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ON MINIMAX INTERPOLATION

OF STATIONARY SEQUENCES
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Abstract. The problem of the optimal linear estimation of functionals that depend on the unknown

values of the stochastic stationary sequence of observations of a sequence with missing values is

considered. Formulas for calculating the root-mean-square error and the spectral characteristic

of the optimal linear estimate of the functionals are derived under the spectral determinacy, where

the spectral density of the sequence is known exactly. The minimax (robust) method of estimation is

applied in the case where the spectral density of the sequence is not known exactly while some

classes of feasible spectral densities are given. Formulas that determine the least favourable

spectral densities and minimax spectral characteristics are derived for optimal linear estimation

of functionals for some special classes of spectral densities.

Keywords: stationary sequence, minimax-robust estimate, least favorable spectral density, minimax

spectral characteristic.

INTRODUCTION

Problems of estimating unknown values of random processes are important in the theory of random processes.

Kolmogorov [1] formulated interpolation, extrapolation, and filtering problems for stationary processes and reduced them

to problems of function theory. Wiener [2] and Yaglom [3] developed efficient methods for finding estimates of

unknown values of stationary sequences and processes. Later, these methods were developed in [4, 5]. The classical

estimation theory is based on the assumption that spectral densities of sequences and processes are known. However,

complete information on spectral densities is mostly absent in practice. In this case, to avoid difficulties, it is necessary to

search for parametric or non-parametric estimates of spectral densities or to add density based on other considerations.

According to [6], such an approach may significantly increase the estimate error. Therefore, it is expedient to search for

estimates that are optimal for all the densities from a certain class of possible spectral densities. Such estimates are called

minimax ones because they minimize the maximum value of the error. In [7], such an approach was applied for the first

time to the problem of extrapolation of stationary processes. An overview of the results of minimax (robust) data analysis

methods can be found in [8]. The latest results in minimax estimation for stationary processes, periodically correlated

processes, and processes with stationary increments are described in [9–14].

We will analyze the problem of optimal root-mean-square (RMS) estimation of functionals
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The problem is analyzed for the case of spectral determinacy, where the spectral density of the sequence is known,

and for the case of spectral uncertainty, where only the set of feasible spectral densities is given.

CLASSICAL INTERPOLATION METHOD

Let ( )j , j , be a stationary (in a broad sense) stochastic sequence that has the covariance function

r n E j n j( ) ( ) ( ) that admits spectral decomposition [15]
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in in
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1
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,

where F d( ) is the spectral measure of the sequence, and f ( ) is the spectral density of the sequence, which

satisfies the minimality condition
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Such a condition is necessary and sufficient to ensure that error-free interpolation of unknown values of the

sequence is impossible [4].
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From the spectral decomposition (2) of the sequence ( )j it follows that the functionals AS
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We will consider ( )j as elements of the Hilbert space H L P
2

( , , ) of random variables with zero mean value

E , finite variance E | |

2

, and scalar product ( , )

1 2 1 2

E . Denote by H
S k

( ) a closed linear subspace of space

H L P
2

( , , ) , generated by the quantities { ( ): }j j S k and by L f
2

( ) a Hilbert space of functions a( ) such that
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The classical method of orthogonal projection in Hilbert space, proposed by Kolmogorov [1], makes it possible to

find the spectral characteristic h ek

i
( ) and the RMS error ( ; )h fk of the optimal linear estimate of the functional AS k

in the case where the density f ( ) is known and condition (1) is satisfied. The spectral characteristic of the estimate are

determined under the following conditions:
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and c j( ) are unknown coefficients to be determined. From the last relation it follows that the spectral characteristic

h ek
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( ) of the optimal linear estimate of the functional AS k

has the form
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To find the equation for the unknown coefficients c j( ), we will use the Fourier decomposition of the function ( ( ))f
1

1

f
b m e

m

im

( )

( ) , (6)

where b m( ) are the Fourier coefficients of the function ( ( ))f
1

. Substituting (6) into (5), we obtain the following
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formulas for calculating the spectral characteristics:

h e a j e a j e
i

j N M

ij

j

N
ij

1

1 0

2

( ) ( ) ( )

m

im

j

N
ij

j N M

b m e c j e c j( ) ( ) (

0 1

2

)e
ij

, (7)

h e a j e a j e
i ij

j

N
ij

j

M

j N M

2

0

1

1

1

2

( ) ( ) ( ) a j e
ij

( )

b m e c j e c j
im

m j

M

ij

j

N

( ) ( ) ( )

1

1

0

e c j e
ij

j N M

ij

2

1

( ) . (8)

From the condition h e L fk

i S k
( ) ( )

2

it follows that the Fourier coefficients of the function h ek

i
( ) are equal to

zero for j Z S k\ , i.e.,

h e e dk

i ij
( ) 0, j Z S k\ .

Using relations (7) and (8), we obtain systems for finding the unknown coefficients c j( ), j Z S\

1

,

a k c j b j k k N

j Z S

( ) ( ) ( ), ,

\

1

0 ,

a N M k c j b N M k j

j Z S

( ) ( ) ( )

\

2 2

1

, k 1, (9)

and coefficients c j( ) , j Z S\

2

,

a M k c j b M k j

j Z S

( ) ( ) ( )

\

1 1

2

, k 1,

a k c j b j k

j Z S

( ) ( ) ( )

\

2

, k N0, ,

a N M k c j b N M k j

j Z S

( ) ( ) ( )

\

2 2

2

, k 1. (10)

Denote by a a a
N N M1

1

2

T T T

( , ), a
M

1

1

T

vectors formed from the coefficients a j( )

a a a a N
N

T

( ( ), ( ), , ( ))0 1 , a a M a M
M

1

1

1 1

1 2

T

( ( ), ( ), ),

a a N M
N M

2

1

2

1

T

( ( ), a N M( ), )

2

2 ,

and by BS
1

matrix B
B B

B B
s
1

1 2

3 4

, where Bk are matrices formed by the Fourier coefficients of the function ( ( ))f
1

B i j b i j i j N B i j b i j i j
1 4

0 0( , ) ( ), , , ( , ) ( ), , ,

B i j b N M i j i N j
2 2

1 0 0( , ) ( ), , ,

B i j b N M i j j N i
3 2

1 0 0( , ) ( ), , .

271



Then the system of equations (9) can be presented as
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where , denotes scalar product in the space l
2

.

Let us formulate the obtained result as a theorem.

THEOREM 1. Let ( )j be a stationary stochastic sequence that has spectral density f ( ), which satisfies the

minimality condition (1). The RMS errors ( , )h fk and spectral characteristics h ek
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COROLLARY 1. Let ( )j be a stationary stochastic sequence that has spectral density f ( ), which satisfies the

minimality condition (1). The RMS errors ( , )h fk and spectral characteristics h ek
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THE MINIMAX (ROBUST) INTERPOLATION METHOD

The classical method of interpolation is used when the spectral density f ( ) of the sequence is known exactly.

However, as we have already mentioned, complete information on the spectral density is mostly absent in practice.

However, if the density f ( ) is known to belong to a certain class of spectral densities D , it is expedient to apply the

minimax approach. Then, instead of finding an estimate that would be optimal for a certain spectral density, an estimate

that would minimize the error at the same time for all the spectral densities in this class D is sought for.
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The minimax spectral characteristic h h f
k k k
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( ) can be calculated by formulas (13), (16), and (18) provided that
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LEMMA 2. Spectral density f D
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The conditional extremum problem (22) is equivalent to the unconditional extremum problem
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where p is a given number, and the sequence a k( ), k Z S k\ , which defines the functional AS k
, is strictly
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S

1

0

is generated

from the Fourier coefficients of the function ( ( )) ( )f b k e

k

ij

1

0 1

1

0

, the values c j( ), j Z S\

2

, are the

coordinates of vectors cN , c M
1

1

, cN M
2

1

, which satisfy the equations

a B c B c B cN N M N M
1

0

2

0

1

5

0

1

1 2

,

a B c B c B cM N M N M
1 1 2

1

3

0

4

0

1

8

0

1

,

a B c B c B cN M N M N M
2 1 2

1

6

0

9

0

1

7

0

1

,

and matrices B
k

0

are generated from the Fourier coefficients of the function ( ( )) ( )f b k e

k

ij

2

0 1

2

0

.

Equation (23) and equation B c a
S

1

0

1 1

are satisfied by the Fourier coefficients b n b n
1

0

1

0

( ) ( ), n Z S\

1

, which can

be found from the equation B a
S

1

0

1 1

, where

1 1

0 0( , , , ). The last equation can be presented as a system of equations

1

1

0

b n a n( ) ( ), n Z S\

1

. From the first equation of the system (n 0), we get the unknown

1

1

0 1

0 0a b( ) ( ( )) . Due to the

extremum condition (20) and the constraint for the spectral density in the class D
0

, we obtain

b f d p
1

0

1

0 1

0

1

2

( ) ( ( )) .

Thus,

b n b n
p a n a n Z S

n S
1

0

1

0

1

1

1

0

0

( ) ( )

( ) ( ( )) ,

,

\ ;

.

Function ( ( ))f
1

0 1

can be represented as

( ( )) ( ) ( )f b n e b n e

n

N M

in

n N

N
in

1

0 1

1

1

0

1

0

2

j N M

in
b n e

2

1

1

0

( ) . (25)

Based on the result [19], we can represent the function ( ( ))f
1

0 1

as follows:

( ( ))f en

j

in

1

0 1

1

0

2

, [ , ], (26)
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where

1

0n , n N N M{ , , }1

2

. The minimax spectral characteristic h f
1

1

0

( ) of the optimal linear estimate

of the functional AS
1

can be calculated by formula (7), where

c j e c j e a p

j

N
ij

j N M

ij
( ) ( ) ( )

0 1

1

1

2

0 ,

i.e.,
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N
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ij
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2

0

0 1

1
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2

( ) ( ) ( ) ( ) ( )k e a p
ij

0

1

a j e a j e

j

N
ij

j N M

ij
( ) ( )

0 1

2

. (27)

Let us formulate the obtained result as a theorem.

THEOREM 2. The spectral density (25) with the Fourier coefficients

b n b n pa n a
1

0

1

0 1

0( ) ( ) ( )( ( )) , n Z S\

1

,

is the least favorable spectral density in the class D
0

for the optimal linear interpolation of the functional AS
1

, which

is defined by a strictly positive sequence a k( ), k Z S\

1

. The minimax spectral characteristic h f
1

1

0

( ) can be calculated

by formula (27). The least favorable spectral density in the class D
0

for the optimal linear interpolation of the functional

AS
2

, which is defined by a strictly positive sequence a k( ), k Z S\ ,

2

satisfies relation (24) and defines the solution of

the extremum problem (21). The minimax spectral characteristic h f
2

2

0

( ) can be calculated by formula (8).

Consider the problem of minimum estimation of functionals AS k
, where k 3 4, . To obtain the solution of

problem (22), we will use the method of indeterminate Lagrange factors. We obtain the following equations:
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j

N
ij

j N M
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0 1
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2 2

, (28)
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where

k

2

are unknown Lagrange multipliers, c j( ), j Z S k\ , are coordinates of vectors ck :
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that satisfy the equation B c a
S k k

k

0

, and matrices B
S k

0

are generated from the Fourier coefficients of the function

( ( ))f
k

0 1

. Equation (23) and the equation B c a
S k k

k

0

satisfy the Fourier coefficients

b n b n
k k

0 0

( ) ( ), n Z S k\ , k 3 4, ,

which can be found from the equation B a
S k k

k

0

, where

3 3

0 0 0( , , , , ) ,

4 4

0 0( , , , ) . The last equality

can be represented as a system of equations

3
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b n a n n Z S( ) ( ), \ ,

4

4
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2 2 4
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Hence, for n 0 and n N M N
2 2

we find the unknowns

3

3

0 1

0 0a b( )( ( )) and

4 2 2

4

0 1

0a N M N b( )( ( )) ,

respectively.
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Due to the extremum condition (20) and the constraint for the spectral densities in the class D
0

, we obtain
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0 0 1
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Based on the result [19], the functions ( ( )) ,f
k

0 1

k 3 4, , can be represented as follows:

( ( ))f e
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where
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The minimax spectral characteristics h fk k
( )

0

of the optimal linear estimate of the functionals AS k
, k 3 4, , can

be calculated by the formulas
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COROLLARY 1. Spectral densities (30) and (31) with the Fourier coefficients

b n b n pa n a
3

0

3

0 1

0( ) ( ) ( )( ( )) , n Z S\

3

,

b n N M N b N M N n
4

0

2 2

4

0

2 2

( ) ( ) pa n a N M N n Z S( )( ( )) , \

2 2

1

4

,

are the least favorable spectral densities in the class D
0

for the optimal linear interpolation of the functionals Ak ,

k 3 4, , defined by the strictly positive sequence a n( ), n Z S k\ .

The minimax spectral characteristics h fk k
( )

0

can be calculated by formulas (33) and (34).
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CONCLUSIONS

We have presented the methods for solving the problem of optimal linear estimation of functionals of unknown

values of the stochastic stationary sequence.

We have analyzed the problem for the case of spectral determinacy, where the spectral densities of the sequences are

known exactly. Therefore, we have proposed an approach based on the method of orthogonal projections in the Hilbert space.

We have derived formulas for calculating the spectral characteristics and root mean square errors of optimal estimates of the

functionals. In the case of spectral uncertainty, where the spectral densities are not known exactly, but some classes of feasible

spectral densities are specified, the minimax-robust method is used. We have obtained the image of the root mean square error

in the form of a linear functional with respect to the spectral densities, which makes it possible to solve the corresponding

conditional optimization problem and describe the minimax (robust) estimates of the functionals. We have derived the

formulas that determine the least favorable spectral densities and the minimax (robust) spectral characteristic of the optimal

linear estimates of functionals for certain classes of feasible spectral densities.
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