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Abstract. A fuzzy cognitive map is considered as an alternative to regression analysis, i.e., tools for

modeling the inputs-output dependence based on expert-experimental information. To calculate the

output value at the given input values, increments of variables are used. The optimal values of the

weights of the arcs are found using the genetic algorithm in which the chromosomes are generated

from the intervals of their feasible values and the selection criterion is the sum of the squared

deviations between the model and the observed output values.
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algorithm.

INTRODUCTION

Regression analysis is one of the most common methods of empirical [1] (inductive as defined by A. G. Ivakhnenko)

modeling aimed at extracting patterns from observations. The regression equation models the dependence of a value

(output or effect) on influencing factors (inputs or causes). To obtain the regression equation, we need:

— to define output and input variables;

— to present experimental data in the form of an inputs-output table;

— to choose an inputs-output dependence model with unknown parameters;

— to find the parameter values that minimize the sum of the squares of the deviations between the calculated and

experimental values of the output variable.

The limitations of classical regression analysis [1] are as follows:

— the quantitative nature of the input and output variables is assumed. The method is not adapted to the direct

processing of expert linguistic statements that play an important role in modern control systems [2];

— to approximate the “inputs-output” dependence, a polynomial expansion of a multidimensional function in

Taylor series is used, which allows, using a change of variables, to reduce the problem of finding unknown parameters to

solving a system of linear equations. However, accounting the nonlinear part of the polynomial with an increase in the

number of inputs leads to such a cumbersome model that is impossible to use;

— unknown parameters of the regression equation allow meaningful interpretation only for the linear part of

the polynomial. Difficulties in interpretation of parameters for nonlinear terms of the polynomial make it impossible to

estimate these parameters expertly, i.e., without tedious experiments.

The emergence of fuzzy logic [3] stimulated the development of methods of empirical modeling based on the

processing of natural language expressions. Fuzzy rules “if – then” and fuzzy relations can be used to approximate

nonlinear dependences [3]. The application of fuzzy rules is described in [4, 5]. The construction of nonlinear

dependences based on the integrated use of fuzzy logic, genetic algorithms, and neural networks was first studied in [6, 7].

The modeling elements here are fuzzy terms (low, high, etc.) included in the rules “if – then”, and the parameters of the
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membership functions of fuzzy terms and the weights of the rules are subject to adjustment. The principal advantage of

the fuzzy rules over regression models is the ability to construct pure inputs-output relationships where insufficient

experimental data are compensated by expert knowledge. The disadvantage of fuzzy rules is the need to completely

restructure them when introducing additional input variables.

Fuzzy relations [3] are implemented in fuzzy cognitive maps (FCM), which became widespread after publishing [8, 9].

Such FCMs use expert information on the interaction of variables. If the number of input variables increases, then the

FCM requires fewer expert judgments than a system of fuzzy rules. In contrast to the compositional rule of inference

from the theory of fuzzy sets [3], the FCM uses a recurrence relation with a threshold function from the theory of neural

networks [9]. In the well-known publications (see, e.g., [10]), the FCM is considered as a model of a dynamic system that

allows tracing a step-by-step changes in the values of variables based on the initial vector and the influence matrices.

In this sense, the FCM is similar to a Markov chain. The principal difference between these models is determined by the

fundamental difference between fuzzy sets and probabilities [11].

In [12], the FCM was used to rank the input factors according to the degree of their influence on the output

variable. This work is a continuation of [12] where FCM is considered as an alternative to regression, i.e., a tool for

modeling the inputs-output dependence based on expert-experimental information. The vertices of the FCM graph are

input and output variables, and the weights of the arcs are unknown parameters that are set by experts and are adjusted

based on the results of observations. Variable increments are used to calculate the output value for given input values.

The optimal values of the weights of the arcs are found using genetic algorithm.

BASIC CONCEPTS

General Information. According to [8], the FCM is a directed graph whose arcs are weighted by fuzzy terms [3].

The vertices of the graph, called concepts, correspond to the variables accepted in the model, and the weights of the arcs

reflect the impacts of changes in the cause variables on changes in effect variables. The use of the term “cognitive”

means that the initial data for modeling are subjective opinions of an expert about influences, expressed in terms of

“increases” or “decreases.” The term “fuzzy” means that the FCM uses different levels of increase and decrease, which

are given by values from the intervals [0, 1] and [ , ]1 0 and correspond to the terms weakly, moderately, strongly, and

others from the theory of fuzzy sets [3].

Concepts. Let C C C Cn{ }

1 2

, , , be a known set of concepts, i.e., variables used in the model. According to [8],

each concept C Ci is estimated by the value Ai [ , ]0 1 , which determines the level of the concept and is given expertly.

To obtain the value of Ai , it is convenient to use the function of fuzzy perfection [12, 13], which characterizes the degree of

proximity of the concept value C Ci to a certain ideal: 0 is the least perfection, 1 is the greatest perfection.

Connections between Concepts. The weight wij of the arc connecting the concepts Ci and C j indicates the

impact of Ci on C j . Let the concepts Ci and C j be characterized by the variables xi and x j , and the dependence

x xj i( ) can be constructed as a result of the experiment. Then the weight wij is defined as a derivative

w dx dxij j i/ , which can be one of the three types:

— wij 0 if the increase (decrease) in the value xi leads to an increase (decrease) in the value x j (positive

influence of Ci on C j );

— wij 0 if the increase (decrease) in the value xi leads to a decrease (increase) in the value x j (negative

influence of Ci on C j );

— wij 0 if the value x j does not depend on the value xi (no influence of Ci on C j ).

We will estimate expertly the power of influence wij using linguistic terms and thermometer scale (Table 1). If the

opinions of several experts are taken into account, then the value wij is estimated as a weighted average of each expert

estimate.

The applicability of expert estimate wij is directly related to the remarkable ability of the human eye to catch

linear dependencies in extrapolation problems, as V. M. Glushkov noted [14].
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Recurrent Relation with a Threshold Function. The dynamics of changes in the concept values in the FCM is

determined by the relation [15]

A f A w cAi

k

j

k

ji i

k

j

j i

n
1

1

, k 0 1 2, , , , (1)

where Ai
k 1

is the value of the concept Ci at the ( )k 1 th step; Ai
k
and A j

k
are the values of concepts Ci and C j at

the kth step, respectively; wji is a power of influence of the concept C j on the concept Ci ; c is a parameter

responsible for the prehistory, i.e., a contribution of a concept value at the previous step, c [ , ]0 1 ; f is the

threshold function due to which a concept value does not exceed 1.

The most widely used is a sigmoid threshold function

f x

e
x

( ) ,

1

1

0, (2)

and the positive part of the hyperbolic tangent

f x
x x

x
( )

( ) ,

,

tanh for

for

0

0 0

(3)

where tanh ( )x
e e

e e

x x

x x
.

Recurrent relation (1) can be represented in a matrix form

A A W A
k k k

f c k
1

0

0 1 2( ), , , , ,

(4)

where A A
k k1

and , k 0 1 2, , , , are ( )1 n -vectors of FCM state, whose elements give the concept values at the

( )k 1 th and kth steps, respectively;

W
0

12 1

21 2

1 2

0

0

0

w w

w w

w w

n

n

n n

. . .

. (5)

Formula (5) is an ( )n n -matrix of the powers of concept Ci influences, whose diagonal elements are equal to zero.
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TABLE 1. Methods for Estimating the Power of Influence

Thermometer Scale Linguistic Ratings
Quantitative

Values

Positive maximum

Positive above average

Positive average

Positive below average

Does not exist

Negative below average

Negative average

Negative above average

Negative maximum

1

0.75

0.5

0.25

0

– 0.25

– 0.5

– 0.75

– 1

1

0

1



The initial state of the FCM is defined by the vector

A
0

1

0

2

0 0

[ , , , ]A A An ,

(6)

whose elements reflect the concept values at the step k 0.

A steady state of the FCM is defined by the vector

A
l l l

n

l
A A A[ , , , ]

1 2

(7)

at the lth step, such that as a result of the interaction of the concepts, FCM enters the steady mode in which

| |A Ai

l

i

l 1

, where is a small positive value and i n1 2, , , .

Experiment Using Relation (1). The use of this relation to approximate the inputs-output dependence was tested

experimentally on a simple FCM (Fig. 1). Various vectors (6) were used as inputs into FCM, and the corresponding

vectors (7) were calculated in the steady state mode using relation (1). It was assumed that c 1. The experiment was

carried out with threshold functions (2) and (3). Sigmoid function (2) was used for the parameter values 0.5, 1,

and 2 . A fragment of the experimental results is shown in Table 2. In all the experiments, it turned out that for each

threshold function, the vector of concept values in the steady state mode does not depend on the corresponding vector in

the initial state. Thus, relation (1) does not provide the output sensitivity to changes in input variables.
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Fig. 1. FCM for computer experiment.

TABLE 2. Experimental Results Using Relation (1)

Threshold Function

Initial State Steady State

A
1

0

A
2

0

A
3

0

A
4

0

A
l

1

A
l

2

A
l

3

A
l

4

f x

e
x

( )

1

1

0.8 0.6 0.4 0.2 0.66 0.82 0.62 0.75

0.1 0.3 0.5 0.7 0.66 0.82 0.62 0.75

0.1 0.1 0.1 0.0 0.66 0.82 0.62 0.75

0.5 0.5 0.5 0.0 0.66 0.82 0.62 0.75

f x
x x

x
( )

( ) ,tanh for

for

0

0 0

0.8 0.6 0.4 0.2 0.00 0.86 0.00 0.70

0.1 0.3 0.5 0.7 0.00 0.86 0.00 0.70

0.1 0.1 0.1 0.0 0.00 0.86 0.00 0.70

0.5 0.5 0.5 0.0 0.00 0.86 0.00 0.70



INPUTS-OUTPUT DEPENDENCE APPROXIMATION

Interrelation of Variable Increments. To approximate the inputs-output dependence using the FCM, we will use

the increments of the concept values as they interact at the kth steps, k 0 1 2, , , . The value of the concept Ci at the

( )k 1 th step depends on the values of the concepts C j ( , , , )j n1 2 at the previous kth step. Let us denote this

dependence as

A A A Ai

k k

j

k

n

k1

1

( , , , , ) .

(8)

From (8), the relationship between the increments ( ) of concept values on the neighboring ( )k 1 th and kth steps

follows:

A
A

A

A
A

A

A
A

i

k i

k

k

k i

k

j

k
j

k i

k
1

1

1

1

1 1

...

A

A

n

k
n

k
. (9)

Partial derivatives in (9) correspond to the mutual interactions of concepts:

A

A

w
i

k

j

k
ji

1

. Hence, relation (9) can

be written in the form

A A w i ni

k

j

n

j

k

ji

1

0

1 2, , , , , (10)

where

A A Ai

k

i

k

i

k1 1

, A A Aj

k

j

k

j

k 1

. (11)

Considering (10) and (11), we obtain the equation for the dynamics of a step-by-step change in the concept values

A A A A wi

k

i

k

j

k

j

k

j

n

ji

1 1

1

( ) . (12)

Similarly to (4), relation (12) can be represented in the matrix form

A A A A W
k k k k1 1

0

( ) ,

(13)

where and are the operations of elementwise addition and subtraction of vectors, performed according to the

scheme

[ , ] [ , ] [ , ]a b c d a c b d ,

[ , ] [ , ] [ , ]a b c d a c b d .

In (13), we assume that, for k 0 , the equality

A A A W
1 0 0

0

holds.

Output Variable Prediction. The output value corresponding to the fixed values of the input variables can be

calculated by the following algorithm.

Step 1. Set the initial state of the FCM (6) by the vector

A
0

1

0

2

0

1

0 0 0

0 0 1 1 2 1[ , , , , ], [ , ], , , ,A A A A A i n
n n i .

(14)

Step 2. Using relation (13), calculate the vector (7) of concept values in a steady state. Fix the value An
l
of the

output concept Cn .

Step 3. Find the initial vectors (14) that correspond to the highest (An ) and the lowest (An ) values of the output

concept Cn in a steady state. The algorithm for solving the necessary optimization problems is considered in the next

section.
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Step 4. Calculate the normalized value of An
l
obtained at Step 2 by the formula

A
A A

A A
n

n

l
n

n n

. (15)

Consider the value An as a prediction for the output value that corresponds to the given input vector (14). We need

to normalize (15) because there is no threshold function in (13), and, due to this fact, the value of An
l
may be greater than

one.

Experiment Using Relation (13). Table 3 shows a fragment of the results of the experiment with FCM (see Fig. 1)

using relation (13). The steady state was observed for l 6 . The highest and lowest values A
4

1.09 and A
4

0.61

were attained at the initial vectors A
0

[0.0, 1.0, 1.0, 0.0] and A
0

[1.0, 0.0, 0.0, 0.0], respectively.

Consider, e.g., the first row in Table 3. The initial vector A
0

[0.5, 0.5, 0.5, 0.0] leads to the steady state vector

A
0

[0.5, 0.82, 0.40, 0.24], whence A
4

6

0.24. As a result of normalization of (15), we obtain

. .

. .

An

0 24 0 61

1 09 0 61

0.5.

ADJUSTING THE PARAMETERS OF THE INPUTS-OUTPUT MODEL

Data for Adjusting. Let us assume that as a result of the observations we manage to collect the data, presented in

Table 4, where Aip [ , ]0 1 is a concept Ci level in the observation p , i n1 2, , , , p N1 2, , , , N is the number of

observations. It is assumed that the values of Aip in Table 4 can be obtained in two ways: experimentally or by expert

assessments. The experimental method makes it possible to accurately measure the parameter xip associated with the

concept Ci and the transformation of xip into the level Aip [ , ]0 1 using membership functions for the fuzzy

perfection [12]. The expert method uses qualitative estimates for levels Aip in the form of linguistic (fuzzy) terms, which

correspond to numerical values (Table 5). The formal way of transition from linguistic terms to numerical values is the

defuzzification procedure [4], which is not considered in this paper.

Arc Weight Intervals. The FCM parameters adjusted with the allowance for the observation results, are the weights

of the arcs w w wij ij ij[ , ], where w wij ij( ) is a lower (upper) limit of the interval of feasible values wij . We will base the

choice of the intervals [ , ]w wij ij on the following assumptions:

— the type of influence wij 0, wij 0, or wij 0 is determined expertly and does not change when adjusting the

FCM;

— the power of influence wij is estimated by an expert to the accuracy of one linguistic term (see Table 1), i.e., 0.2;

— the power of positive wij 0 and negative wij 0 influences change within the intervals [0.05,0.95] and

[ . , . ]0 95 0 05 , respectively.
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TABLE 3. Experimental Results Using Relation (13)

Initial State Steady State

A
1

0

A
2

0

A
3

0

A
4

0

A
l

1

A
l

2

A
l

3

A
l

4

A
4

0.5 0.5 0.5 0.0 0.50 0.82 0.40 0.24 0.50

0.1 0.4 0.8 0.0 0.10 1.08 0.78 0.72 0.78

0.9 0.5 0.3 0.0 0.90 0.52 0.12 0.17 0.26

0.1 0.2 0.7 0.0 0.10 0.77 0.68 0.59 0.70

0.2 0.7 0.4 0.0 0.20 1.06 0.36 0.38 0.58



Given these assumptions, the weight intervals for the FCM arcs are chosen according to the scheme:

0.3 [0.1, 0.5], 0.3 [ 0.5, 0.1],

0.1 [0.05, 0.3], 0.1 [ 0.3, 0.05],

0.8 [0.6, 0.95], 0.8 [ 0.95, 0.6].

Optimization Problem. Let us denote by ( , )A Fn A W
0 0

an inputs-output dependency model that corresponds

to the above prediction algorithm. Using this model and Table 4, let us find the deviations

p np npA A , p N1 2, , , ,
(16)

where Anp is an output value in pth observation, Anp is the output forecast for input values from the pth observation, i.e.,

( , , , , , )

,

A F A A A Anp p p n p np1 2 1 0

0 W .

Following the method of least squares from regression analysis, we formulate the problem of adjusting the FCM

based on observations as follows: find the matrix W
0

1 2 1 2[ , , , , , , , , ]w i n j nij of powers of influences, such

that its elements satisfy the constraints w w wij ij ij[ , ] and minimize the sum of squares of deviations (16), i.e.,

S A F

p

N

np p( ) [ ( , )] minW A W
W

0

1

0

2

0

, (17)

where Ap p p n p npA A A A[ , , , , ]

,1 2 1

0 , p N1 2, , , .

Genetic Algorithm. To solve nonlinear optimization problem (17), a genetic algorithm is proposed based on the

following concepts and operations [16]: chromosome — a coded version of the solution; population — the initial set of

solutions; fitness function — a criterion for selecting options; crossover — the operation of generating offspring

chromosomes from the parent chromosomes; mutation — a random change in chromosome elements.

If P t( ) are parent chromosomes andC t( ) are offspring chromosomes on the tth iteration, then the general structure

of the genetic algorithm has the form
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TABLE 4. Observational Data for the Inputs-Output

Model

Number

Inputs Output

C
1

C
2

C
n 1

Cn

1 A
11

A
21

A
n 1 1,

A
n1

p A
p1

A
p2

A
n p1,

Anp

N A
N1

A
N2

A
n N1,

A
nN

TABLE 5. Expert Estimation of Concept Level

Term Designation Numerical Value

Exceptionally low Exxl 0.045

Extremely low Exl 0.135

Very low Vl 0.255

Low L 0.335

Below average Ba 0.410

Average A 0.500

Above average Aa 0.590

High H 0.665

Very high Vh 0.745

Extremely high Exh 0.865

Exceptionally high Exxh 0.955



begin

t : 0; set initial value P t( );

estimate P t( ) using the fitness function;

while (until termination conditions are fulfilled) do

cross P t( ) to obtain C t( );

mutate C t( );

estimate C t( ) by the fitness function;

select P t( )1 from P t( ) and C t( ); t t: 1;

end

end.

A chromosome is defined as a row of non-zero matrix elementsW
0

[ ]wij , w R w wij ij ij[ , ], where R x x[ , ] is the

operation of finding a random number uniformly distributed over the interval [ , ]x x . For example, for FCM (see Fig. 1),

the generator of the initial population of chromosomes is the row [ , , , , , , ]w w w w w w w
12 13 14 24 32 34 42

, where

w R
12

[0.05, 0.3], w R
13

[ 0.4, 0.05], w R
14

[ 0.6, 0.2], w R
24

[0.05, 0.4], w R
32

[0.1, 0.5], w R
34

[0.5, 0.9],

w R
42

[0.4, 0.8], whence we have the following examples of chromosomes:

[0.196, 0.211, 0.252, 0.143, 0.227, 0.548, 0.776], (18)

[0.171, 0.262, 0.331, 0.309, 0.308, 0.639, 0.450]. (19)

The crossing of a pair of parent chromosomes gives rise to an offspring chromosome. The crossing operation is

performed by a random exchange of genes (elements) of the parent chromosomes. To do this, each gene of the offspring

chromosome is assigned a random number

1

1 0R [ , ]. If

1

0.5, then this gene is taken from the first parent;

otherwise, the gene is taken from the second parent. Let the parent chromosomes be given by rows (18) and (19), and the

random numbers

1

correspond to the row [0.19, 0.62, 0.21, 0.71, 0.94, 0.17, 0.33]. Then, as a result of crossing (18) and (19),

we obtain the offspring chromosome

[0.196, 0.262, 0.252, 0.309, 0.308, 0.548, 0.776]. (20)

Each gene in (20) may undergo mutation. To do this, a random number

2

0 1R [ , ] and the mutation coefficient q

are assigned to each gene (in this case, q 0.1). If

2

q , then this gene is replaced with a random number from the

range of feasible values.

Let a row of random numbers

2

be of the form [0.63, 0.11, 0.49, 0.08, 0.18, 0.74, 0.37]. Hence, in chromosome (20),

only the fourth gene undergoes mutation, and, after that, the offspring chromosome takes the form [0.196, 0.262,

0.252, 0.151, 0.308, 0.548, 0.776], where 0.151 R[0.05, 0.4].

The fitness function is criterion (17) with a minus sign, i.e., the better the chromosome meets the optimization

criterion, the greater the fitness function.

The selection of parent chromosomes for the crossover is not occasional. The best solutions are prioritized.

The greater the fitness functions, the more likely a given chromosome will produce an offspring [16]. When the genetic

algorithm is executed, the population size remains constant. Therefore, after the crossovers and mutations from the

resulting population, it is necessary to remove the chromosomes that have the worst value of the fitness function.

EXAMPLE OF FCM APPLICATION

Multivariate Analysis of the Reliability. The initial stage of modeling the reliability of the system [17] is its

structuring, i.e., selecting the elements with associated probabilities of failures. In cases where structuring is complicated,

the system has to be considered as a black box whose output is reliability, and the inputs are influencing factors.

Let us consider modeling the reliability of a car in a driver–car–road system, taking into account the material,

technical, ergonomic, organizational, and environmental factors. The information needed to build and adjust the FCM is

provided by an expert in the field of vehicle operation and maintenance.
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Approximation. The given FCM is shown in Fig. 2, where C
10

is an output concept corresponding to the

reliability and safety of the vehicle,C C C
1 2 9

, , , are input concepts corresponding to the following influencing factors:

C
1

is driver’s qualification, C
2

is road conditions, C
3

are unit operating costs, C
4

are terms of use, C
5

is periodicity of

maintenance,C
6

is quality of maintenance and repair,C
7

is quality of car’s structure,C
8

is quality of operating materials

and spare parts, and C
9

is storage conditions.

To test the FCM as a forecasting model, we used inputs-output expert estimates (Table 6), obtained with the use

of linguistic terms from Table. 5. Each row in Table 6 was defined by an expert as a combination of levels ( , , , )A A A
1 2 9

of influencing factors leading to a given level (A
10

) of reliability and safety of the car.
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Fig. 2. FCM of the system “driver–car–road.”

TABLE 6. Expert Estimate of Inputs-Output

Number A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

1 Vh Exh Ba Exh Vh Exh Exh Vh Exh Exh

2 Exh Vh Vl Exh Exh Vh Exh Exh H Exh

3 Exxh Exh L Exxh Vh Vh Exxh Exxh Exxh Exh

4 Vh H A Exh Vh Vh H Vh Exh Vh

5 H Vh Vl H H Aa Aa Vh Exh Vh

6 A H L Exxh Aa Aa Vh Vh Vh H

7 Aa Aa A Ba A H H A Aa Aa

8 A Ba A A Aa Aa Vh Vh Aa Aa

9 H Aa Aa Vh H Aa Aa Ba Vl A

10 A A H Ba A Aa H Ba H A

11 A Aa Vh H Aa Aa Aa L Ba A

12 L Ba Exh A Aa Ba Ba H H A

13 Exl L Ba Ba A L Vl A A Ba

14 Vl H Exh L Ba A Vl Exl A L

15 Aa Vl Vl Ba L Exl Exl L Exl L



To use formula (13) for calculations, linguistic terms were replaced by numerical values from Table 5. Predicting

the output level (A
10

) for different input levels (A A A
1 2 9

, , , ) was performed for each row of Table 6. The steady state

FCM mode was observed at l 5. The values A
10

and A
10

needed for the calculation by formula (15) are the following:

A
10

0 for Ai 0, i 1 2 9, , , , and A
10

4.317 for Ai 1, i 1 2 9, , , .

Comparing expert estimates A
10

from Table 6 and the simulation results before adjusting (Table 7), we conclude

that the mean absolute deviation (MAD) and mean square error (MSE) are

MAD A A

p

p p

1

15

1

15

10 10

| – |

, ,

0.051 and MSE A A

p

p p

1

15

1

15

10 10

2

( – )

, ,

0.004,

respectively.

Note that the proximity of the values A
10

and A
10

prove the high qualification of the expert whose knowledge was

used to construct the FCM (see Fig. 2) and inputs-output estimates (see Table 6).

Adjusting. In the genetic algorithm for FCM adjusting (see Fig. 2), 200 chromosomes were used. At each

iteration, 20 crossovers were performed with the mutation factor q 0.1. Dynamics of changes in the optimization

criterion (17) as the number of iterations ( )M increases is shown in Fig. 3. The fact that the optimization algorithm

attains a steady state interval with more than 2000 iterations determines the convergence of the genetic algorithm. The

change in the weights of the arcs after adjustment is given in Table 8. Application of the FCM with adjusted arc’s

weights (see Table 7) delivers improved MAD and MSE indices whith values 0.035 and 0.002 after adjustment,

respectively.

614

TABLE 7. Expert Estimate and Simulation Results

Number

A10 Before Adjusting After Adjusting

Term Number
A
l

10

A
10

| – |A A
10 10

A
l

10

A
10

| – |A A
10 10

1 Exh 0.865 3.474 0.805 0.060 3.482 0.807 0.058

2 Exh 0.865 3.448 0.799 0.066 3.582 0.830 0.035

3 Exh 0.865 3.672 0.851 0.015 3.814 0.884 0.019

4 Vh 0.745 3.240 0.751 0.006 3.294 0.763 0.018

5 Vh 0.745 2.852 0.661 0.084 2.924 0.677 0.068

6 H 0.665 3.073 0.712 0.047 3.029 0.702 0.037

7 Aa 0.590 2.249 0.521 0.069 2.329 0.540 0.050

8 Aa 0.590 2.324 0.538 0.052 2.532 0.587 0.003

9 A 0.500 2.727 0.632 0.132 2.599 0.602 0.102

10 A 0.500 2.110 0.489 0.011 2.192 0.508 0.008

11 A 0.500 2.534 0.587 0.087 2.374 0.550 0.050

12 A 0.500 2.195 0.509 0.009 2.212 0.512 0.012

13 Ba 0.410 1.682 0.390 0.020 1.659 0.384 0.026

14 L 0.335 1.855 0.430 0.095 1.550 0.359 0.024

15 L 0.335 1.400 0.324 0.011 1.415 0.328 0.007



CONCLUSIONS

Based on a fuzzy cognitive map, a method for constructing an inputs-output dependence is proposed, which is

an alternative to regression analysis. The method is illustrated by the example of multivariate analysis of the reliability of

a man–machine system. The idea of the method is to represent the model in the form of a directed graph whose vertices

correspond to the input and output variables, and the weights of the arcs are unknown parameters that are provided by

experts and adjusted according to the results of observations. We show that the threshold functions, which are traditionally

used in works on FCM, do not provide the output sensitivity to variations in the input variables; therefore, to approximate

the inputs-output dependence, an algorithm based on variable increments is proposed. The problem of optimal adjustment of

the weights of arcs is posed and a genetic algorithm for its solution is developed. Chromosomes are generated from ranges

of acceptable values, and the selection criterion is the sum of the squared deviations between the model and observed output

values. The fundamental advantages of the method are that, firstly, by simply adding and removing vertices and arcs from

the graph, it is possible to change many input variables affecting the objective function, and secondly, due to the

convenience of interpreting unknown parameters, it is possible to compensate the lack of experimental data by the use of

expert assessments. We recommend to use the method in predicting problems with a large number of input variables, where

expert assessments are an important source of information.
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Fig. 3. Dynamics of changes in the optimization criterion.

S ( )W
0

M

TABLE 8. Weights of the Arcs before and after Adjustment

Weight
Before

Adjusting

After

Adjustment
Weight

Before

Adjusting

After

Adjustment

w
23

0.3 0.220 w
85

0.5 0.700

w
43

0.5 0.301 w
95

0.1 0.051

w
53

0.4 0.311 w
1 10,

0.2 0.359

w
73

0.6 0.711 w
2 10,

0.3 0.103

w
83

0.3 0.496 w
3 10,

0.2 0.051

w
24

0.4 0.212 w
4 10,

0.7 0.500

w
15

0.1 0.245 w
5 10,

0.8 0.868

w
45

0.6 0.400 w
6 10,

0.4 0.293

w
65

0.1 0.153 w
7 10,

0.6 0.712

w
75

0.5 0.309 w
9 10,

0.1 0.300
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