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THE PROBLEM OF APPROACH OF CONTROLLED

OBJECTS IN DYNAMIC GAME PROBLEMS

WITH A TERMINAL PAYOFF FUNCTION

J. S. Rappoport UDC 517.977

Abstract. To solve the problem of convergence of controlled objects in dynamic game problems with

the terminal payoff function, the author proposes a method that systematically uses the

Fenchel–Moreau ideas as applied to the general scheme of the method of resolving functions.

The essence of the method is that the resolving function can be expressed in terms of the function

conjugate to payoff function and, using the involution of the conjugation operator for a convex

closed function, a guaranteed estimate of the terminal value of the payoff function is obtained, which

can be presented in terms of the payoff value at the initial instant of time and integral of the

resolving function. The concepts of upper and lower resolving functions of two types are introduced

and sufficient conditions for a guaranteed result in a differential game with a terminal payoff

function are obtained for the case where the Pontryagin condition does not hold. Two schemes of the

method of resolving functions are considered, the corresponding control strategies are generated,

and guaranteed times are compared. The results are illustrated by a model example.

Keywords: terminal payoff function, quasilinear differential game, multi-valued mapping,

measurable selector, stroboscopic strategy, resolving function.

INTRODUCTION

In the paper, we will consider the problem of approach of controlled objects in dynamic game problems with

terminal payoff function on the basis of the method of resolving functions [1]. We will introduce the concepts of upper

and lower resolving functions of two types and will obtain sufficient conditions for the guaranteed result in the

differential game with terminal payoff function in the case where the Pontryagin condition is not satisfied. We will

propose two schemes of the method of resolving functions, generate appropriate control strategies, and compare the

guaranteed times. The results will be illustrated by a modeling example.

The paper continues the studies from [1, 2], is related to the publications [3–22], extends the class of solvable

game problems of approach of controlled objects, and reveals new capabilities of applying convex analysis to the theory

of conflict-controlled processes.

THE GENERAL SCHEME OF THE METHOD.

RESOLVING FUNCTIONS OF THE FIRST TYPE

Let us consider a conflict-controlled process whose evolution can be described by the equality

z t g t t u d

t

( ) ( ) ( , ) ( ( ), ( ))� �

�
� � � � � � �

0

, t � 0 . (1)
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Here, z t R
n

( )� , function g t( ), g R R
n

:

�

� , is Lebesgue measurable [8] and is bounded for t 	 0, the matrix

function � ( , )t � , t � �� 0, is measurable with respect to t , and is summable with respect to � for each t R�
�

.

The control unit is specified by the function � �( , )u , � : U V R
n


 � , which is considered continuous in the set of

variables on the direct product of nonempty compact sets U and V ; m, l, and n are natural numbers.

Players’ controls u( )� , u R U:

�

� , and � �( ) , � : R V
�

� , are measurable functions of time. Along with the

process (1), an eigenfunction �( )z , � : R R
n

�

1

, is given, closed and bounded from below with respect to z and whose

values on the trajectories of process (1) determine the time of the game termination. If z t( ) , t � 0 , is the trajectory of the

system (1), then the game is considered terminated at time t
1

0	 if

�( ( ))z t
1

0� . (2)

The objectives of the first player u and of the second player � are opposite. The first player (we will call it pursuer)

tries to satisfy inequality (2) on the appropriate trajectory of process (1) in the shortest time, and the second player tries to

postpone as much as possible the time of satisfying this inequality or to avoid it.

Let us take the first player’s side and be guided by opponent’s choice of the control as an arbitrary measurable

function that takes values from V . We assume that if the game (1), (2) proceeds on the interval [ , ]0 T , then we choose

the control of the first player at time t based on the information about g T( ) and � t ( )� , i.e., in the form of a measurable

function

u t u g T t( ) ( ( ), ( ))� �� , t T�[ , ]0 , u t U( )� , (3)

where � �t s s t( ) { ( ) : [ , ]}� � � 0 is the previous history of control of the second player by the time t , or in the form of

countercontrol

u t u g T( ) ( ( ), ( ))� �� , t T�[ , ]0 , u t U( )� . (4)

If, in particular, g t e z
At

( ) �
0

, � ( , )

( )

t e
A t

�
�

�



, z z( )0

0

� and e
At

is its matrix exponent, then control

u t u z t( ) ( , ( ))� �
0

� is considered to implement a quasistrategy [6], and countercontrol [3] u t u z( ) ( , ( ))� �
0

� is

a manifestation of the Hajek stroboscopic strategy [7].

According to the definition of a conjugate function and taking into account the Fenchel–Moreau theorem [9],

we get

� � � �

�

�
( ) sup [( , ) ( )]z z

R
n

� 

�

,

where

� � � �
�
( ) sup [( , ) ( )]� 

�z R
n

z z . (5)

Function � �
�
( ) is a closed and convex eigenfunction [9]. The effective set of function � �

�
( ) has the form

dom � � � �
� �

� � � ��{ : ( ) }R
n

. Since the eigenfunction �( )z is bounded from below and due to the relation (5),

we obtain � �
�
( ) inf ( )0 � 

�z R
n

z ; therefore, 0�dom � *

.

Let L be the linear hull of set dom �
�
(intersection of all linear subspaces that contain set dom �

�
). Then it is a linear

subspace. Denote by � operator of orthogonal projection from R
n

onto L. The relation holds:

� � �( ) ( )z z� , z R
n

� .

Denote � �( , )U �{� �( , ) :u u U� } and consider the multi-valued mapping on set � 
V :

W t t U( , , ) ( , ) ( , )� � � � � �� co � ,

where coA is convexification of set A [9], � � � � � �{( , ): }t t� �0 .

Assume that mapping � � � �� ( , ) ( , )t U has closed values and that boundaries of sets W t( , , )� � and

� � � �� ( , ) ( , )t U coincide on the set � 
V . Taking into account the assumptions about the matrix function� ( , )t � , we can
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conclude that for any fixed t 	 0, vector function � � � �� ( , ) ( , )t u is L B� -measurable with respect to ( , ) [ , ]� � � 
0 t V

and continuous with respect to u U� . Therefore, for any fixed t 	 0, the multi-valued mappings � � � �� ( , ) ( , )t U and

W t( , , )� � have closed values and are L B� -measurable with respect to ( , ) [ , ]� � � 
0 t V [8].

Condition 1 (Pontryagin’s condition). Multi-valued mapping �

��

� � � �

V

t U� ( , ) ( , ) takes nonempty values on set � ,

where � � � � � �{( , ) : }t t� �0 .

In convex analysis [9], support functions C X x

x X

*

( , ) ( , )� ��

�

sup and C X x
x X

*

( , ) ( , )� ��

�

inf play the key role in

description of sets, where set X is an element of space R
n
. We will call functions C X x

x X

*

( , ) ( , )� ��

�

sup upper and

functions C X x
x X

*

( , ) ( , )� ��

�

inf lower support functions.

If set X is convex and closed, then there is a one-to-one correspondence between it and its upper and lower

support functions [9], and

X x x C X R x x C X R
n n

� � � � � � � �{ : ( , ) ( , ) } { : ( , ) ( , ) }

*

*

� � � � � � .

Remark 1. In [23], the concept of lexicographic minimum with respect to orthogonal basis e en1

� �� of the

compact set A K R
n

� ( ) is introduced by the formula

lex min

e e k

n

k

n

A A

1

0

� �
�

� �

�

,

where A A
0

� , A x A x e C Ak k k k� � �
 

{ }

1 1

: ( , ) ( , )

*

� , C Ak
*

( , )

1

� is the lower support function of set Ak1,

k n�1, ..., [24]. The set lex min

e en

A

1

� ��

consists of one point belonging to the set of extreme points of the convex hull

of set A [24]. Given the compact-valued L B� -measurable multi-valued mapping U ( , )� � and orthogonal basis such

that e
1

� �, � �R
m
, � � 0 , [24] the equality holds

lex min ( , ), ( ( , ), )

*

e en

U C U

1

� �

�

�

�

�

�

�

�

�

�

�

� � � � � � , � �[ , ]0 t , � �V , t 	 0 .

LEMMA 1 [24]. Let the multi-valued mapping U ( , )� � be compact-valued, L B� -measurable, and � �R
m
,

� � 0. Then there exists a L B� -measurable selector u( , )� � of the multi-valued mapping U ( , )� � such that

( ( , ), ) ( ( , ), )

*

u C U� � � � � �� , and which is a superpositionally measurable function [1], � �[ , ]0 t , t 	 0 , � �V .

Let 	 �( , )t , 	 :� � L , � � � � � �{( , ): }t t� �0 , be some almost everywhere bounded function, measurable with

respect to t and summable with respect to �, � �[ , ]0 T , for each t 	 0. Following [1], we will call it a shift function.

Condition 2. For some shift function 	 �( , )t , 	 :� � L, on the set � 
V the inequality holds

max

dom� �

� � 	 � �

�

 �

*

*

( ( , , ) ( , ), )C W t t 0.

Remark 2. Condition 2 is equivalent to the inclusion 0� co[ ( , , ) ( , )]W t t� � 	 � for all � �[ , ]0 t , � �V , which does

not guarantee that Condition 1 is satisfied. And if W t t U( , , ) ( , ) ( ,� � � � � �
� � , then Condition 2 guarantees that

Condition 1 is satisfied.

Let us fix some shift function 	 �( , )t and suppose that

� � 	 � 	 � �( ) ( , ( ), ( , )) ( ) ( , )t t g t t g t t d

t

� � � �

�

0

.

Consider the set

� � � � � � � �( ( ), ( , )) { : ( ( , ( ), ( , )) }g t t g t t	 � � 	0 0 .
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If the inequality in curly brackets holds for none t � 0, we suppose that � � � � ��( ( ), ( , ))g 	 .

THEOREM 1. Let for the conflict-controlled process (1), (2) with the terminal functional �( )z , which is a convex

closed eigenfunction bounded from below with respect to z, Condition 2 be satisfied and for the respective shift function

	 �( , )t the set � � � �( ( ), ( , ))g 	 be non-empty and ��� � � �( ( ), ( , ))g 	 . Then the game can be terminated at time � with the use

of control (4).

Proof. Let � �( ) be an arbitrary measurable selector of the compact setV , � � �[ , ]0 . Let us specify the method of

the choice of control by the the pursuer.

Let us consider the multi-valued mapping W ( , , ) ( , )�  �� � 	 � for � � �[ , ]0 , � �V . By virtue of Lemma 1 and

Condition 2, there exists a L B� -measurable selector u
0

( , )� � of the multi-valued mappingW ( , , ) ( , )�  �� � 	 � such that

for � ��dom

*

, � � 0, the inequality holds

( ( , ) ( , ), ) ( ( , , ) ( , ), )

*

u C W
0

0� � 	 � � � � 	 � � � � �  � � . (6)

Note that selector u
0

( , )� � is a superpositionally measurable function [1], � � �[ , ]0 , � �V . Let the control of the

first player be u u
0 0

( ) ( , ( ))� � � �� , � � �[ , ]0 .

Taking into account the equality � � �( ( )) ( ( ))z z� � � , formula (1), and definition of a conjugate function, we

obtain

� � � � � � � � � �

� �

( ( )) max ( , ( ) ( , ( , ) ( ( ), ( ))

*

z u� � � � � 

�dom

�
0

	 � � � �( , )) ( )
*

� 

�

�

 

 

!

"

#

#

�

�
d

0

. (7)

Then (6) and (7) determine the relation

� � � 	( ( )) ( ( , ( ), ( , )))z g� � � � � � � 0 ,

whence the inequality (2) follows at time �.

Remark 3. From Condition 1 it follows that there exists a measurable selector 	 �( , )t , 	 � �( , ) ( , )t W t� , for which

Condition 2 is satisfied and Theorem 1 is true.

Let us consider the multi-valued mapping

A ( , , ) : sup [ ( ( , , ) ( , ), ) [(

*

*

t C W t t� � � � � 	 � � � �

� �

� �  �

�

0

dom

, ( )) ( )]]
*� � �t  �

$

%

&

'

&

(

)

&

*

&

0 .

Condition 3. On the set � , the inequality holds

sup [ ( ( , , ) ( , ), ) ( , , )[(

*

*

� � �

� � 	 � � � � �

�
�

 �

V

C W t t tsup

dom

A , ( )) ( )]]
*� � �t  � 0 .

If Condition 3 is satisfied, the multi-valued mapping A ( , , )t � � is non-empty on set � 
V and generates the upper

and lower scalar resolving functions of the first type

� � � � � � �*

( , , ) : ( , , )t t� �sup { }A , � � � � � � �*

( , , )t t� �inf { : ( , , )}A , � �[ , ]0 t , � �V .

In [1] it is shown that multi-valued mapping A ( , , )t � � is closed-valued, L B� -measurable in the set of ( , )� � ,

� �[ , ]0 t , � �V , and the upper and lower resolving functions (being respectively the upper and lower support functions

of the multi-valued mapping A ( , , )t � � in the direction �1) are L B� -measurable in the set of ( , )� � , � �[ , ]0 t , � �V .

Therefore, they are superpositionally measurable [1], i.e., � � � �*

( , , ( ))t and � � � �
*

( , , ( ))t are measurable with respect to �,

� �[ , ]0 t , for any measurable function �( ) ( )� � �V , where V ( )� is the set of measurable functions � �( ), � � ��[ , ]0 , with

values from V . Note also that the upper resolving function is upper semicontinuous and the lower one is lower

semicontinuous with respect to the variable �, and functions inf ( , , )
*

�

� � �

�V

t and sup

�

�
� � �

�V

t( , , ) are measurable with

respect to �, � �[ , ]0 t .
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Let us consider the set

� � � � � � � �

$

%

&

'

&

*

( ( ), ( , )) : ( ( , ( ), ( , )))

1

0 0g t t g t t	 � � 	 , sup

�

� � � �

�

�
�

(

)

&

*

&
V

t

t d
*

( , , )

0

1 .

If the inequalities in curly brackets hold for none t � 0, then we assume � � � � ��

*

( ( ), ( , ))

1

g 	 .

THEOREM 2. Let for the conflict-controlled process (1), (2) with the terminal functional �( )z , which is a convex

closed eigenfunction bounded from below in z, Condition 3 be satisfied and for the respective shift function 	 �( , )t the set

� � � �

*

( ( ), ( , ))

1

g 	 be non-empty and � �� � � �

* *

( ( ), ( , ))

1 1

g 	 . Then the game can be terminated at time �

*

1

with the use

of control (4).

Proof. Let � �( ) be an arbitrary measurable selector of the compact setV , � � �[ , ]

*

0

1

. Let us specify a method to

choose the control by the pursuer.

By virtue of Condition 3 and Lemma 1, there exists a L B� -measurable selector of the u
*

( , )

1

� � multi-valued

mapping W ( , , ) ( , )

* *

�  �

1 1

� � 	 � such that for � ��dom
*

, � � 0, � �V , � � �[ , ]

*

0

1

the following relations hold:

( ( , ) ( , ), ) ( ( , , ) ( , ), )

* * * * *

u C W
1 1 1 1

� � 	 � � � � 	 � � � � �  � ,

sup

dom� �

� � 	 � � � � � � �

�

 � � �

*

[( ( , ) ( , ), ) ( , , )[( , (

* * * *

u
1 1 1

�  �

*

*

)) ( )]]

1

0� � .

(8)

Let the control of the first player have the form u u
* *

( ) ( , ( ))

1 1

� � � �� , � � �[ , ]

*

0

1

. Adding and subtracting in square

brackets of expression (7) [( , ( )) ( )] ( , , ( ))

*

*

* *

*

� � � � � � � � ��  �

�

�

1 1

0

1

d , we get

� � � � � � � �

� �

( ( )) max [( , ( )) ( )] ( , ,

* *

*

* *

*

z � � �   �

�

1 1 1

1

dom

( ))

*

� �

0

1

�

�

�

�

�

�

�

�

�

�

�

�

$

%

&

'

&

d

� �  �

�

�
[( , ( , ) ( ( ), ( )) ( , ))

* * *

*

� � � � � � � 	 � ��

1 1 1

0

1

u d

� � � 

(

)

&

*

&

� � � � � � � � �
* * *

*

( , , ( ))[( , ( )) ( )]]

1 1

d . (9)

In view of the relations (8) and (9), the pursuer can guarantee that at time �

*

1

the inequality holds

� � � 	 � � � �
�

( ( )) ( ( , ( ), ( , ))) ( , , ( )

* * * * *

z g� � � � � �  �

1 1 1 1 1

1 )

*

d�

0

1

�

�

�

�

�

�

�

�

�

�

�

�

.

By the definition of �

*

1

, we get � � 	( ( , ( ), ( , )))

* * *

� � � � �

1 1 1

0g and

1 1

1

0

1

0

1 1

 � �  �

�

�

�

� �
� � � � � � � � �

�

* * * *

( , , ( )) ( , , )

* *

d d

V

sup 	 0 .

Therefore,

� � � 	 � � � �
�

( ( )) ( ( , ( ), ( , ))) ( , , ( )

* * * * *

z g� � � � � �  �

1 1 1 1 1

1 )

*

d�

0

1

0

�

�

�

�

�

�

�

�

�

�

�

�

� ,

which completes the proof of the theorem.

824



Remark 4. If for some shift function 	 �( , )t , 	 :� � L, on set � 
V Condition 2 is satisfied, then 0�A ( , , )t � � ,

� � �[ , ]

*

0

1

, � �V . Therefore, Condition 3 is satisfied and � � � � � � �
*

( , , ) }t t� � �inf { : ( , , )A 0 on set � 
V .

Condition 4. On set � Condition 3 is satisfied and the inequality holds:

sup sup sup

dom

� � � �

� � 	 � � �

�
�

�

 �

V V

C W t t t
*

[ ( ( , , ) ( , ), ) ( ,

* *

� � � � � �, )[( , ( )) ( )]]
*t  � 0 .

Remark 5. If for some shift function 	 �( , )t , 	 :� � L, on set � 
V Condition 2 is satisfied, then Condition 4 is

true and sup

�

� � �

�

�

V

t
*

( , , ) 0 on set � .

Let us consider set

T g t t t d
V

t

V

( ( ), ( , )) : inf ( , , ) ,
*

*

	 � � � � �

�
�

� � � � �

�
�

�
0 1

0

sup ( , , )t d

t

� � �

0

1

�
�

$

%

&

'

&

(

)

&

*

&

. (10)

If for some t 	 0 � � �
*

( , , )t + �� for � �[ , ]0 t , � �V , then it is natural to suppose the value of the respective integral

in curly brackets in (10) to be equal to �� , and t T g t� � �( ( ), ( , ))	 if the second inequality in curly brackets in relation (10)

is true for this t. If both inequalities in (10) do not hold for all t 	 0 , put T g t( ( ), ( , ))	 � � ��.

THEOREM 3. Let for the conflict-controlled process (1), (2) with the terminal functional �( )z , which is

a convex closed eigenfunction bounded from below in z, Condition 4 be satisfied and for the respective shift function

	 ( , )� � set T g( ( ), ( , ))� � �	 be non-empty, and T T g� � � �( ( ), ( , ))	 . Then the game can be terminated at time T with the use

of control (3).

Proof. Let � �( ) be an arbitrary measurable selector of the compact set V , � �[ , ]0 T .

First, let us consider the case � � 	( ( , ( ), ( , )))T g T T � 	 0 and introduce the control function

h t T d T d

t

V
t

T

( ) ( , , ( )) ( , , )

*

*

�  

� �

�

1

0

� � � � � � � � �

�

sup , t T�[ , ]0 .

By the definition of T ,

h T d

V

T

( ) ( , , )

*

0 1 0

0

�  	

�

�
sup

�

� � � � ,

h T T d t d

T

V

T

( ) ( , , ( )) inf ( , , )
*

*

�  �  �

� �
�

1 1 0

0 0

� � � � � � � � �

�

.

Therefore, since the function h t( ) is continuous, there exists a time t
*

, t T
*

( , ]� 0 such that h t( )

*

� 0 . Note that

switching time t
*

depends on the previous history of control of the second player � �t s s t
*

( ) ( ) : [ , ]

*

� � �{ }0 .

We will call the time intervals [ , )

*

0 t , [ , ]

*

t T active and passive, respectively. Let us describe the method of

control for the first player on each interval.

By Condition 3 and Lemma 1, there exists a L B� -measurable selector u
1

*

( , )� � of the multi-valued mapping

W T T( , , ) ( , )� � 	 � such that for � ��dom

*

, � � 0 , � �V , � �[ , )

*

0 t the relations hold

( ( , ) ( , ), ) ( ( , , ) ( , ), )

*

*

u T C W T T
1

� � 	 � � � � 	 � � �  ,

sup

dom� �

� � 	 � � � � � � �

�

 � 

*

[( ( , ) ( , ), ) ( , , )[( , ( ))

*

*u T T T
1

� �*

( )]] � 0 . (11)

Let the first player’s control on the active time interval be u u
1 1

* *

( ) ( , ( ))� � � �� , � �[ , )

*

0 t .

By virtue of Condition 4 and Lemma 1, there exists a L B� -measurable selector u
*

( , )

1

� � of the multi-valued

mapping W T T( , , ) ( , )� � 	 � such that for � ��dom
*

, � � 0 , � �V , � �[ , ]

*

t T the relations hold:
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( ( , ) ( , ), ) ( ( , , ) ( , ), )

* *

u T C W T T
1

� � 	 � � � � 	 � � �  ,

sup sup

dom� � �

� � 	 � � � � � �

�
�

 �

*

[( ( , ) ( , ), ) ( , , )[( ,

* *

u T T

V

1

� � �( )) ( )]]
*t  � 0 . (12)

Let control of the first player on the passive time interval be u u
* *

( ) ( , ( ))

1 1

� � � �� , � �[ , ]

*

t T .

In view of the equality � � �( ( )) ( ( ))z T z T� , formula (1), and definition of a conjugate function, we obtain

� � � � � � � � � �

� �

( ( )) max ( , ( )) ( , ( , ) ( ( ), ( )

*

*

z T T T u� �

�dom

�
1

) ( , ))

*



�

�

 

 

�
	 � �T d

t

0

�  

!

"

#

#

�
( , ( , ) ( ( ), ( )) ( , )) ( )

*

*

*

� � � � � � � 	 � � � �� T u T d

t

T

1

. (13)

Adding and subtracting in square brackets of expression (13)

[( , ( )) ( )] ( , , ( )) ( , , )

*
*

*

*

� � � � � � � � � � � �

�

T T d T

t

V

 �

�

�

0

sup

t

T

d

*

�

�

�

 

 

!

"

#

#

�

yield

� � � � �

� �

( ( )) max [( , ( )) ( )] ( )

*

*

*

z T T h t� 

$

%

&

'

&

�dom

�  �[( , ( , ) ( ( ), ( )) ( , )) ( , , ( ))

* *

*

� � � � � � � 	 � � � � �� T u T T

t

1

0

�
[( , ( )) ( )]]

*

� � � � �T d

�  �

�

[( , ( , ) ( ( ), ( )) ( , )) ( , , )

* *

� � � � � � � 	 � � � �

�

� T u T T

V

1

sup

t

T

T d

*

[( , ( )) ( )]]
*

�


(

)

&

*

&

� � � � � .

From here, with regard for (11) and (12), it follows that the pursuer can guarantee that at time T the inequality holds:

� � � 	( ( )) ( ( , ( ), ( , ))) ( )

*

z T T g T T h t� � � 0 .

For the case � � 	( ( , ( ), ( , )))T g T T � � 0, it will suffice to apply Theorem 2 and thus to complete the proof of the theorem.

Condition 5. On the set �, Condition 3 is satisfied and the inequality holds:

sup sup inf

dom

� � �
�

� � 	 � � �

�
�

�

 �

V V

C W t t t
*

[ ( ( , , ) ( , ), ) ( ,

*

*

� � � � � �, )[( , ( )) ( )]]

*

t  � 0 .

THEOREM 4. Let for the conflict-controlled process (1), (2) with the terminal functional �( )z , which is a convex

closed eigenfunction bounded from below in z, Conditions 4 and 5 be satisfied and for the respective shift function 	 ( , )� � set

T g( ( ), ( , ))� � �	 be non-empty andT T g� � � �( ( ), ( , ))	 . Then the game can be terminated at timeT with the use of control (4).

Proof. Let � �( ) be an arbitrary measurable selector of the compact set V , � �[ , ]0 T .

First, let us consider the case � � 	( ( , ( ), ( , )))T g T T � 	 0 and introduce the control function

h t T d T d
V

t

V
t

T

( ) ( , , ) ( , , )
*

*

�  

�
�

� �
1

0

inf sup

�
�

� � � � � � � �, t T�[ , ]0 .

By the definition of T ,

h T d

V

T

( ) ( , , )

*

0 1 0

0

�  	

�

�
sup

�

� � � � , h T T d
V

T

( ) inf ( , , )
*

�  �

�

�
1 0

0

�

� � � � .
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Since the function h t( ) is continuous, there exists an instant of time t
*

, t T
*

( , ]� 0 , such that h t( )

*

� 0 . Note that

switching time t
*

does not depend on the previous history of control of the second player � �t s s t
*

( ) ( ): [ , ]

*

� � �{ }0 .

We will call the time intervals [ , )

*

0 t , [ , ]

*

t T active and passive, respectively. Let us describe the method of

control for the first player on each time interval.

By virtue of Condition 5 and Lemma 1, there exists a L B� -measurable selector

~

( , )

*

u
1

� � of the multi-valued

mapping W T T( , , ) ( , )� � 	 � such that for � ��dom
*

, � � 0 , � �V , � �[ , )

*

0 t the relations hold:

(

~

( , ) ( , ), ) ( ( , , ) ( , ), )

*

*

u T C W T T
1

� � 	 � � � � 	 � � �  ,

sup inf

dom� �
�

� � 	 � � � � � �

�

�

 �

*

[(

~

( , ) ( , ), ) ( , , )[(

*

*u T T
V

1

, ( )) ( )]]
*� � �T  � 0 . (14)

Let control of the first player on the active time interval be

~

( )

~

( , ( ))

* *

u u
1 1

� � � �� , � �[ , )

*

0 t .

In view of Condition 4 and Lemma 1, there exists a L B� -measurable selector

~

( , )

*

u
1

� � of the multi-valued

mapping W T T( , , ) ( , )� � 	 � such that for � ��dom

*

, � � 0 , � �V , � �[ , ]

*

t T the relations hold:

(

~

( , ) ( , ), ) ( ( , , ) ( , ), )

*
*

u T C W T T
1

� � 	 � � � � 	 � � �  ,

sup sup

dom� � �

� � 	 � � � � � �

�
�

 �

*

[(

~

( , ) ( , ), ) ( , , )[(

* *

u T T

V

1

, ( )) ( )]]
*� � �T  � 0 . (15)

Let the control of the first player on the passive time interval be

~

( )

~

( , ( ))

* *

u u
1 1

� � � �� , � �[ , ]

*

t T .

In view of the equality � � �( ( )) ( ( ))z T z T� , formula (1), and definition of a conjugate function, we obtain

� � � � � � � � � �

� �

( ( )) max ( , ( )) ( , ( , ) (

~

( ), (

*

*

z T T T u� �

�dom

�
1

)) ( , ))

*



�

�

 

 

�
	 � �T d

t

0

�  

!

"

#

#

�
( , ( , ) (

~

( ), ( )) ( , )) ( )

*

*

*

� � � � � � � 	 � � � �� T u T d

t

T

1

. (16)

Adding and subtracting in square brackets of (16)

[( , ( )) ( )] ( , , ) ( ,
* *

*

*

� � � � � � � � � �

�
�

T T d T
V

t

V

 �

�
�

�
inf sup

0

, )

*

� �

t

T

d
�

�

�

 

 

!

"

#

#

yield

� � � � �

� �

( ( )) max [( , ( )) ( )] ( )

*

*

*

z T T h t� 

$

%

&

'

&
�dom

�  �

�

[( , ( , ) (

~

( ), ( )) ( , )) ( , ,

*

*� � � � � � � 	 � � � �

�

� T u T T
V

1

inf )[( , ( )) ( )]]

*

*

0

t

T d
�

� � � � �

�  �

�

[( , ( , ) (

~

( ), ( )) ( , )) ( , ,

* *

� � � � � � � 	 � � � �

�

� T u T T

V

1

sup )[( , ( )) ( )]]

*

*

t

T

T d
�



(

)

&

*

&

� � � � � .

Whence, with regard for (14) and (15), it follows that the pursuer can guarantee that at time T the inequality holds:

� � � 	( ( )) ( ( , ( ), ( , ))) ( )

*

z T T g T T h t� � � 0 .

For the case � � 	( ( , ( ), ( , )))T g T T � � 0, it will suffice to apply Theorem 2 and thus to complete the proof of the theorem.
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MODIFICATION OF THE METHOD. RESOLVING FUNCTIONS

OF THE SECOND TYPE

Let us consider the multi-valued mapping

A A( , ) ( , , )t t
V

� � �

�

� �

�

, ( , )t � �� .

Condition 6. On the set � , the inequality holds:

sup sup

dom

� � �

� � 	 � � � � �

�
�

 �

V

C W t t t

*

[ ( ( , , ) ( , ), ) ( , )[( ,

*

A ( )) ( )]]
*t  �� � 0 .

If Condition 6 is satisfied, then the multi-valued mapping A ( , )t � is non-empty on the set � and generates the

upper and lower scalar resolving functions of the second type

� � � � �
*

( , ) : ( , )t t� �sup{ }A , � � � � �
*

( , )t t� �inf { : ( , )}A , � �[ , ]0 t , � �V .

As is shown in [1], the multi-valued mapping A ( , )t � is closed-valued, L-measurable in �, � �[ , ]0 t , � �V , and the

upper and lower resolving functions (being respectively the upper and lower support functions of the multi-valued

mapping A ( , )t � in the direction �1) are L-measurable in �, � �[ , ]0 t .

Remark 6. If for some shift function 	 �( , )t on the set � Condition 4 is satisfied, then sup

�

� � � �

�

�

V

t t
*

( , , ) ( , )A ,

� �[ , ]0 t . Then Condition 6 is satisfied and the equality holds: sup

�

�
� � � � �

�

�

V

t t
*

( , , ) ( , ) , � �[ , ]0 t . If for some shift

function 	 �( , )t on the set � Condition 5 is satisfied, then inf

�

� � � �

�

�

V

t t*

( , , ) ( , )A , � �[ , ]0 t . Then Condition 6 is

satisfied and the equality holds: inf

�

� � � � �

�

�

V

t t* *

( , , ) ( , ), � �[ , ]0 t .

Let us consider the set

� � � � � � � �

* *

( ( ), ( , )) : ( ( , ( ), ( , ))) , ( , )

2

0 0g t t g t t t	 � � 	 � �

0

1

t

d
�

�

$

%

&

'

&

(

)

&

*

&

� .

If the inequalities in curly brackets hold for none t � 0 , then we suppose that � � � � ��

*

( ( ), ( , ))

2

g 	 .

THEOREM 5. Let for the conflict-controlled process (1), (2) with the terminal functional �( )z , which is

a convex closed eigenfunction bounded from below in z, Condition 6 be satisfied and for the respective shift function

	 �( , )t set � � � �

*

( ( ), ( , ))

2

g 	 be non-empty and � �� � � �

* *

( ( ), ( , ))

2 2

g 	 . Then the game can be terminated at time �

*

2

with the

use of control (4).

Proof. Let � �( ) be an arbitrary measurable selector of the compact set V , � � �[ , ]

*

0

1

. Let us specify the method of

choosing the control by the pursuer.

In view of Condition 6 and Lemma 1, there exists a L B� -measurable selector u
*

( , )

2

� � of the multi-valued

mapping W ( , , ) ( , )

* *

�  �

2 2

� � 	 � such that for � ��dom
*

, � � 0 , � �V , � � �[ , ]

*

0

2

the relations hold:

( ( , ) ( , ), ) ( ( , , ) ( , ), )

* * * * *

u C W
2 2 2 2

� � 	 � � � � 	 � � � � �  � ,

sup

dom� �

� � 	 � � � � � �

�

 � � � �

*

[( ( , ) ( , ), ) ( , )[( , (

* * * * *

u
2 2 2 2

0)) ( )]]
*

 �� � . (17)
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Let the control of the first player be u u
* *

( ) ( , ( ))

2 2

� � � �� , � � �[ , ]

*

0

2

. Adding and subtracting in square brackets

of (17) [( , ( )) ( )] ( , )

*

*

* *

*

� � � � � � ��  �

�

�

2 2

0

2

d yield

� � � � � � �

� �

( ( )) max [( , ( )) ( )] ( , )

* *

*

* *

*

z d� � �   �

�

2 2 2

1

dom

�

0

2

�

�

�

�

�

�

�

�

�

�

�

�

$

%

&

'

&

*

� �  � � �

�

[( , ( , ) ( ( ), ( )) ( , )) ( , )

* * * * *

� � � � � � � 	 � � ��

2 2 2 2

0

u

*

[( , ( )) ( )]]

*

*

2

2

�
� 

(

)

&

*

&

� � � � �d . (18)

By virtue of (17) and (18), the pursuer can guarantee that at time �

*

2

the inequality holds:

� � � 	 � � �( ( )) ( ( , ( ), ( , ))) ( , )

* * * * * *

z g d� � � � � �  �

�

2 2 2 2 2

0

1

*

2

�

�

�

�

�

�

�

�

�

�

�

.

By the definition of �

*

2

, we get � � 	( ( , ( ), ( , )))

* * *

� � � � �

2 2 2

0g and

1 0

2

0

2

 � 	

�

�
� � �
* *

( , )

*

d .

Thus,

� � � 	 � � �( ( )) ( ( , ( ), ( , ))) ( , )

* * * *

*

*

z g d� � � � � �  �

�

2 2 2 2 1

0

1

*

2

0

�

�

�

�

�

�

�

�

�

�

�

� ,

which completes the proof of the theorem.

Remark 7. If for some shift function 	 �( , )t , 	 :� � L, on the set � 
V Condition 2 is satisfied, then 0�A ( , )t � ,

� �[ , ]0 t . Therefore, conditions 4 and 6 are satisfied and on the set � the equality holds: sup

�

� � �

�

�

V

t
*

( , , ) � �
*

( , )t � 0 .

Let us consider the set

,( ( ), ( , )) : ( , ) , ( , )

*

*

g t t t d t d

t t

	 � � � � � �� � � � � �

$

%
� �

0 1 1

0 0

&

'

&

(

)

&

*

&

. (19)

If for some t 	 0 we get � �
*

( , )t + �� for � �[ , ]0 t , � �V , then it is natural to suppose the value of the respective

integral in curly brackets in (19) to be equal to �� , and t T g t� � �( ( ), ( , ))	 , if for this t the second inequality in curly

brackets in (19) is true. If the inequalities in (19) do not hold for all t 	 0 , suppose ,( ( ), ( , ))g t 	 � � �� .

THEOREM 6. Let for the conflict-controlled process (1), (2) with the terminal functional �( )z , which is

a convex closed eigenfucntion bounded from below in z, Condition 3 be satisfied and for the respective shift function

	 ( , )� � the set ,( ( ), ( , ))g � � �	 be non-empty, and , ,� � � �( ( ), ( , ))g 	 . Then the game can be terminated at time ,with the use

of control (4).

Proof. Let � �( ) be an arbitrary measurable selector of the compact set V , � �[ , ]0 , .

First, let us consider the case � � 	( ( , ( ), ( , ))), , ,g � 	 0 and introduce the control function

h t d d

t

t

T

( ) ( , ) ( , )

*

*

�  

� �
1

0

� � � � � �, , , t �[ , ]0 , .

By the definition of ,, we get

h d( ) ( , )

*

0 1 0

0

�  	

�
� � �,

,

, h d( ) ( , )

*

, ,

,

�  �

�
1 0

0

� � � .
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Since the function h t( ) is continuous, there exists an instant of time t
*

, t T
*

( , ]� 0 such that h t( )

*

� 0 . Note that

the switching moment t
*

does not depend on the previous history of second player’s control � �t s s t
*

( ) ( ) : [ , ]

*

� � �{ }0 .

We will call the time intervals [ , )

*

0 t and [ , ]

*

t , active and passive, respectively. Let us describe the method of

control for the first player on each time interval.

By virtue of Condition 6 and Lemma 1, there exists a L B� -measurable selector

~

( , )

*

u
2

� � of the multi-valued

mapping W ( , , ) ( , ), ,� � 	 � such that for � ��dom

*

, � � 0 , � �V , � �[ , )

*

0 t the relations hold:

(

~

( , ) ( , ), ) ( ( , , ) ( , ), )

*

*

u C W
2

� � 	 � � � � 	 � � � , , , ,

sup

dom� �

� � 	 � � � � � � �

�

 � 

*

[(

~

( , ) ( , ), ) ( , )[( , ( ))

*

*u
2

, , ,
*

( )]]� � 0 . (20)

Let the control of the first player on the active time interval be

~

( )

~

( , ( ))

* *

u u
2 2

� � � �� , � �[ , )

*

0 t .

In view of Condition 6 and Lemma 1, there exists a L B� -measurable selector

~

( , )

*

u
2

� � of the multi-valued

mapping W ( , , ) ( , ), ,� � 	 � such that for � ��dom
*

, � � 0 , � �V , � �[ , ]

*

t , the relations hold:

(

~

( , ) ( , ), ) ( ( , , ) ( , ), )

*

*

u C W
2

� � 	 � � � � 	 � � � , , , ,

sup

dom� �

� � 	 � � � � � � �

�

 � 

*

[(

~

( , ) ( , ), ) ( , )[( , ( ))

* *

u
2

, , ,
*

( )]]� � 0 . (21)

Let the first player’s control on the passive time interval be

~

( )

~

( , ( ))

* *

u u
2 2

� � � �� , � �[ , ]

*

t , .

With regard for the equality � � �( ( )) ( ( ))z z, ,� , formula (1), and definition of a conjugate function, we obtain

� � � � � � � � � �

� �

( ( )) max ( , ( )) ( , ( , ) (

~

( ), (

*

*

z u, , � ,� �

�dom

2

)) ( , ))

*



�

�

 

 

�
	 � �, d

t

0

�  

!

"

#

#

�
( , ( , ) (

~

( ), ( )) ( , )) ( )

*

*

*

� � � � � � � 	 � � � �� , ,

,

u d

t

2

. (22)

Adding and subtracting in square brackets in (22)

[( , ( )) ( )] ( , ) ( , )

* *

*

*

*

� � � � � � � � � �, , ,

,

 �

�

�

 

 

!

"

#

� �

0

t

t

d d

#

yield

� � � � �

� �

( ( )) max [( , ( )) ( )] ( )

*

*

*

z h t, ,� 

$

%

&

'

&
�dom

�  �

�
[( , ( , ) (

~

( ), ( )) ( , )) ( , )[(

* *

*

� � � � � � � 	 � � � �� , , ,u

t

2

0

, ( )) ( )]]

*

� � � �,  d

�  �

�
[( , ( , ) (

~

( ), ( )) ( , )) ( , )[(

* *

*

� � � � � � � 	 � � � �� , , ,

,

u

t

2

, ( )) ( )]]

*

� � � �, 

(

)

&

*

&

d ,

whence with regard for (20) and (21) it follows that the pursuer can guarantee that at time , the inequality holds:

� � � 	( ( )) ( ( , ( ), ( , ))) ( )

*

z g h t, , , ,� � � 0 .

For the case � � 	( ( , ( ), ( , ))), , ,g � � 0, it will suffice to apply Theorem 2 and thus to complete the proof of the theorem.
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COMPARING THE GUARANTEED TIMES

LEMMA 2. Let for the conflict-controlled process (1), (2) with the terminal functional �( )z , which is a convex

closed eigenfunction bounded from below in z, and for some shift function 	 ( , )t � Condition 6 be satisfied, and

� � 	( ( , ( ), ( , )))t g t t � 	 0. Then the inequalities hold:

sup

�

� � � � �

�

�

V

t t
* *

( , , ) ( , ) , ( , )t � ��, (23)

inf

�

� � � � �

�

�

V

t t
* *

( , , ) ( , ) , ( , )t � ��. (24)

If Condition 4 is also satisfied, then inequality (23) is transformed to the equality. If Condition 5 is satisfied,

then inequality (24) becomes the equality. If the multi-valued mapping A ( , , )t � � takes convex values on set � 
V ,

then Conditions 4 and 5 are satisfied and the equality takes place in relations (23) and (24).

THEOREM 7. Let for the conflict-controlled process (1), (2) with the terminal functional �( )z , which is a convex

closed eigenfunction bounded from below in z, for some shift function 	 ( , )� � Condition 6 be satisfied. Then the inclusions

takes place:

T g g g( ( ), ( , )) ( ( ), ( , )) ( ( ), ( , ))

* *

� � � - � � � - � � � � - �	 	 	,

2 1

( ( ), ( , )) ( ( ), ( , ))g g� � � - � � � �	 	 .

If Conditions 4 and 5 are also satisfied or if the multi-valued mapping A ( , , )t � � takes convex values on set � 
V ,

then the equalities are true:

T g g( ( ), ( , )) ( ( ), ( , ))� � � � � � �	 	, , � � � � � � � � �

* *

( ( ), ( , )) ( ( ), ( , ))

2 1

g g	 	 .

If Condition 2 is satisfied, then

� � � � � � � � � � � � � �

* *

( ( ), ( , )) ( ( ), ( , )) ( ( ), ( , ))

2 1

g g g	 	 	 ,

and if Condition 1 is satisfied, some Pontryagin selector can be chosen as 	 ( , )� � [2].

The proof of Lemma 2 and Theorem 7 immediately follows from the structures of the respective definitions,

remarks, and theorems.

THEOREM 8. Let for the conflict-controlled process (1), (2) with the terminal functional �( )z , which is a convex

closed eigenfunction bounded from below in z, Condition 3 be satisfied and for the respective shift function 	 ( , )� � set

T g( ( ), ( , ))� � �	 be non-empty, T T g� � � �( ( ), ( , ))	 and the multi-valued mapping A ( , , )T � � take convex values for all

( , )� � , � �[ , ]0 T , � �V . Then the game can be terminated at time T with the use of control (4).

The proof immediately follows from Lemma 2 and Theorems 6 and 7.

ILLUSTRATIVE EXAMPLE

Let us consider a simple motion �z u�  � , z R
n

� , z z( )0

0

� , � �S , u aS�

0

, a 	1, where S is a unit full-sphere

with the center at zero, S
0

is its boundary.

Let us choose the shift function 	 �( , )t + 0. Since � ( , )t E� � , E is a unit matrix, L R
n

� and � � E , we get

�( )t z�
0

. Suppose � �  �*

( ) || ||� , � �R
n
, � �  �

�

( ) max [( , ) || || ]

|| ||

z z� 

�1

.

The Pontryagin condition is not satisfied since aS S
0

*

��,

*

is the Minkowsky geometrical difference [22].

Then the multi-valued mapping A ( , , )t � � does not depend on t , � and has the form

A A( , , ) ( , ) : max [ ( , ) [( ,

|| ||

*

t z C aS z� � � � � � �

�

� � �  �

�

0

1

0

0

0 �  �) || || ]] �

$

%

'

(

)

*

0 .
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This set possesses nonempty images and therefore the inequality holds:

max max [ || || ( , ) ( , )[( , ) ||

|| ||� �

� � � � �  �

� �

  � 

S

a z z
1

0 0

A || ]] � 0 .

Thus, Condition 3 is satisfied.

The upper resolving function can be found from the relation

� � � � � � � � �

�

* *

|| ||

( , , ) ( , ) : max [ || || ( ,t z a� � �  

�

0

1

0sup{ ) [( , ) || || ]] }�  �� �  �z
0

0

� 	  � �sup{� � � �0

0

: || || [ ]}z a .

From here it follows that it is the larger positive root of the quadratic equation

( || || ) [( , ) ] ( || || )z z a a
0

2 2 2

0

2 2

2 0  �   � � �  � � .

Thus, the formula is true:

� �*

( , )z
0

�

( , ) [( , ) ] ( || || )( || || )

||

�  �   �z a z a z a

z

0 0

2

0

2 2 2 2

0

� � � �  

||

2 2

 

.

Here, min ( , )

|| ||

*

�

� �

�

�



S

z
a

z
0

0

1

is attained for � � 

z

z

0

0

|| ||

.

The lower resolving function can be found from the relation

� � � � � � � � �

�
* *

|| ||

( , , ) ( , ) : max [ || || ( ,t z a� � �  

�

0

1

0inf { ) [( , ) || || ]] }�  �� �  �z
0

0

� �     

�

sup{� � � � � �  �

�

0

1

0

: max [ || || ( , ) [( , ) || ||

|| ||

a z ]] }� 0

� �  � sup {� � � �0

0

: || || [ ]}z a .

Therefore, it is the larger positive root of the quadratic equation

( || || ) [( , ) ] ( || || )z z a a
0

2 2 2

0

2 2

2 0     � � �  � � .

Hence, we obtain

� �

�  �  

*

( , )

( , ) [( , ) ] ( || || )( ||

z
z a z a z a

0

0 0

2

0

2 2 2

�

 �  �   �



|| )

|| ||

2

0

2 2

z 

.

Here, max ( , )

|| ||

*

�

� �

�

�

�

�S

z
a

z
0

0

1

is attained for � �

z

z

0

0

|| ||

.

Let us test Condition 4. By virtue of the construction of the upper and lower resolving functions, the condition

should be satisfied: min ( , ) max ( , )

*

*

� �

� � � �

� �

�

S S

z z
0 0

, which leads to the inequality

[ ]

|| ||

[ || || ]a
a

z
z �

�

�

1

1

0

0



 . (25)

The relations hold:

max max [ || || ( , ) max ( , )[( ,

|| ||

*

� � �

� � � � �

� � �

 � �

S S

a z z
1

0 0

�  �) || || ]]

�   � 

� �

max [ [ ] || || max ( , )[( , ) ||

|| ||

*

� �

� � � �  �

1

0 0

1a z z
S

|| ]] �   �

�

�

 �[ ]

|| ||

[ || || ]a
a

z
z1

1

0

0

0



 .
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Then by virtue of inequality (25) Condition 4 is satisfied.

Let us test Condition 5. The relations hold:

max max [ || || ( , ) ( , )[( ,

|| ||

*

� � �

� � � � �

� � �

 � �

S S

a z z
1

0 0

inf �  �) || || ]]

�   � 

� �

max [ [ ] || || ( , )[( , ) ||

|| ||

*

� �

� � � �  �

1

0 0

1a z z
S

inf || ]]

�   �





 �[ ]

|| ||

[ || || ]a
a

z
z1

1

0

0

0



 .

Therefore, Condition 5 is true.

In this example, we get

min ( , )

|| ||

*

�

� � �

�

�
�





�

V

T

z d
a

z
T

0

0

0

1

1, T T z
z

a
� �





( )

|| ||

0

0

1



.

If the game parameters satisfy the condition

1

1

0

	 	



|| ||z a
, a 	1,

then the inequality is true:

max ( , )

|| ||

( )

( || || )

( |

*

�

� � �

 �

�
�

�

�

�

�

�V

T

z d
a

z
T

a

z
0

0

0 0

1 1 | || )

( )

z

a

0

1

1





�



.

Hence, for the example under study, all the conditions of Theorems 3 and 4 are satisfied. By virtue of Lemma 2

and Remark 6, the conditions of Theorem 6 are true for the example.

CONCLUSIONS

In the paper, we have considered quasilinear conflict-controlled processes of general form, with terminal payoff

function. We have formulated sufficient conditions of game termination in a finite guaranteed time in the case where the

Pontryagin condition is not satisfied. We have proposed two schemes of the method of resolving functions that ensure

termination of the conflict-controlled process with terminal payoff function in the class of quasistrategies and

countercontrols and have compared the guaranteed times. We have provided an illustrative example of approach of

controlled objects with a simple motion in order to obtain the upper and lower resolving functions in explicit form, which

allow us to make a conculsions if the game can be terminated when the Pontryagin condition does not hold.
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