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Abstract. Development of modern observation technologies, increase of the amount of open data,

and development of new approaches to their processing open new opportunities in carrying out

applied research in the economic activity of people. The central approach in this field is the use of

the deep learning methods in the data processing and analysis of their time series. In this paper,

we review the basic (in terms of geospatial analysis) sections of deep learning, namely, increasing

the resolution of graphical data, using transfer learning for optimization of learning processes,

scaling deep neural network models, and analyzing time series using recurrent neural networks.

Keywords: deep learning, transfer learning, satellite data, geospatial data, recurrent neural

networks.

INTRODUCTION

The last years are characterized by the emergence of geospatial data in the open access, in particular, satellite data

largely differing in time and space. Petabytes of satellite images became publicly available, and most algorithms of

extracting information out of these images are widely used today, while the modern computing devices based on cloud

technologies allow for these algorithms to be used on a global scale. As a result, today geospatial data is put to efficient

use when solving a wide range of applied problems.

An example of a problem that can be solved based on the geospatial data is the economic monitoring of activities in

regions by determining such indicators as economic activity and population poverty [1]. Most modern studies of this

direction consider the agricultural economics or the economic assessment of the consequences of natural disasters or

emergencies. For example, [2] carried out an economic assessment of the damages caused by a fire in Haifa (Israel) in 2016.

The use of the satellite data provided by the company “Planet” made it possible to estimate the total area of damaged trees and

their number (according to the estimate, the amount of damages in the urban forest was 41�10 mill. USD). An approach to

assessing drought damage based on the technology of merging satellite data of different nature and different types of

sensors is presented in [3]. The estimated economic damages in the Odessa oblast (region of Ukraine) from the death of

grain crops due to adverse conditions in 2020 were about 338 thousand ha. of crops. Another problem to be solved based

on the satellite data is the assessment of economic losses from floods. This information is very useful in the allocation of
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resources for the recovery and reconstruction or in the preliminary economic assessment of the flood damages, which

contributes to the crisis settlement after the disaster [4]. One of the most important aspects of applying these approaches

to the analysis of satellite data is the possibility to conduct retrospective analysis of natural disasters for further risk

assessment. The analysis of natural disasters in Hungary in 1998–2001 is presented in [5].

Today, geospatial data is an integral tool that makes it possible to predict and visualize emergencies for decision

support systems used by the international disaster management community [6] and to carry out economic evaluation in

this manner. Modern methods of the satellite data processing and analysis make it possible to estimate economic

indicators of the gross domestic product [7], the impact of agricultural practices on the soil productivity [8] and land

value [9] or the impact of a military conflict on land cover and land use [10]. The problem of determining and monitoring

the dynamics of changes of indicators over time is relevant, and the solution to this problem is given in [11], but only in

the case of a very specific problem of determining soil moisture. Therefore, it is necessary to adapt this approach to the

classification of geospatial data and to ensure the possibility of applying deep learning methods to solve the problems of

economic monitoring based on geospatial data.

This paper analyzes the existing methods of processing and analyzing satellite data that can be used to solve

relevant applied problems of economic monitoring based on deep learning. The methods of working with satellite data

described below allow us to solve a number of problems associated with the limitations of the classical approaches to

the geospatial analysis and the Big Data problems, as well as making it possible to improve the accuracy and quality of

the research results in the field of remote sensing of the Earth. The key technologies in the development of these

approaches are the image resolution enhancement, which allows us to improve the quality of data at the stage of their

pre-processing, the transfer learning, which allows us to optimize the process of training and scaling the deep learning

models, and the classification of time series of the multivariate data.

ANALYZING THE EXISTING METHODS AND MODELS

OF DEEP LEARNING TO SOLVE APPLIED PROBLEMS

In recent years, the intelligent methods of information processing and deep learning methods are actively

developed to solve the applied problems based on large amounts of data. These methods are developed most intensely

in the fields of computer vision and text information processing [12]. The modern methods of intellectual analysis of

satellite data are based on the deep learning methods using convolutional or recurrent neural networks, allowing us to

solve the problems of classification and regression of satellite data, as well as to carry out their semantic markup.

An important challenge in this area is the need to develop methods for harmonizing satellite data of different nature

(optical and radar data) with different spatial and temporal resolution, as well as the formation of high-resolution analysis

ready data series. These mathematical methods are developed for other kinds of image data, namely, for ordinary

photos [13, 14], texts [15], and sounds [16].

In recent years, a new type of neural networks was developed that has great prospects in solving these problems,

namely, the generative adversarial networks (GANs) [17]. The problem of developing and adapting the GANs for

working with satellite data while taking into account the specifics of satellite imagery is relevant. Here, recurrent neural

networks with the long short-term memory (LSTM) show high efficiency, and they are already used to solve problems of

satellite data classification [18].

When solving applied problems, the hybrid neural network models are often used. For example, the deep learning

methods are applied in [19] to estimate the hourly global solar radiation (GSR) from a geostationary satellite where

a hybrid deep network consisting of a convolutional neural network (CNN). a multilayer perceptron (MLP) for model

connectivity, and additional time/location information are proposed to estimate the GSR.

One of the problems of solving applied problems based on satellite data is that most of it has low spatial

resolution. For example, in [20], satellite products with a spatial resolution from 250 m to 1 km are used in order to detect

smoke in a forest fire using a backpropagation neural network. The use of the low spatial resolution data is stipulated by

the fact that it makes it possible to estimate how the smoke spreads during a fire due to its frequent updating and the large

coverage of the territory that is photographed at a time. However, due to the low spatial resolution, it is difficult to detect

active fires and their spread.
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ANALYZING THE AVAILABLE METHODS TO IMPROVE

THE RESOLUTION OF PICTURES AND IMAGES

The problem of increasing the spatial resolution of an image (of the super-resolution) arises in many application areas

when processing both images and videos [21]. The spatial resolution is characterized by the density of pixels in an image and

is measured in pixels per unit area [21]. The methods for the spatial resolution enhancement in images can either use multiple

low spatial resolution images to create a single high-resolution image or work exclusively on a single input image with a low

spatial resolution. The solution to the problem using multiple input images is described in detail in [21]. Let us consider the

solution to the problem with only one input image.

The simplest method to increase the spatial resolution of an image is to apply the interpolation (the nearest

neighbor method, bilinear interpolation, bicubic interpolation, splines, etc.). The disadvantage of this approach is that it

does not consider the semantics of the image and the object contours. This can result in the image being very blurry.

Another approach used to increase the spatial resolution of an image is based on the sparse coding [22]. It is assumed in

most of the sparse methods that each pair of patches in low- and high-resolution images has the same coding coefficients

in the patch space [23]. As a result, high resolution image patches can be represented by sparsely coded image patches

with a low resolution. Thus, pairs of dictionaries of low- and high-resolution image patches are taught first. After that,

a high-resolution image can be obtained using the taught dictionary of high-resolution image patches and the coding

obtained using the taught dictionary of low-resolution image patches [23].

With the advent of the era of developing deep learning methods and models for solving various applied problems,

the problem of improving image spatial resolution began to be solved using deep learning methods as well. The method

of using convolutional neural networks to solve this problem was proposed in 2015 bearing the name of the

Super-Resolution Convolutional Neural Network (SRCNN) [24]. However, this paper does not propose an “end-to-end”

solution, but recommends first to enlarge the image to the required size using the standard bicubic interpolation method,

and only then to apply the proposed neural network to improve the quality of the resulting image. The standard Peak

Signal to Noise Ratio (PSNR) [25] was used to assess the performance of the model for improving image resolution.

An improvement of the SRCNN method was proposed in [26] by using the Very Deep Super Resolution (VDSR)

model. The SRCNN model is used as a basis, but the convolutions with a large size (5 5� and 9 9� ) are replaced by

a sequence of convolutions of the size 3 3� as it was proposed in the VGG model for image classification [27].

By contrast to the SRCNN model that had three layers, the VDSR model consisted of 20 layers. Moreover, the VDSR

model tried to learn the residue between the target image and the interpolated image rather than learning the entire

transitioning from one image to the other as in the case with the SRCNN model.

The problem of the previous two methods is the use of the interpolation at the initial stage as it leads to the use of

a large number of parameters in the models, as well as making it impossible for the models to learn the parameters for the

procedure of increasing image dimensionality. To solve these problems, the Fast Super-Resolution Convolutional Neural

Networks (FSRCNN) model was proposed [28]. A low-resolution image was fed to the model input without any preliminary

transformations (Fig. 1). Moreover, here, the1 1� convolution is used in addition, and the activation function from the Rectified
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Linear Unit (ReLU) is changed to the Parametric Rectified Linear Unit (PReLU). To train the model of enhancing image

resolution, the deconvolution with layers was used, which allowed us to train the model using the “end-to-end” method.

A method that works on a similar principle is proposed in [29] and it is called the Efficient Sub-Pixel

Convolutional Neural Network (ESPCN). The architecture of the network is based on the use of convolutional layers on

a similar principle, but the deconvolution with layers is not used at the end. Instead, the subpixel convolutional layers

(Fig. 2) are used. This idea is similar to the use of the position-sensitive score maps when detecting objects [30].

The Enhanced Deep Super-Resolution (EDSR) network and SRResNet models [17] use the idea of the ResNet to

improve the image resolution. However, in the SRResNet, the nonlinear layer with the ReLU activation is removed, while

the batch normalization layers are removed in the EDSR. It is experimentally shown in [17] that these modifications allow

us to obtain better images at the model output and help us to reduce the amount of memory used for model learning.

The Cascading Residual Network (CARN) model based on the residual blocks is proposed in [31]. In [32],

the Deep Recursive Residual Network (DRRN) model is proposed, which is a combination of two ideas where the first

idea is to use the residual blocks, while the other is to use the Deep-Recursive Convolutional Network (DRCN) [33],

which is based on applying one and the same convolution in an iterative manner to improve the result. As a result,

the DRRN consists of 52 convolutional layers that are taught in the “end-to-end” manner.

The problem of the above methods is that they can improve the image resolution by 2–4 times. When it comes to

improving it by eight times and more, the considered models produce results of not such a high quality. To solve this

problem, the Laplacian Pyramid Super-Resolution Network (LapSRN) is proposed [34]. The idea of the model is to

gradually increase the image using a pyramid (Fig. 3). The loss function is the sum of the loss functions at each level

of the pyramid. To calculate the loss function at each level of the pyramid, the bicubic interpolation is applied here to

reduce the resolution of the image to be reproduced. The Charbonnier Loss is taken as a more resistant to emissions loss

function according to the authors [34].

All the above methods work the same in any part of the image. However, in general, a model should focus on some

parts of the image more than on the others. For this purpose, the mechanism of attention is used in deep learning [25].

To implement this idea, the Squeeze-and-Excitation (SE) block is proposed in [35] that allows the neural network to pay more

attention to important features and less attention to less important ones.

1011

Fig. 2. An example of using subpixel convolutional layers in the ESPCN model [29].

Fig. 3. The schematic SRCNN, FSRCNN, VDSR, DRCN, and LapSRN models [34].



The Residual Channel Attention Networks (RCAN) model, which uses blocks with residual long and short links,

as well as the Residual Channel Attention Blocks (RCABs), which are analogous to the SE blocks, are proposed in [36].

The general architecture of this network is presented in Fig. 4. In the model, the L1 loss function is used to compare it to

the above models during learning.

An alternative approach to improving image resolution is to use Generative Adversarial Networks (GANs) [37],

which consist of two neural networks, namely, a generator and a discriminator, and are learning by the rule of learning

without a teacher. This approach was first proposed in [38] under the name Super Resolution Generative Adversarial

Networks (SRGANs). The idea of the model is as follows: one neural network (a generator) generates a higher-resolution

image, while another neural network (a discriminator) tries to determine whether this image is real or generated by the

network. The learning of the models is completed when the first network learns to generate “real” higher-resolution

images that the other network cannot distinguish from the real ones. The discriminator and generator architectures of the

SRGAN model are based on the ResNet network and are shown in Fig. 5. Here, to improve the results, it is also proposed

to replace the standard MSE loss function with a “perceptual loss” function [39], which is computed based on the

features obtained by a pre-taught VGG network. To train the GAN as an adversarial loss function, the standard loss

function, i.e., the binary cross-entropy [38], is used.
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Fig. 5. The generator and discriminator architectures in the SRGAN model [38].



In [40], the idea of using the GAN to improve the resolution is modified by using the CycleGAN [41], which is

based on training a model to transform a low-resolution image into a high-resolution image, but without the noise and

blur, and vice versa. The proposed method is called the Cycle-in-Cycle Generative Adversarial Networks (CinCGANs).

Moreover, the standard adversarial loss function (the binary cross entropy) is replaced by the MSE [42], which allows us

to obtain clearer results. The penalty functions of cycle consistency loss and of identity loss are added in the form of L2

and L1 norms, respectively. During model learning, the total loss function is calculated as the sum of all proposed loss

functions with certain coefficients chosen empirically.

In [43], the Enhanced Super-Resolution Generative Adversarial Networks (ESRGANs) model based on the

SRResNet model is proposed, but the basic residual blocks are replaced by the Residual in Residual Dense Block

(RRDB) (Fig. 6). The adversarial loss function is also modified to not only predict whether the input images are real or

fake, but also to predict the probability of the real images being relatively more realistic than the fake ones.

Taking into account all the above methods, it can be concluded that the most feasible methods now are those that

are based on the idea of using the GAN to improve image resolution. In particular, this idea is not only used in the case of

ordinary photos, but also when solving problems with other data. For example, in [44], a model based on the SRGAN is

proposed to improve the resolution of the Digital Elevation Models (DEMs) by a factor of four. In [45], the GAN is used

to improve the resolution of weather radar data, which allows us to obtain a more accurate weather forecasting. Several

scientific papers are devoted to enhancing the multispectral data, satellite data in particular. In [46], the ESRGAN is used

to increase the spatial resolution of the Sentinel-2 images to the spatial resolution of the WorldView images, which

allows us to increase the spatial resolution by a factor of 5. The ESRGAN is used to improve the resolution of the images

from unmanned aerial vehicles [47]. The Edge-Enhancement Generative Adversarial Networks (EEGANs) method is

proposed to improve the resolution of the Jilin-1 and Digitalglobe images [48]. The modified SRGAN method with

replacing the 2D convolutional layers by the 3D convolutional layers and adding the mechanism of attention is proposed

to improve the resolution of the multispectral data [49]. Additional examples of applying the GAN models and deep

learning models to the data obtained by the remote Earth sensing methods are given in [50].

ANALYZING THE AVAILABLE METHODS FOR TRANSFER

LEARNING IN THE REMOTE SENSING OF THE EARTH

The transfer learning technology is a section in machine learning where the main problem is to save and transfer the

received information and artificial intelligence models to another or related problem. When applying the transfer learning

approach to the remote Earth sensing data, the main problem is to transfer the artificial intelligence models taught on a dataset

for a given territory and a given time period to other territories or time periods. In this problem statement, the above problems

are not trivial as even the same territory present in the satellite data is significantly different each year in terms of multispectral

indicators. This data is usually obtained at different dates of the year and under different weather conditions, which affect both

the data availability and the illumination of the ground surface during recording.

Formally, the transfer learning problem can be described as follows [51] using mathematics: the domain

D X P X� { }, ( ) consists of the space of features X and the marginal probability distribution P X( ) where the domain

T Y f� �{ }, ( ) consists of the space of labels Y and the predictive function f ( )� that models P y x( | ) where y Y� and
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Fig. 6. An example of basic blocks, namely, the residual block (on the left-hand side)

and the RRDB block (on the right-hand side) [43].



x X� . With the initial domain Ds and the learning problem Ts together with the target domain Dt and the target learning

problem Tt , let us form an approach focused on improving the learning process of the target predictive function ft( )� that

belongs to Tt by using the knowledge and the information from Ds and Tt where D Ds t� and/or T Ts t� . This problem

is especially relevant when | | | |Dt Ds� .

An interesting example of the use of the transfer learning approach on the remote Earth sensing data is the transfer

of information from the ImageNet object recognition problem by using the high-resolution spatial satellite images

acquired during the day to the problem of predicting the intensity of night illumination for mapping poverty indicators

and the compliance with the sustainable development goals. This study was carried out by a team from the Stanford

University [52]. When carrying out the study, a convolutional neural network model with the VGG architecture was

used. To map poverty indicators, the transfer learning graph in the form of a linear chain with three transfer learning

problems was constructed where P
1

is the problem of object recognition on the ImageNet data, P
2

is the problem of

predicting the night illumination being present on the satellite data, and P
3

is the problem of predicting the poverty

indicators based on the obtained satellite data.

In [53], a very relevant example of using the deep learning and transfer learning methods for solving the problem of

crop yield forecasting using the remote Earth sensing data is given. The problem is that there are very few crop yield statistics

available for the developing countries. At the same time, the crop yield forecasting is one of the keys to the sustainable

agricultural development and food security for these countries. During the experiment, the MODIS satellite data and the

soybean yield statistics were used for Argentina and Brazil at the levels of country and province. To train the deep learning

model, the MODIS images containing multispectral and temperature channels are presented as separate histograms. Then, all

histograms are grouped in the form of a matrix that is transformed into a tensor, which is used at the input of the LSTM model.

During the experiment, the authors of [53] taught the crop yield forecasting model first for Argentina. Next,

the dense layer of the taught model was replaced with a new untaught layer and the model was retaught using a small

amount of data available for Brazil. Thus, the transfer learning approach was applied.

A classic experiment showing how the transfer learning works is described in [54]. Here, the Crop Data Layer [55]

that is produced annually by the United States Department of Agriculture was used as the training ground data for the crop

classification that uses 15-day composites of the harmonized Sentinel-2 and Landsat-8 data collections. The scheme of this

experiment is presented in Fig. 7. The authors trained the random forest model classifier on the territory of the United

States and transferred it onto the territories of China and Canada, obtaining a high classification accuracy of 97.79% and
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Fig 7. The scheme training the random forest model on the Crop Layer Data

for transferring it onto other countries [54].



94.86% for the territories of America and Canada, respectively, and 86.45% for the territory of China. It is obvious that

the greater the differences in climate, agricultural practices, landscape, and other natural and anthropomorphic characteristics

of the area, the lower the classification accuracy of the resulting model. However, this problem can be reduced by increasing

the amount of useful information, for example, by providing information for several years that covers the full growing season.

When transferring the model, the number of classes should be considered as well. In this experiment, the so-called corn belt of

America was chosen for training, i.e., the area where corn, winter wheat, and cotton are the majority crops. Thus, the model

recognized only three crops and caould not work correctly in areas with a greater crop variety.

The approach is efficient for a more complex visual data as well. For example, this is shown in [56] where

an experiment of the road quality assessment in Nigeria based on very high spatial resolution of the satellite data is

described. However, the main problem of this study is the lack of the sufficient amount of marked data for the area

of interest. Therefore, the authors of the paper applied the transfer learning approach by training a convolutional neural

network model on 53686 images covering 2400 kilometers of roads in the United States and adjusted and tested the

parameters on 1000 marked images in Nigeria.

ANALYZING THE EXISTING APPROACHES TO THE USE OF THE RECURRENT

NEURAL NETWORKS WORKING WITH TEMPORAL DATA

In the case of problems with satellite data, it is often necessary to obtain models that provide a vector of outputs

for individual areas or time series. This is especially common in the case of problems that classify agricultural fields in

countries with warm climates or developed agricultural practices where there is double cropping for one season.

The simplest approach to solving this classification problem with the classical machine or deep learning methods is

coding the double crops by introducing new classes for the classification map and by applying the usual stages of the

classification map construction. However, these methods are not very efficient as these classification maps have a rather

low accuracy in practice since the number of classes is very high and the amount of ground data is limited. The second

and a more common way to solve this problem, which is now being actively developed and improved by modern

scientists, is the use of the modern neural network architectures that are optimized for working with time series where

each time interval is given a corresponding class label. As a result of this approach, the number of classes does not

increase and it is possible to obtain more than one classification map for an agricultural season by using and training the

model only once. The second important problem is to create deep learning models that allow us to classify the long-term

satellite data and to provide information on the type of land cover or crops for each year. The most common type of the

deep learning models solving these problems are the feedback neural networks.

A classic example of the use of the recurrent neural network architecture to solve the problem of the long-term land

cover classification based on the satellite data is given in [57] where the classification of the land cover from 1982 to 2015

was performed by using the satellite data provided by the CNLUCC land cover map set for China as the training data.

The model had 10 land cover classes, such as farmland, forest, shrubland, grassland, water, glaciers, marshes, cities, desert,

and tundra for seven years, namely, 1980, 1990, 1995, 2000, 2005, 2010, and 2015. The architecture based on the two-way

neural network with a short-term and long-term memory shown in Fig. 8 is used as the classification model. The neural

network consists of the two conventional LSTM neural networks with their time vectors directed in the opposite directions

and being called the forward and the backward LSTMs. In this study, the ability of the LSTM models to generate a vector

of outputs is used to create a set of temporal features that are pooled and passed through the Mean Pooling and normalized

exponential function (Softmax) layers to produce a probabilistic output from which the most probable class is selected.

A detailed description on how to use the recurrent neural networks and the long- and short-term memory (LSTM)

neural network to classify the time series of the satellite data to obtain crop maps is presented in [18]. Here, an important

feature of the recurrent neural networks is that each neuron situated at the output that receives its time interval and the

information from past neuron outputs as the input, i.e., the information from the past time intervals, produces an output

based on the normalized exponential function (Softmax) and is transformed into class probabilities for the classification

map. Thus, a classification map is generated that corresponds to the corresponding input time interval. Figure 9 shows

a diagram of the LSTM neural network model in action. Using this approach, it is possible to obtain several crop

classification maps for one season.
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A similar example of applying the LSTM model on the time series of the satellite images, but for the problem of

obtaining land cover classification maps for several years using a single neural network, was published in [58]. Here, the

Landsat and CDL mission data for 2013 to 2016 is used to train the neural network with the multi-year satellite data input

to produce land cover classification maps for the corresponding years. Figure 10 shows the scheme of the neural network

architecture in action. It is evident that this principle is similar to the principle of the neural network from [18], but it

differs in the length of its time series, which is four years.

In addition to the advantages in the construction of the highly accurate classification maps for the time series of

the satellite data, the LSTM architectures have a great advantage over the classical methods when it comes to the

prediction problems. The recurrent neural networks working in this direction have already demonstrated the highest

quality of the produced results and make it possible to efficiently predict crop yields on a large time series of the

heterogeneous data at the level of districts, countries, and even continents [59]. Since this approach has already

demonstrated its efficiency and prospects, scientists are researching and developing more complex neural network

architectures. In [60], the use of the attention layers in the LSTM architecture is proposed to predict the yield of

tomatoes. Thus, this architecture makes it possible to improve the properties of the classical recurrent neural networks by

storing the information with a high level of importance in the space of exogenous variables that affect the value of the

dependent variables in the long-term memory.
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Fig. 8. The architecture of the two-way neural network with a long-term

and short-term memory for the land cover classification [57].

Fig. 9. The scheme of the LSTM neural network with outputs

at each time interval in action [18].



When recurrent neural networks are working with the data in the form of multidimensional matrices or images,

they can be combined with the convolutional neural networks, i.e., hybrid architectures can be created. In [61], it is

proposed to use the DeepYield architecture to predict the crop yields by the satellite data at the country level, which

is based on the use of the so-called ConvLSTM layers. The neural network layers that combine the convolutional filters

and recurrent neurons make it possible to produce more complex features reflecting not only the change of the

multispectral characteristics of pixels over time, but also the dependence between these changes in the neighboring

pixels, as well as taking into account the texture of crop yields and the terrain.

CONCLUSIONS

The paper provides an overview of the modern technologies for Earth observation based on the geospatial data. Here,

the main directions and fields of the applied problems of data processing and analysis of its time series are considered in

detail, namely, the increase of the graphical data resolution, the use of the transfer learning approach to optimize the

learning processes and scaling of the deep neural network models, and the analysis of the time series using the recurrent

neural networks. The vast majority of the considered methods are based on the mathematical methods of machine learning,

the deep learning in particular. Thus, this paper describes the integration of the modern deep learning methods for solving

applied problems using the available geospatial data in detail, the high-resolution satellite data in particular.
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