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MULTI-OBJECTIVE OPTIMIZATION PROBLEM:

STABILITY AGAINST PERTURBATIONS OF INPUT

DATA IN VECTOR-VALUED CRITERION
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Abstract. The conditions of stability against input data perturbations in vector-valued criterion for

multi-objective optimization problem with continuous partial criterion functions and feasible set

of arbitrary structure are established. The sufficient and necessary conditions of three types of

stability for the problem of finding Pareto optimal solutions are proved.
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INTRODUCTION

The paper pertains to the theoretical field of studies in the problem of stability of multi-objective (vector)

optimization problems. This field is related to finding and analyzing the conditions whereby a set of Pareto, Slater or

Smale optimal solutions of a problem possesses some predetermined property that characterizes in a certain way its

stability against small perturbations of input data. The paper continues studies in the correctness of vector optimization

problems, including their solvability and stability, presented in particular in [1–9]. The results described therein expand

the well-known class of vector optimization problems, stable with respect to input data perturbations for vector-valued

criterion. Another well-known field in the analysis of the stability problem is oriented toward obtaining and investigating

the quantitative characteristics of feasible modifications in input data of the problem, in particular, radius of the

maximum stability sphere (see, for example, [10–12]).

PROBLEM STATEMENT. BASIC DEFINITIONS

Let us consider a vector optimization problem of the form

Q F X F x x X( , ): max ( ) |{ }� , (1)

where X is a set from R
n

of arbitrary structure, probably discrete; R
n

is an n-dimensional real space;

F x f x f x( ) ( ( ), , ( ))�
1

�

�

, � � 2, f R Ri

n
: �

1

is a continuous function, i N� �
�

� �{ }1, , , and X � �. Let the

problem (1) be: find elements of the set of Pareto optimal solutions

P F X x X x F X( , ) { | ( , , ) }� � � �� ,

where �( , , ) | ( ) ( ), ( ) ( )x F X y X F y F x F y F x� � � �{ }.
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Let us also consider the sets of Slater optimal solutions:

Sl F X x X x F X( , ) | ( , , )� � � �{ }� ,

where �( , , ) | ( ) ( )x F X y X F y F x� � �{ }, and of Smale optimal ones:

Sm F X x X x F X( , ) | ( , , )� � � �{ }� ,

where �( , , ) | , ( ) ( )x F X y X y x F y F x� � � �{ }.

It can be easily seen that

Sm F X P F X Sl F X( , ) ( , ) ( , )	 	 (2)

and 
 �x X � � �( , , ) ( , , ) ( , , )x F X x F X x F X	 	 .

A Pareto set P F X( , ) is called externally stable if for any nonoptimal solution x X P F X� \ ( , ) there is an optimal

solution � �x P F X( , ) for which F x F x( ) ( )� � . According to [13], finiteness of the nonempty subset Õ is a sufficient

condition for the existence of Pareto optimal solutions of the vector problem and external stability of the Pareto set.

However, in case of infinite feasible area Õ , the Pareto set may be not externally stable and be empty. According to the

Podinovskii theorem [13], a Pareto set is non-empty and externally stable if the feasible set Õ of the problem is a nonempty

compact set, i.e., it is bounded and closed, and criterion vector function F x( ) of the problem is (component-wise) upper

semicontinuous on X .

Noteworthy is also the well-known result about closedness of the set of Slater optimal solutions for the problem

of optimization of a continuous vector function on a closed feasible set [13]. The statement below, which is related to

problem (1), follows from it.

Statement 1. Let feasible set Õ of the problem Q F X( , ) be closed. Then set Sl F X( , ) is also closed.

Note that the sets P F X( , ) and Sm F X( , ) of Pareto and Smale optimal solutions (for example, for the partially

integer problem Q F X( , )) can be non-closed even if the feasible set Õ is closed. Appropriate examples for the problem

with linear partial criteria are presented in [1].

For problem (1), as input data that can be subject to perturbations, let us consider coefficients of the vector-valued

criterion F . Denote the set of such input data by u U� ,U is the space of input data of the problem. When necessary,

along with the introduced notation F x f x f x( ) ( ( ), , ( ))�
1

�

�

for the vector objective function and partial criteria of the

problem Q F X( , ), we will also use the notation F x f x f xu

u u
( ) ( ( ), , ( ))�

1

�

�

, which specifies which element u from the

space U of input data corresponds to the considered problem.

For any natural number q , we will consider the real vector space R
q
as normed one. We will specify the norm in R

q

by the formula

| | | | | | | |z zi

i N q

�

�

� , (3)

where z z z Rq

q
� �( , , )

1

� , N qq � { }1, ,� . By the norm of some matrix B b Rij m k

m k
� �





[ ] , we will understand

the norm of vector ( , , , )b b bmk11 12

� .

As is known [14], in the finite-dimensional space R
q
, any two norms | | | |

( )

�
1

and | | | |

( )

�
2

are equivalent, i.e., there

are numbers � � 0 and � � 0 such that 
 �z R
q
the inequalities are true: ��� �� �� �� ��� ��z z z

( ) ( ) ( )1 2 1

� � . According to this

equivalence, the results below are also true for other norms introduced in finite-dimensional space.

For a set of input data u U� and any number � � 0, let us define the set of perturbed input data

O u u U u u
�

� �� � �� �( ) ( ) | ( )� � � �{ }.

Let us consider the problem with perturbed input data of the vector-valued criterionQ F X F x x Xu u( , ) :max ( )|

( ) ( )� �
{ }� ,

where u O u( ) ( )�
�

� , F xu( )

( )

�
� ( ( ), , ( ))

( ) ( )

f x f x
u u

1

� �
�

�

.

Let us define different types of stability against perturbations of input data for the vector-valued criterion of the

problem (1), by propagating, to this class of problems, the concepts of T
1

-, T
2

-, T
3

-, T
4

-, and T
5

-stability with respect to

vector-valued criterion, introduced in [4] for completely integer problem of finding Pareto optimal solutions with

quadratic partial criteria.
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Definition 1. ProblemQ F Xu( , ) is called T
1

-stable in a vector-valued criterion if there is a number � � 0 such that

for any perturbed set u O u( ) ( )�
�

� of input data of the problem, the inequality holds:

P F X P F Xu u( , ) ( , )

( )

�

�
� �.

Definition 2. ProblemQ F Xu( , ) is called T
2

-stable in a vector-valued criterion if there is a number � � 0 for which

the inequality holds:

P F Xu

u O u

( , )

( )

( ) ( )

�

�
�

� �

�

�

.

Definition 3. Problem Q F Xu( , ) is called T
3

-stable (T
4

-, T
5

-stable) in a vector-valued criterion if 
 �	 0 � �� 0

such that 
 �u O u( ) ( )�
�

the condition is satisfied:

P F X O x x P F Xu u( , ) ( ( )) ( ) ( , )

( )

�

	 �
� �� � 
 � (4)

(respectively, the condition

P F X O x x P F Xu u( , ) ( ) ( , )

( )� 	
� � � 
 � (5)

for T
4

-stability and both conditions, (4) and (5), for T
5

-stability), where O x x R x x
n

	
�� �� 	( ) |� � � � � �{ } 
 �x R

n
.

Note that condition (4) is equivalent to the inclusion P F Xu( , )

( )�
	 O P F Xu	

( ( , )) and condition (5) to the

inclusion P F X O P F Xu u( , ) ( ( , ))

( )

	
	 �

, where O B x R r x B
n

	
	( ) | ( , )� � �{ } is 	-neighborhood of some set B R

n
	 .

Here, r x B x y
y B

( , ) | | | |� �

�

inf is the distance between any point x R
n

� and set B. Thus, T
3

-stability (T
4

-, T
5

-stability)

in the vector-valued criterion of problemQ F X( , ) means that the point–set mapping P U u P u P F X
X

u: , ( ) ( , )� � �2

is Hausdorff upper semicontinuous (respectively, lower semicontinuous, continuous) at point u U� .

SUFFICIENT AND NECESSARY STABILITY CONDITIONS

OF THE MULTI-OBJECTIVE PROBLEM

THEOREM 1. If set X is bounded and closed, then the equality

Sl F X P F X( , ) ( ( , ))� cl , (6)

where clB is the closure of some set B R
n

	 , is a sufficient condition of T
3

-stability in the vector-valued criterion

of the problem Q F X( , ).

Proof. Assume the opposite. Let Eq. (6) be true but the problem Q F Xu( , ) be not T
3

-stable in the vector-valued

criterion. The latter means that � �	 0 such that 
 �� 0 there is a perturbed set of input data u O u( ) ( )�
�

� for which

condition (4) is not satisfied. Then 
 �� 0 there is at least one solution x P F Xu� �
� ( , )

( )

of the perturbed problem

Q F Xu( , )

( )�
, which together with all the 	-neighborhood does not belong to the Pareto set of the problem Q F Xu( , ):

O x R P F X
n

u	 �
( ) \ ( , )	 .

(7)

From the fact that x P F Xu� �
� ( , )

( )

it follows that

�
� � � � � �

( , , ) | ( ) ( ), ( )

( ) ( ) ( ) ( ) (

x F X z X F z F x F z Fu u u u u� � � �{

� �)

( ) ,x } � �

i.e., one of the relations is true 
 �z X :

N z i N f z f x
i

u

i

u�

� � � � �( ) | ( ) ( )

( ) ( )

{ }

�

� �

�
,

N z i N f z f x N
i

u

i

u�

� � � �( ) | ( ) ( )

( ) ( )

{ }

� �

� �

�
.

In that case, for any point z X� it is possible to select a stationary sequence { }i r N
r�
| � from the finite set

{ }i N z N z N
�

�� � � 	
� �

( ) ( ) | 0

�

. And considering the Bolzano–Weierstrass theorem [14], it is also possible to select
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a converging sequence { }x r N
r�
| � from the bounded set { }x X

�
�| � 	0 , and lim

r
r

� �

�� 0. Denote

~

limx x
r

r
�

� �

�
and

i i
r

r0

�

� �

lim

�
. With regard for the boundedness of the set X , we conclude that

~

x X� . As r � �, we obtain the inequality

f z f x
i

u

i

u

0 0

( ) (

~

)� , which takes place for all z X� . Thus, �(
~

, , ) | ( ) (

~

)x F X z X F z F xu u u� � � � �{ } and

~

( , )x Sl F X� .

Taking into account condition (6), we conclude that

~

( ( , ))x P F Xu�cl . (8)

However, from inclusion (7) it follows that the inequalities | | | | ,x x r N
r

� � �
�

	 , are true 
 �x P F X( , ), which in

turn lead to the inequality | |

~

| |x x� � 	 as r � � . The latter means that

~

( ( , ))x P F Xu�cl and it contradicts (8).

The theorem is proved.

THEOREM 2. Let the set X be bounded and closed. A sufficient condition of T
4

-stability in the vector-valued

criterion of the problem Q F X( , ) is the equality

cl cl( ( , )) ( ( , ))P F X Sm F X� . (9)

Proof. Assume (by contradiction) that condition (9) is satisfied but the problem Q F Xu( , ) is not T
4

-stable in the

vector-valued criterion. The latter means that � �	 0 such that 
 �� 0 there is a perturbed set of input data u O u( ) ( )�
�

�

for which condition (5) is not satisfied and hence there is at least one Pareto optimal solution x P F Xu�

*

( , )� that does

not belong to the perturbed Pareto set P F Xu( , )

( )�
together with its neighborhood O x

	 �
( )

*

. Thus,

O x R P F X
n

u	 � �
( ) \ ( , )

*

( )

	 (10)

and 
 � � �y P F X x yu( , ) : | | | |

( )

*

� �
	.

Since the set { }x P F X Xu�
�

*

| ( , )� 	 	0 is bounded (due to the boundedness of X ), according to the

Bolzano–Weierstrass theorem, is possible to select a converging sequence { }x r N
r�

*

| � from it, for which lim

r
r

��

�� 0 .

Let us introduce the notation x x
r

r

* *

lim�

��

�
. Since the set X is closed, we conclude that

x P F X Xu
*

( ( , ))� 	cl .

(11)

Let us consider the neighborhood O x
	/

*

( )

2

for which (based on the definition of the limit of a sequence), we can

specify a number r N
0

� such that 
 �r r
0

x O x
r� 	

*

/

*

( )�
2

. Based on the inclusion (10), which takes place 
 �� 0, we

conclude that 
 �r r
0

: O x O x R P F X
r r

n

u	 	 � �/

* *

( )

( ) ( ) \ ( , )

2

	 	 , whence it follows that for any point v O x X�
	/

*

( )

2

�

and number r r�
0

, there is a Pareto optimal solution x x P F X
r r ru� � �


� �( ) ( , )

( )

of the perturbed problem, for which the

inequalities hold: f x f v
i

u

i

ur

r

r( ) ( )

( ) ( )

�

�

�
� , i N�

�

.

The last conclusion is made with regard for the external stability inherent in the set P F Xu r
( , )

( )�
in view of the

(component-wise) continuity of the criterion vector function of the problem Q F Xu r
( , )

( )�
and of the fact that the

nonempty feasible set Õ of this problem is a compact set [13].

Let us fix some point 
 from setO x X
	/

*

( )

2

� , consider a sequence { }x r r r N X
r�
| ,� � 	

0

, and select a converging

subsequence { }x k Nrk
( ) |� � from it, for which lim

k
rk��

�� 0. Denote x x
k

rk
�

��

lim ( )� . Since the set X is closed, we get

x X� . It is obvious that | | | | /

*x x� � 	 2 , x O x�
	/

*

( )

2

, and hence, x v� .

As k � �, let us pass from the inequalities f x f v
i

u

r i

urk

k

rk
( ) ( )

( ( )) ( )

� �

� � , i N�
�

, k N� , to f x f vi

u

i

u
( ) ( )� ,

i N�
�

.

The last inequalities together with the inequality v x� allow us to conclude that x v F X� � ��( , , ) and

v Sm F X� ( , ). Thus, O x
	/

*

( )

2

� Sm F X( , ) � � and point x * is not a contact point of the set Sm F X( , ); therefore,
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it does not belong to the closure cl ( ( , ))Sm F X of this set neither. Considering the assumption that

cl cl( ( , )) ( ( , ))P F X Sm F X� is true, we conclude that x P F X*

( ( , ))�cl , which contradicts (11).

The theorem is proved.

Theorems 1 and 2 obviously imply the following one.

THEOREM 3. If the set X is bounded and closed, then relations Sl F X P F X Sm F X( , ) ( ( , )) ( ( , ))� �cl cl are

a sufficient condition of T
5

-stability in the vector-valued criterion of the problem Q F X( , ).

Let us formulate the necessary conditions of T
3

- and T
4

-stability of problem (1) under the following additional

conditions imposed on its objective vector function F x f x f x( ) ( ( ), , ( ))�
1

�

�

:

f x g x c xi i i( ) ( ) ,� � � � , i N�
�

, (12)

where f R Ri

n
: �

1

, g R Ri

n
: �

1

, c c c Ri i in

n
� �( , , )

1

� . In particular, these can be quadratic and linear functions

that compose the vector-valued criterion. Let us present the input data u U� for the considered vector-valued

criterion as a pair u u C
g

� ( , ) , where u
g

is the set of all input data necessary to represent the functions g xi ( ),

i N�
�

, C c Rij

n
� �



[ ]

�

.

THEOREM 4 [2]. Equality (6) is the necessary condition of T
3

-stability in the vector-valued criterion of the

problem Q F X( , ) with the linear partial criteria f x c xi i( ) ,� � �, i N�
�

.

THEOREM 5. Let the set X be closed. Equality (9) is the necessary condition of T
4

-stability in the vector-valued

criterion of the problem Q F X( , ) with the partial criteria f xi ( ), i N�
�

, presented by formulas (12).

Proof. Assume (by contradiction) that for the problem Q F X( , ) that is T
4

-stable by the vector-valued criterion

the condition cl ( ( , ))P F X � cl ( ( , ))Sm F X is not satisfied and hence, there is a point v P F X�cl ( ( , )) \ cl ( ( , ))Sm F X .

On the one hand, belonging of the point v to the closure cl( ( , ))P F X means that 
 �	 0 � �y O v P F X
	
( ) ( , )� . On the other

hand, considering v as a point of the open set R Sm F X
n
\ ( ( , ))cl , we conclude that � � �	 0: O v R Sm F X

n

�
	

	
( ) \ ( ( , ))cl .

This allows us to conclude that there exists the point y y y O v P F X R Sm F Xn

n
� � 	

�
( , , ) ( ) ( , ) \ ( ( , ))

1

� �

	
cl . Since

y P F X� ( , ) \ ( , )Sm F X , there is also a point z z z y F X y F Xn� �( , , ) ( , , ) \ ( , , )

1

� � � for which the following relations

are true:

F z F y( ) ( )� , z y� . (13)

To obtain a contradiction with the above-mentioned assumptions about T
4

-stability of the problem Q F Xu( , ), let

us show that � �� �	 0 such that 
 �� 0 there is a set of perturbed input data u O u( ) ( )�
�

� for which

P F X O yu( , ) ( )

( )� 	
� ' ' = �. In this connection, for an arbitrary � � 0, let us introduce a perturbed set of input data

u u C
g

( ) ( , ( ))� �� , where the component u
g
, which represents input data necessary to describe the functions gi , i N�

�

,

remains invariable as compared with the initial set u u C U
g

� �( , ) of input data, and let us construct the matrix

C c Rij

n
( ) [ ( )]� �� �

�

based on the following formulas for calculation of its separate elements:

c c z yij ij j j( ) ( )� �� � �sgn , i N�
�

, j N n� , 0� ��
�

n�
.

Taking into account (3), it is easy to verify that | | ( ) | | | ( ) |C C c c
ij ij

j Ni N n

� � �� � � �

��

��

�

and hence,

u u C O u
g

( ) ( , ( )) ( )� �
�

� � . Moreover, with regard for formulas (3) and (13), the relations hold for all i N�
�

:

f z f y g z c z g y c y
i

u

i

u

i i i i

( ) ( )

( ) ( ) ( ) ( ), ( ) ( ),

� �
� �� � � � � � � � � � �f z f yi

u

i

u
( ) ( )

� � � � � � � �

� �

� �� � �

j N

j j j j j j

j Nn n

z y z y z y z y( ) ( ) | | | | | |sgn 0.

Thus, F z F yu u( ) ( )

( ) ( )

� �
� � 0 . Hence, z y F Xu� � ��

�
( , , )

( )

, and according to the definition of a Slater set,

point y does not belong to the perturbed set Sl F Xu( , )

( )�
, which is closed according to Statement 1. Then point y belongs

to the open set R Sl F X
n

u\ ( , )

( )�
and there is a number �� �	 0 for which the inclusionO y R Sl F X

n

u	 �' ' ( ) \ ( , )

( )

	 holds.
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Considering relations (2), we also obtain the inclusion O y
	 ' ' ( ) 	 R P F X

n

u\ ( , )

( )�
. However, the existence of such

neighborhood O y
	 ' ' ( ) of point y P F Xu� ( , ) contradicts the assumption about T

4

-stability of the problem Q F X( , ),

because by the definition of T
4

-stability, 
 �	 0 � �� 0 such that 
 �u O u( ) ( )�
�

condition (5) is satisfied.

CONCLUSIONS

In the paper, we have analyzed qualitative characteristics of various concepts of stability of vector optimization problems

with continuous partial criteria functions and set of feasible solutions of arbitrary structure. We have analyzed the stability for the

case of possible perturbations of input data of vector-valued optimization criterion and established the conditions whereby the set

of Pareto optimal solutions of the problem has a predetermined property of invariancy with respect to external actions on input

data. We have proved the sufficient (Theorems 1–3) and necessary (Theorem 5) stability conditions of three different types,

which guarante that rather small variations in input data of the vector-valued criterion either do not generate new Pareto optimal

solutions or preserve all Pareto optimal solutions of the problem and admit ocurrence of new ones, or do not change the set of

Pareto optimal solutions of the original problem. The obtained results extend the well-known class of vector optimization

problems that are stable against input data perturbations for the vector-valued criterion.
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