( ) , �� ��[ , ]0 , with values fromV t( ) . Note

also that the function sup

� �

� � � �

� �V V t

B t

, ( )

( , , , ) is measurable with respect to �, ��[ , ]0 t .

Condition 1. There exist a multi-valued mappingV t( ),V t V( ) � , and a matrix function B t( ), t �[ , ]0 � , � is some

positive number, admissible shift function � �
0

( , )t , and set M
1

, for which the relation �B t( , , , )� � � ��, ( , )t � ��
�

,

� �V , � �V t( ), inequality sup

� �

� � � � �

� �

�



V V t

B

t

t d

, ( )

( , , , )

0

1, and inclusion

0

0

� �

��

� � � �

V t

BW t t

( )

[ ( , , ) ( , )]� , � � � � �

� �

B

V V t

Bt U V V t t M( , , , ( )) ( , , , )

, ( )

�

� �

sup

1

are true.
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Denote 	 	 � � � � �
0 0 0

0

( ) ( , ( ), ( , )) ( ) ( , )t t g t t g t t d

t

� � � �

�
and consider the set � � � � � �( ( ), ( , )) { [ , ]:g t�

0

0 �

	
0 2

( ) }t M� . If the relation in curly brackets does not hold for any t �[ , ]0 � , then we put � � � � ��( ( ), ( , ))g �
0

.

THEOREM 1. Let for the conflict-controlled process (1), (2) there exist a multi-valued mappingV t( ) ,V t V( ) � ,

and matrix function B t( ) , t �[ , ]0 � , � is some positive number, admissible shift function � �
0

( , )t , and sets M
1

and M
2

such that on the set �
�

Condition 1 is satisfied, the set � � � �( ( ), ( , ))g �
0

is not empty, and ��� � � �( ( ), ( , ))g �
0

. Then the

game can be completed at time � using the control of the form (4).

Proof. Let � �( ) be an arbitrary measurable selector of the compact setV , �� �[ , ]0 . Let us specify the method of

choosing the control by the pursuer.

For � �V t( ), �� �[ , ]0 , consider the compact-valued multi-valued mapping

U u U u B( , ) { : ( , ) ( , ( ) ) ( , ) }� � � � � � � � �� � � � � � � �� 0 .

Due to the properties of the parameters of process (1), the compact-valued mapping U ( , )� � is L B� -measurable [12]

for � �V t( ) , �� �[ , ]0 . Therefore, by the theorem on the measurable choice of selector [9], the multi-valued mapping

U ( , )� � contains the L B� -measurable selector u( , )� � , which is a superpositionally measurable function [12].

Let � s ( )� be a measurable selector of mapping V t( ) . Put �� �[ , ]0 for the first player’s control u u( ) ( , ( ))� � � �� ,

where

� �

� � � � �

� � � � �

( )

( ) ( ) ( ),

( ) ( ) ( ).

�

� �

� �

�

�

�

if

if

V t

V ts

Taking into account formula (1), we obtain

� � � � � � � � � �z u dB( ) ( , ) ( , ( ), ( ), ( ))� � � � �

�

�
�

0

� � � � � � � �

�

�
	 � � � � � � � � � �
0 0

0

( ) ( ( , ) ( ( ), ( ) ( )) ( , ))� u B d .

Then due to Condition 1, regarding the moment � we get

� � � � � � � � � � �

� �

� ( , ) ( , ( ), ( ), ( )) ( , , ,

, ( )

� � � �

� �

B

V V t

Bu sup �)M
1

and

sup

� �

� � � � �

� �

�

� 


�

V V t

B d

, ( )

( , , , )

0

1.

Therefore, by Lemma 1, the inclusion is true:

� � � � � � � � �� ( , ) ( , ( ), ( ), ( ))� � �

�

� B u d M

0

1

;

thus,

� � � �

�

�
� � � � � � � � �� ( , ) ( , ( ), ( ), ( ))B u d M

0

1

.

Taking into account the choice of control by the first player, we obtain � 	z M M M M( ) ( )� � � � � � �
1 0 1 2

and

z M( )

*

� � , which completes the proof of the theorem.

Remark 1. Theorem 1 is an analog of Pontryagin’s first direct method [1] for controlled objects with different

inertia. Note that the admissible shift function � �
0

( , )t in Condition 1 is a Pontryagin’s selector for the multi-valued

mappingV t( ) ,V t V( ) � . If Pontryagin’s condition is satisfied, then we put V t V( ) � , B t E( ) � , E is a unit matrix, and

transform Condition 1 into Pontryagin’s condition. Therefore, we will consider Condition 1 a modified Pontryagin’s

condition of the first type for controlled objects with different inertia.
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Denote 	 	 � � � � �( ) ( , ( ), ( , )) ( ) ( , )t t g t t g t t d

t

� � � �

�

0

and consider the multi-valued mapping for ( , )t � ��
�

, �	 0,

� �V t( ):

A ( , , ) { : [ ( , , ) ( , )] [ ( )] }t W t t M tB� � 
 � � � � 
 	� � � � � ��0

2

. (5)

If the condition A ( , , )t � � �� is satisfied on the set �
�


V , then consider the upper and lower scalar resolving

functions [4]


 � � 
 
 � �
*

( , , ) : ( , , )t t� �sup{ }A ,


 � � 
 
 � �
*

( , , )t � �inf { : (t, , )}A , ( , )t � ��
�

, � �V t( ) .

It can be shown [12] that the multi-valued mapping A ( , , )t � � is closed-valued, L B� -measurable with respect to

the set of ( , )� � , ( , )t � ��
�

, � �V t( ) , and the upper and lower resolving functions are L B� -measurable with respect to

the set of ( , )� � , ( , )t � ��
�

, � �V t( ); therefore, they are superpositionally measurable [12], i.e., 
 � � �
*

( , , ( ))t and


 � � �
*

( , , ( ))t are measurable with respect to �, ( , )t � ��
�

, for any measurable function �( ) ( )� � �Vt . Note also that the

upper resolving function is upper semi-continuous, the lower one is lower semi-continuous in terms of the variable �, and

functions inf

�


 � �

�V t

t

( )

*

( , , ) and sup

�


 � �

�V t

t

( )

*

( , , ) are measurable in �, ( , )t � ��
�

.

Condition 2. There exist multi-valued mapping V t( ), V t V( ) � , and matrix function B t( ), t �[ , ]0 � , � is some

positive number, admissible shift function � �( , )t and sets M
1

and M
2

, for which there hold the relations �B t( , , , )� � � ��,

( , )t � ��
�

, � �V , � �V t( ), the inequalities sup

� �

� � � � �

� �

�



V V t

B

t

t d

, ( )

( , , , )

0

1, sup

�


 � � �

�

�
�

V t

t

t d

( )

*

( , , )

0

1, and inclusion

� � � � �

� �

B

V V t

Bt U V V t t M( , , , ( )) ( , , , )

, ( )

�

� �

sup

1

,

0

2

� � � �

�

{[ ( , , ) ( , )] ( , , )[ ( )]}

( )

W t t t M tB

V t

� � � � � � 	

�

A� .

Consider the set

� � � � � � �

*

( ( ), ( , )) { [ , ]: ( ) }g t t M� 	0

2

� . (6)

If the inclusion in curly brackets in relation (6) does not hold for any t �[ , ]0 � , then put � � � � ��

*

( ( ), ( , ))g � .

THEOREM 2. Let for the conflict-controlled process (1), (2) there exist a multi-valued mappingV t( ),V t V( ) � ,

and matrix function B t( ) , t �[ , ]0 � , � is some positive number, the admissible shift function � �( , )t , and sets M
1

and M
2

such that Condition 2 is satisfied on the set �
�

, the set � � � �

*

( ( ), ( , ))g � is not empty, and � �� � � �

* *

( ( ), ( , ))g � . Then the

game can be ended at time �

*

using control of the form (4).

Proof. Let � �( ) be an arbitrary measurable selector of the compact setV , �� �[ , ]

*

0 . Let us specify the method of

choosing the control by the pursuer.

For � �V t( ) and �� �[ , ]

*

0 , consider the compact-valued multi-valued mapping

U u U u B
* * * * * *

( , ) { : ( , ) ( , ( ) ) ( , ) ( ,� � � � � � � � � 
 �� � � � � � � � �� , )[ ( )]}

*

� 	M
2

� � .

Due to the properties of the parameters of process (1) and the lower resolving function 
 � �
* *

( , , )� , the compact-valued

mapping U
*

( , )� � is L B� -measurable [12] with respect to � �V t( ) and �� �[ , ]

*

0 . Therefore, by the theorem on

the measurable choice of selector [9], the multi-valued mapping U
*

( , )� � contains the L B� -measurable selector

u
*

( , )� � , which is a superpositionally measurable function [12].

Let � s ( )� be a measurable selector of mapping V t( ) . For �� �[ , ]

*

0 , let us put the control of the first player

u u
* *

( ) ( , ( ))� � � �� , where

� �

� � � � �

� � � � �

( )

( ) ( ) ( ),

( ) ( ) ( ).

�

� �

� �

�

�

�

if

if

V t

V ts
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Taking formula (1) into account, we obtain

� � � � � � � � � �z u dB( ) ( , ) ( , ( ), ( ), ( ))

* * * *

*

� � � � �

�

�
�

0

� � � � � � � �

�

	 � � � � � � � � � �( ) ( ( , ) ( ( ), ( ) ( )) ( , ))

* * * * *

*

� u B d

0

�
. (7)

As a result of Condition 2 regarding the moment �

*

, we get

0

1

�M , � � � � � � � � �

� �

� ( , ) ( , ( ), ( ), ( )) ( ,

* * *

, ( )

*

� � � �

� �

B

V V t

Bu sup � � �, , )M
1

,

sup

� �

� � � � �

� �

�

� 


�

V V t

B d

, ( )

*

( , , , )

*

0

1.

Then, given Lemma 1, the inclusion is true:

� � � � � � � � �� ( , ) ( , ( ), ( ), ( ))

* * *

*

� � �

�

� B u d M

0

1

and by assumption

� � � �

�

�
� � � � � � � � �� ( , ) ( , ( ), ( ), ( ))

* * *

*

B u d M

0

1

.

Taking into account the choice of control and from the definition of time �

*

, we get

0

2

� � �M 	( )

*

,

� � � � � � � � � 
 � � �� ( , ) ( ( ), ( ) ( )) ( , ) ( , , ( ))

* * * * * *

� � � � � � �u B [ ( )]

*

M
2

� �	 ,

sup

�


 � � �

�

�

� 


�

V t

d

( )

* *

( , , )

*

0

1.

Then, given Lemma 1, the inclusion is true:

( ( , ) ( ( ), ( ) ( )) ( , )) (

* * * *

*

� � � � � � � � � � 	� � � � � � � �

�

�
u B d M

0

2

�

*

) .

Therefore, relation (7) determines

� 	 	z M M M M M( ) ( ) ( )

* * *

� � � � � � � � � �
1 2 1 2

and z M( )

*

*

� � , which completes the proof of the theorem.

LEMMA 2. For the conflict-controlled process (1), (2), Condition 1 is satisfied if and only if there exist

a multi-valued mappingV t( ) , V t V( ) � , and a matrix function B t( ) , t �[ , ]0 � , � is some positive number, admissible

shift function � �( , )t , and sets M
1

and M
2

, for which Condition 2 is true and 0�A ( , , )t � � on the set �
�


V t( ).

Proof. Let for the conflict-controlled process (1), (2) there exist multi-valued mappingV t( ),V t V( ) � , and matrix

function B t( ), t �[ , ]0 � , � is some positive number, admissible shift function � �( , )t and sets M
1

and M
2

such that

Condition 2 is satisfied and 0�A ( , , )t � � on the set �
�


V t( ) . Then zero value of 
 ensures a non-empty intersection in

expression (5) and therefore, with regard for the condition �( , , , )t � � � �� , ( , )t � ��
�

, � �V , � �V t( ) , we get

0� �W t tB ( , , ) ( , )� � � � , ( , , ) ( )t V t� � � 
�
�

.
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It follows herefrom that for ( , )t � ��
�

we get 0� �

��

� � � �

V t

BW t t

( )

[ ( , , ) ( , )]� , i.e., Condition 1 is true. Considering

the reverse order, we can make the desired conclusion.

Remark 2. Given a multi-valued mapping V t( ) , V t V( ) � , and matrix function B t( ) , t �[ , ]0 � , � is some

positive number, admissible shift function � �( , )t , sets M
1

and M
2

for which Condition 1 is satisfied, then using

Lemma 2 we obtain 
 � � 
 
 � �
*

( , , )t � � �inf { : (t, , )}A 0 on the set �
�


V t( ) .

A MODIFIED SCHEME OF THE METHOD OF RESOLVING FUNCTIONS

We will consider Condition 2 to be a modified Pontryagin’s condition of the second type. It is a key one in the

modified scheme of the method of resolving functions for controlled objects with different inertia. Let us formulate a

modified scheme of the method of resolving functions.

Condition 3. There exist multi-valued mappingsV t( ),V t V( ) � , and matrix function B t( ) , t �[ , ]0 � , � is some

positive number, admissible shift function � �( , )t , and sets M
1

and M
2

such that on the set �
�

Condition 2 is satisfied

and the inclusion is true:

0

2

�

�

�

�

� � �

�

[ ( , , ) ( , )] ( , , )[ ( )

( )

*

W t t t M tB

V t

� � � � 
 � � 	

�

sup ]

( )

�

�

�

�� V t

� .

Remark 3. If there exist multi-valued mapping V t( ), V t V( ) � , and matrix function B t( ) , t �[ , ]0 � , � is some

positive number, admissible shift function � �( , )t , and sets M
1

and M
2

for which Condition 1 is satisfied, then with the

use of Lemma 2, Condition 3 is satisfied and the equality sup

�


 � �

�

�

V t

t

(

)

*

( , , ) 0 holds.

Consider the set

T g t t t d

V t

t

( ( ), ( , )) [ , ]: ( , , )

( )

*

� 
 � � �

�

� � � � �

�

�

�

�
0 1

0

� inf

 

�

 

�

�

 

�

 

. (8)

If 
 � �
*

( , , )t ! �� for ( , )t � ��
�

, � �V t( ) , then it is natural to assume that the value of the corresponding

integral in the curly brackets in (8) is �� and t T g t� � �( ( ), ( , ))� . When the inequality in (8) does not hold for all

t �[ , ]0 � , we put T g t( ( ), ( , ))� � � ��.

THEOREM 3. Let for the conflict-controlled process (1), (2) there exist a multi-valued mappingV t( ),V t V( ) � , and

matrix function B t( ) , t �[ , ]0 � , � is some positive number, admissible shift function � �( , )t , and sets M
1

and M
2

such that

Condition 3 is satisfied, set T g t( ( ), ( , ))� � � is not empty, and T T g t� � �( ( ), ( , ))� . Then the game can be ended at time T with

the use of control (3).

Proof. Let �( )� be an arbitrary measurable selector of the compact set V , and � s ( )� be a measurable selector of

mapping V t( ). Let us put for ��[ , ]0 T

� �

� � � � �

� � � � �

( )

( ) ( ) ( ),

( ) ( ) ( ).

�

� �

� �

�

�

�

if

if

V t

V ts

Let us specify the method of choosing the control by the pursuer.

First, consider the case 	 �( , ( ), ( , ))T g T M� � �
2

and introduce a control function

h t T d T d

t

V tt

T

( ) ( , , ( )) ( , , )

*

( )

*

� � �

� �

�

1

0


 � � � � 
 � � �

�

sup , t T�[ , ]0 .

By the definition of T , we get

h T d

V t

T

( ) ( , , )

( )

*

0 1 0

0

� � 	

�

�
sup

�


 � � � ,

h T T d T d

T

V t

T

( ) ( , , ( )) ( , , )

*

( )

*

� � 
 �

� �

�

1 1

0 0


 � � � � 
 � � �

�

inf 
 0 .
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Since the function h t( ) is continuous, there exists a time t
*

, t T
*

( , ]� 0 , such that h t( )

*

� 0 . Note that switching

time t
*

depends on the previous history of control of the second player � �t s s t
*

( ) { ( ): [ , ]}

*

� � � 0 .

We will call the time intervals [ , )

*

0 t and [ , ]

*

t T active and passive, respectively. Let us represent the method of

control of the first player on each interval. To this end, consider the compact mappings

U u U T u B T T*

( , ) : ( , ) ( , ( ) ) ( , ))� � � � � � � � �� � � �{ �

� �
 � � 	
*

( , , )[ ( )]T M T
2

}, ��[ , )

*

0 t ,

(9)

U u U T u B T T
*

( , ) : ( , ) ( , ( ) ) ( , ))� � � � � � � � ��

�

�

�

� � ��

� �

�

�

�
�

sup

�


 � � 	

V t

T M T

( )

*

( , , )[ ( )]

2

, ��[ , ]

*

t T .

(10)

The multi-valued mappingsU *

( , )� � andU
*

( , )� � have non-empty images. Taking into account the properties of

parameters of process (1), functions 
 � �
*

( , , )T and sup

�


 � �

�V t

T

( )

*

( , , ), the compact-valued mappings U *

( , )� � ,

��[ , )

*

0 t , and U
*

( , )� � , ��[ , ]

*

t T , for � �V t( ) are L B� -measurable [12]. Therefore, by the theorem on the

measurable choice of selector [9], each of them has at least one L B� -measurable selector u* ( , )� � and u
*

( , )� � , which

are superpositionally measurable functions [12]. Let the control of the first player on the active interval be

u u* *

( ) ( , ( ))� � � �� , ��[ , )

*

0 t , and on the passive interval be u u
* *

( ) ( , ( ))� � � �� , ��[ , ]

*

t T .

Based on formula (1), for the controls we obtain

� � � � � � � � � �z T T T u dB

t

( ) ( , ) ( , ( ), ( ), ( ))

*

*

� �

"

#

$

$

�
�

0

�

%

&

'

'

�
� � � � � � � � �� ( , ) ( , ( ), ( ), ( ))

*

*

T T u dB

t

T

� � � �

�
	 � � � � � � � � � �( ) ( ( , ) ( ( ), ( ) ( )) ( , ))

*

*

T T u B T T d

t

�

0

� � �

�
( ( , ) ( ( ), ( ) ( )) ( , ))

*

*

� � � � � � � � � �� T u B T T d

t

T

. (11)

As a result of Condition 2, we get

0

1

�M , sup

� �

� � � � �

� �

�



V V t

B

T

T d

, ( )

( , , , )

0

1,

� � � � � � � � � � �

� �

� ( , ) ( , ( ), ( ), ( )) ( , ,

*

, ( )

T T u TB

V V t

B�

� �

sup , )� M
1

, ��[ , )

*

0 t ,

� � � � � � � � � � �

� �

� ( , ) ( , ( ), ( ), ( )) ( , ,

*

, ( )

T T u TB

V V t

B�

� �

sup , )� M
1

, ��[ , ]

*

t T .

Then, taking into account Lemma 1, we obtain

� � � � � � � � � � � �� �( , ) ( , ( ), ( ), ( )) ( , ) ( , (

*

*

*

T T u d T T uB

t

B

0

�
� � � � � � �), ( ), ( ))

*

d M

t

T

�
�

1

and by assumption we get

�

"

#

$

$

�
� � � � � � � � �� ( , ) ( , ( ), ( ), ( ))

*

*

T T u dB

t

0

�

%

&

'

'

�

�
� � � � � � � � �� ( , ) ( , ( ), ( ), ( ))

*

*

T T u d MB

t

T

1

.
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With regard for the last inclusion, from (9)–(11) we get

� 	 
 � � � 	 �z T M T T M T d

t

( ) ( ) ( , , ( ))[ ( )]

*

*

� � � �

�1 2

0

� �

�

�
sup

�


 � � 	 �

V tt

T

T M T d

( )

*

( , , )[ ( )]

*

2

� � � �

�
M T T d M T

t

1 2

0

	 
 � � � � 	( ) ( , , ( )) [ ( )]

*

*

� �

�

�
sup
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V tt

T

T d M T

( )

*

( , , ) [ ( )]

*

2

� � � �

�

�

M T T d T d

t

V tt

1

0

1	 
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�

( ) ( , , ( )) ( , , )

*

( )

*

*

sup

*

T

�

"

#

$

$

%

&

'

'

� �

"

#

$

$

%

&

� �
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 � � � � 
 � � �

�

*

( )

*

( , , ( )) ( , , )

*

*

T d T d

t

t

T

V t
0

sup

'

'

� � �M M M M
2 1 2

.

We took into account Lemma 1, the equality h t( )

*

� 0 , and inclusion M M M
1 2

� � .

For the case 	 �( , ( ), ( , ))T g T M� � �
2

, it will suffice to apply Theorem 2.

Condition 4. There exist multi-valued mappingsV t( ),V t V( ) � , and matrix function B t( ) , t �[ , ]0 � , � is some

positive number, admissible shift function � �( , )t , and sets M
1

and M
2

such that on the set �
�

Condition 2 is satisfied

and the inclusion is true:

0

2

�

�

�

�

� � �

�

�

[ ( , , ) ( , )] ( , , )[ ( )]

*W t t t M tB
V

� � � � 
 � � 	

�
�

inf

V

�
�

�

�

.

THEOREM 4. Let for the conflict-controlled process (1), (2) there exist a multi-valued mappingV t( ) ,V t V( ) � ,

and matrix function B t( ) , t �[ , ]0 � , � is some positive number, admissible shift function � �( , )t , and sets M
1

and M
2

such that Conditions 3 and 4 are satisfied, set T g t( ( ), ( , ))� � � is not empty, and T T g t� � �( ( ), ( , ))� . Then the game can be

ended at time T with the use of control (4).

Proof. Let �( )� be an arbitrary measurable selector of the compact set V and � s ( )� be a measurable selector of mapping

V t( ). Let us put for ��[ , ]0 T

� �

� � � � �

� � � � �

( )

( ) ( ) ( ),

( ) ( ) ( ).

�

� �

� �

�

�

�

if

if

V t

V ts

Let us specify the method of choosing the control by the pursuer.

First, consider the case 	 �( , ( ), ( , ))T g T M� � �
2

and introduce the control function

h t T d T d

V t

t

V t

( ) ( , , ) ( , , )

( )

*

( )

*
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�
�

�
1

0

inf sup

� �


 � � � 
 � � �

t

T

�
, t T�[ , ]0 .

By the definition of T , we get

h T d

V t

T

( ) ( , , )

( )

*

0 1 0

0

� � 	

�

�
sup
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 � � � , h T T d

V t

T

( ) ( , , )

( )

*

� � 


�

�
1 0

0

inf

�


 � � � .

Since the function h t( ) is continuous, there exists time t
*

, t T
*

( , ]� 0 , such that h t( )

*

� 0 . Note that switching time t
*

does not depend on the previous history of control of the second player � �t s s t
*

( ) { ( ): [ , ]}

*

� � � 0 .

We will call the time intervals [ , )

*

0 t and [ , ]

*

t T active and passive, respectively. Let us specify the method of

control of the first player on each interval. To this end, consider the compact mappings

~

( , ) : ( , ) ( , ( ) ) ( , )

*

U u U T u B T T� � � � � � � � ��

�

�

�

� � ��

� �

�

�

�
�

inf

�
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V t

T M T

( )

*

( , , )[ ( )]

2

, ��[ , )

*

0 t , (12)

259



~

( , ) : ( , ) ( , ( ) ) ( , )

*

U u U T u B T T� � � � � � � � ��

�
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� �
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sup
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V t

T M T

( )

*

( , , )[ ( )]
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, ��[ , ]

*

t T . (13)

The multi-valued mappings

~

( , )

*U � � and

~

( , )

*

U � � have non-empty images. Taking into account the properties of

the parameters of process (1), functions inf

�


 � �

�V t

T

( )

*

( , , ) and sup

�


 � �

�V t

T

( )

*

( , , ), the compact-valued mappings

~

( , )

*U � � , ��[ , )

*

0 t , and

~

( , )

*

U � � , ��[ , ]

*

t T , for � �V t( ) are L B� -measurable [12]. Therefore, by the theorem on

the measurable choice of selector [9], each of them contains at least one L B� -measurable selector

~

( , )

*u � � and

~

( , )

*

u � � , which are superpositionally measurable functions [12]. Let the control of the first player on the active interval

be

~

( )

~

( , ( ))

* *u u� � � �� , ��[ , )

*

0 t , and on the passive interval be

~

( )

~

( , ( ))

* *

u u� � � �� , ��[ , ]

*

t T .

Based on formula (1) for the selected controls, we obtain
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t
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As a result of Condition 2, we get
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Then, taking into account Lemma 1, we obtain
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therefore, we get
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With regard for the last inclusion, relations (12)–(14) determine
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We have taken into account Lemma 1, the equality h t( )

*

� 0, and inclusion M M M
1 2

� � .

In the case of 	 �( , ( ), ( , ))T g T T M� �
2

, it will suffice to apply Theorem 2.

MODEL EXAMPLE (“BOY AND CROCODILE”)

Let us determine the dynamics of the pursuer and evader by the equations

�� ,x u� x R
n

� , n � 2 , u Sr�

�
,

� ,y � � y R
n

� , n � 2 , �
�

�S
0

, � �	 	 	r 0 , (15)

respectively, S R
b

a n
� is a ring centered at zero, with the outer radius a and inner radius b.

The pursuit will be considered complete if || ||x y� 
 
.

The original problem (15) is reduced to a conflict-controlled process in the following way. Let us introduce new variables

( , )z z z
1 2

� ,

z x y
1

� � , � �z x
2

� . (16)

Differentiating relation (16) with respect to time and taking into account the original equations (15), we obtain
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.
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The control domains have the form
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�
�

�

0

0

: , V S�

(

)

*

+

,

- �

�

�

�

�

�

�

�
�

0

: , S S
r

�

� �

�

/

, V V� .

The fundamental matrix of the homogeneous system (17) is e
E tEAt

�

(

)

*

*

+

,

-

-

0 0

. Then we obtain

�
�

e U tS
At

r� , �
�

e V S
At

�

0

, �e V S
At

� , M S L� �

0



.

Pontryagin’s condition is not satisfied on the interval [ , / )0 � � :

� �
� �

e U e V tS S
At At

r* *
� ��

0

, t �[ , / )0 � � .

261



Let us determine the shift function � ( )t ! 0 and put

B t
tE t

E t
( )

( / ) , / ,

, / ,

�


 


	

�

�

�

� � � �

� �

0

V t
V t

V t
( )

, / ,

, / .

�


 


	

�

�

�

0 � �

� �

Then we get

W t e U B tB

At
( , , ) [ ( ) ]� � � �� � , � �S ,

0 0� � � �

�

[ ( , , ) ( , )]
*

( ) ( ) { }W t t e U e B t V tB

S

At At
� � � � � �

�

� , t �[ , / ]0 � � .

(18)

As a result of simple calculations, we obtain

� � �

� � � �




� �

� �

( , , )

(|| || ( / ) ) || ||

, [ , / ],

, / ,

t

t
t

t

�

�

�

	

�

1

0

0

�

 

�

 

max ( , , )

, [ , / ],

, / .

,� �
�

� � �

� �




� �

� �
� �

�

�

�

	

�

�

 

�

S S

t

t
t

t0

1

0

0

 

Since

� �
� �

�

B

At
t U V V t e V B t V t

S S t
( , , , ( )) ( ( ) ( ))

, [ , / ],

{

� � �

� �

0

0

0}, / ,t 	

�

�

�
� �

we get

� � � �

� �




�

B

S S

t U V V t t S( , , , ( )) max ( , , )

,

�

� �
0

1

0

. (19)

If 
 � �
1

2

2� / , then for all t � 0 the inequality holds:

( / )� � 
t t
2

1

2 0� � � .

(20)

Therefore, for 
 � �
1

2

2� / the inequality holds for all t � 0:

max ( , , )

( / )

,� �
�

� � � � �
� �



� �

�



�




S S

t

d
t t

0

0

2

1

2

1. (21)

Therefore, as a result of relations (18), (19), and (21), Condition 1 is satisfied. Put 	 �( )t e z z tz
At

� � �
1 2

. Since

Condition 1 is satisfied, Conditions 2 and 3 are true, and for t �[ , / ]0 � � , � �S we get 
 � � 
 � �

�

* *

( , , ) ( , , )t t

S

� �

�

sup 0 .

If 	 
( )t S�
2

0

1

, then as a result of Theorem 1 or Theorem 2, the game can be finished at time t with the use of control (4).

Moreover, with regard for inequality (20), the smallest instant of time satisfies the equation

|| || ( / )z tz t t
1 2

2

2� � � �� � 
, t 
 � �/ .

Let 	 
( )t S�
2

0

1

. Then for t � 
� � �/ the upper resolving function 
 � �
*

( , , )t can be found from the relation


 � � 
 
 
 	 � �
�

*

( , , ) : [ ( )] ( )[ ]}t S t t S r� � � � � �sup{ 0

2

0

1

� � � � � � �sup{
 � � � 
	 

 � �0

2

: || ( ) ( ) || ( )}t t t , � �S ,

and function 
 � �
*

( , , )t is the larger positive root of the quadratic equation

( || ( ) || ( ) ) [( , ( )) ( ) ] [ ( )	 
 
 � 	 � � 
 
 � �t t t t
2

2

2 2

2

2

2� � � � � �

2 2 2

0( || || )]� �� �

with respect to 
 when 	 
( )t S�
2

, � �S .
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As a result of calculations, we obtain

min ( , , )

*

�


 � �

�

�

S

t 0 , t � 
� � �/ ,

(22)

moreover, the minimum is attained for the vector � � 	 	� � ( ( ) / || ( ) || )t t .

Let 	 
( )t S�
2

and t � 	� � �/ . Then a multi-valued mapping A ( , , )t � � has the form

A ( , , ) { : [ ( )] [( ) ]}t S t t S r� � 
 
 
 	 � �
�

� � � � � �0

2

0

1

, �
�

�S
0

.

Obviously, A ( , , )t � � ��; therefore, the inclusion is true:

0

2

0

1

0

� � � � �

�

{[( ) ] ( , , )[ ( )]}t S t S tr

S

� � � � 
 	
�

�
�

A� . (23)

The upper resolving function 
 � �
*

( , , )t can be found from the relation
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2

: || ( ) || ( )t t , �
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�S
0

,

and function 
 � �
*

( , , )t is the larger positive root of the quadratic equation

( || ( ) || ( ) ) [( , ( )) ( ) ] [ ( )	 
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2

2

2 2

2

2
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2 2

0� �|| || ]�

with respect to 
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( )t S�
2

, �
�

�S
0

.

As a result of calculations, for t � 	� � �/ we obtain min ( , , )

( )

|| ( ) ||

*

�
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� �

�S

t
t

t
0

2

and the minimum is attained

for the vector
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|| ( ) ||

t

t
. (24)

Let us determine the time of the game end for t 	 � �/ . Put
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� �
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0

With regard for Eqs. (22), (24),
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�

�

2

0

1.

From the last equality, we obtain the equation

|| || ( / )z tz t t
1 2

2

1

2� � � � �� � 
 
 .

(25)

The smallest positive root of Eq. (25) is the time of the game end. For t � 0 , the left-hand side of Eq. (25) is || ||z
1

and grows linearly as t grows, and the right-hand side is equal to 
 
�
1

and grows quadratically. Since || ||z
1 1

	 �
 
 ,

for any z
1

and z
2

, the time of the game end is final. The equality z tz
1 2

0� � can only hold later, provided that Eq. (25)

holds; therefore, we do not consider this case.
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Let 	 
( )t S�
2

and � � �/ /R t r� � 
 . Then for �
�

�S
0

the lower resolving function 
 � �
*

( , , )t can be found from

the relation
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Therefore, the equality 
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and at the same time we get
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and the maximum is attained for
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If the game parameters for t � 	� � �/ , � �	 	 	r 0 , satisfy the inequality
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we get

max ( , , ) min ( , , )
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and therefore the inequality holds:
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1. (27)

Therefore, with regard for relations (19), (21), (23), and (27), if the game parameters for t � 	� � �/ satisfy

inequality (26), Condition 2 is satisfied.

By construction, for all �
�

�S
0

the inclusion holds:
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0

1

� � � � .

Therefore, taking into account inequality (26), we get
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Thus, the inclusion
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[( ) ] max ( , , )[ ( )]

*

t S t S tr
S

� � 
 � � 
 	
�

�
�

�
�

�S
0

�

holds and Condition 3 is true. The smallest positive root of Eq. (25) is the moment of the game end by Theorem 3

with the use of control (3).

Let us test Condition 4. By construction, for all �
�

�S
0

the inclusion holds:


 � � 
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( , , )[ ( )] ( )t S t t S r2

0

1
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Therefore, taking into account inequality (26), we get

inf
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rt S t t S
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Therefore, the inclusion

0
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0

1
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"
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t S t S tr
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� � 
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�

�
�

inf

�
�

�S
0

�

holds and Condition 4 is true. The smallest positive root of Eq. (25) is the moment of the game end by Theorem 4

with the use of control (4).

CONCLUSIONS

We have considered the problem of the approach of controlled objects with different inertia in dynamic game

problems and have formulated the sufficient conditions for the game end in a guaranteed finite time in the case where

Pontryagin’s condition is not satisfied. We have introduced the upper and lower resolving functions of a special type, and

based on them, proposed modified schemes of the Pontryagin method and of the method of resolving functions, which

ensures the completion of the conflict-controlled process for objects with different inertia in the class of quasi-strategies

and counter-controls. We have also provided a model example.
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