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MULTISTAGE APPROACH TO SOLVING

THE OPTIMIZATION PROBLEM OF PACKING

NONCONVEX POLYHEDRA
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and A. M. Chugay
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Abstract. The paper considers the problem of packing nonconvex polyhedra into a container

of minimum volume. An exact mathematical model of the problem of packing nonconvex polyhedra

with continuous translations and rotations is constructed. Characteristics of the mathematical model

are analyzed and are used as the basis to develop a multistage solution approach to obtain a nearly

optimal solution, which is not the global minimum but is a proved local minimum. Numerical

examples are given.
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INTRODUCTION

Optimization problems of packing 3D objects are a part of the operations research theory and have a wide range of

practical applications, for example, to solve modern problems in biology, mineralogy, medicine, materials science,

nanotechnology, robotics, pattern recognition, 3D printing.

Solving such problems is important since they allow replacing full-scale expensive experiments with computer

modeling of real processes and structures of materials. This saves significant time and financial resources.

For example, three-dimensional modeling of microstructures of different materials (including nanomaterials) is

an innovative application of the problem of allocation of polyhedra. Recent achievements in this field are related to the

development of a computer technology of 3D tomographic analysis of mineral particles [1]. The paper [2] describes

application of the problem of packing polyhedra in powder metallurgy. The same problems are used for efficient solution

of the problem of hazardous waste utilization and automation of crucible packing in production of semiconductor plates.

Problems of packing 3D objects are NP-hard, and various heuristics are usually used to solve such problems.

The well-known approaches to solution of three-dimensional packing problems can be divided into the following groups:

— heuristic methods (heuristics based on relaxation of information about the form of objects [3]; genetic algorithms [4];

algorithms based on the idea of simulated annealing [5]; ant algorithms [6]; algorithms that use advanced pattern search [7]);

— traditional methods of linear and nonlinear programming [8];

— ñombined approaches that use heuristics and mathematical programming methods [9].

In the majority of studies devoted to allocation of three-dimensional bodies, their continuous rotations are

impossible. For example, the paper [10] only uses translation transformation. The paper [11] considers orthogonal

rotations of objects. The study [12] proposes the HAPE3D algorithm, which enables rotations of polyhedra around each

coordinate axis discretely by angles multiple of 45�.

Since problems of packing three-dimensional bodies that allow continuous rotations along with continuous

translations are the least investigated, there is a need to develop a methodology for mathematical and computer modeling

of optimization of packing of such three-dimensional objects.
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PROBLEM STATEMENT
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m n� �6 6. In what follows, we will denote by P ui i( ) the polyhedron Pi translated by vector � i and rotated by angles

� �i i, , and 	 i and denote by �
�

( )u container � with variable dimensions defined by the vector u
�
.

Let Vir
, r J i i� � { }1 2, , ,� 
 , be a vertex of the convex hull Pi . Thus, V u R Vi i i
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i ir r
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ikt i( ) � � � , i j I, � , k Ki� , t Tik� , where Ri is rotation operator.

Problem. Find a vector u R
m

� that ensures disjoint allocation P ui i( ), i I� , in the container �
�

( )u so as to

minimize the volume H u( )

�
.

THE MATHEMATICAL MODEL AND ITS PROPERTIES

With the use of the method of �-functions [13], we can present the mathematical model of the problem as follows:
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Also, the inequality �ij i ju u( , ) 
 0 ensures non-intersection of Pi ³ Pj and the inequality �i i ju u( , ) 
 0 ensures

finding Pi in �
�

( )u , i.e., �
�i iu u( , ) is an �-function Pi and B u R u( ) \ int ( )

� �
��

3

. Noteworthy is that �ij i ju u( , )

� � �min ( , ), ,{ }�
ij

sp

i j i ju u s K p K , where �
ij

sp

i ju u( , ) is the �-function for a pair of convex polyhedra [14].

Let us consider some important features of the mathematical model (1), (2) that influence the development of the

problem solution methodology.

1. The domain W of feasible solutions of the problem in the general case is a non-connected set, and each its

connected component is multiply connected and has a “ravine” nature.

2. The inequality �i X( ) 
 0 is a system of continuous differentiable functions.

3. Since each function �ij X( ) is a system of maximin functions, the domain of feasible solutions can be

presented as a union of subdomains, i.e., W Wq

q

�

�1

�

�

, where each subdomain Wq is determined by the system of

260



inequalities with continuously differentiable functions. Thus, problem (1), (2) can be reduced to a sequence of problems

F X F X q
q

( ) ( ), , , ,

	 	

� �extr { }1 2 � � , where F X F X
q

X Wq

( ) ( )

	

�

� extr .

4. Each subproblem F X F X q
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( ) ( ), , , ,

*

� �

	

extr { }1 2 � � is a milti-extremum nonlinear programming problem.

5. Problem (1), (2) belongs to the class of NP-hard probems.

GENERAL STRATEGY OF THE MULTISTAGE APPROACH

To reduce large computing and time costs, let us decompose the problem solution into the preparatory stage and

multiple-run stage.

At the preparatory stage, a number of nonlinear programming auxiliary problems are implemented, which allow to

obtain data for the construction of the initial points of the main problem (1), (2). At the stage of multiple run, different initial

feasible points are constructed and local minima corresponding to them are found. To solve these problems, a strategy based

on homothetic transformations and construction of promising points is used [15, 16].

The best local minimum obtained as a result of the multiple-run phase is chosen as an approximation to the global

minimum of the problem.

CONSTRUCTING A FEASIBLE INITIAL POINT

To construct a feasible initial point for the problem (1), (2), we propose a clustering method that has the following

algorithm.

The given polyhedra are packed pairwise in cuboids (clusters) of minimum volume. The obtained set of clusters is

used to form a subset of clusters that covers the set of given polyhedra, based on the criterion of the maximum coefficient

of cluster filling by polyhedra. Then the problem of packing of the generated subset of clusters into a cuboid of minimum

volume is solved and polyhedra allocation parameters are determined for each polyhedron, according to allocation of

clusters (Fig. 1). To calculate the angles of rotation of each polyhedron, a nonlinear programming problem is solved.

Let us consider the proposed approach in more detail. Let the set of polyhedra Pi , i I n� , consist of k groups, each

containing lk identical polyhedra. At the first stage, each nonconvex polyhedron Pi and each its convex component are

covered with balls S i of minimum radius ri
*

and balls S ik of minimum radius rik
*

, i I k Kn i� �, . To this end, the nonlinear

programming problems are solved:
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The result of solution of problems (3), (4) is the set � of clusters that consists of C nn

2

� parallelepipeds.

At the third stage, from the obtained set of � clusters, it is required to separate (by the criterion of maximum

occupation coefficient) a subset of

~

K clusters, where it is possible to allocate all the polyhedra Pi , i I n� .

Thus, each clusterQi contains a pair of polyhedra Pki
and Pti

with allocation parameters u
k

Q

i

and u
t

Q

i

with respect

to its local coordinate system Qi .

Then we solve the problem of packing of the generated subset of clustersQi , i M� , into a cuboid � of minimum

volume. On the basis of Eqs. (1), (2), let us write the mathematical model of the problem as follows:
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initial point ( , )u u W
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�
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Fig. 1. Constructing the initial point by the clustering method: (a) given forms

of polyhedra; (b) clusters selected by the criterion of maximum filling factor;

(c) the result of packing the generated subset of clusters; (d) feasible initial

point, which corresponds to the arrangement of clusters.

a b
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LOCAL OPTIMIZATION

Note that the domain of feasible solutions of problem (1), (2) can be described by a large number of nonlinear

inequalities [17]. This requires methods to be developed that would efficiently solve the problem of high dimension.

The idea of the local optimization method is based on decomposition of the main problem into subproblems of smaller

dimension and with a significantly smaller number of constraints. To this end, the following steps are distinguished:

sequential generation of subdomains for domains of feasible solutions that contain the initial point; determining the

subsystem of �-active constraints; finding local extrema on the selected subdomains using modern solvers of nonlinear

programming problems of second order; organizing transition to other subdomains. Let us consider the developed

methods in more detail.

Internal Point Method with the Decomposition Strategy. Let point X W
�

� be an initial point. Search for

a local extremum begins with selecting a subdomain W
0
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Reducing the Number of Constraints. Systems of inequalities �
�
( )X 
 0 that define subdomains W� ,

� ��{ }0, ,� , also comprise a large number of inequalities. It is obvious that the number of constraints need to be

significantly reduced for efficient solution of packing problems. To this end, the paper proposes a special decomposition
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method, which reduces problem (1), (2) to a sequence of optimization subproblems. For each such subproblem, an

additional system of constraints for variables is introduced, which allows, at each stage of searching for local extremum,

to consider only some constraints from the entire system �
�
( )X 
 0. An advantage of this approach is that it

substantially reduces the number of constraints that define feasible domains of subproblems.

Let us consider the decomposition method in more detail. First of all, we specify � � 0 and among the inequalities

�ij i ju u( , ) 
 0, i j I� � , and �
�i iu u( , ) 
 0 separate the inequalities �ij i ju u( , ) 
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Then we generate a new system of inequalities �
�1

0( )X 
 for the point X
�0	

. With regard for this point, we

generate point X W
�

�
1

1

� as initial one and solve the problem F u F u
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( ) min ( )

�
�

�

�

�

1

1

1

	

� 


� . Thus, the sequence of
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( ) ( )
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is satisfied.

It can be easily seen that the less �, the less the number of inequalities that defineW k� and the more k subproblems

need to be solved to find a local minimum point. On the other hand, the greater the �, the more inequalities are contained

in the system that defines W k� , and the more time is required to solve the subproblems. As numerical experiments

showed, the values of � can be chosen equal to the average radius of balls that cover the polyhedra.

Note that search for a local minimum of problem (1), (2) can be divided into two stages: optimization with

a system of linear constraints and nonlinear programming. Optimization stage can be implemented by fixing the rotation

angles � i

0

� const of the polyhedra Pi , i I n� , at the initial point ( , )u u W
0 0

�

� . Fixation of the rotation angles allows

significant reduction of the dimension of problem (1), (2), passage to the linear constraints that form the domain of

feasible solutions W, and modification of the decomposition algorithm in order to reduce the number of constraints.

This significantly reduces the computing costs and allows faster finding of an approximation to the local minimum. At

this stage, the mathematical model of the problem is

H u H u
X W

( ) min ( )

� �

	

�

� ,

W X u R i j I u i
n

ij i j i i� � � 
 � � 


�

{ ( , ) : ( , ) , , ( , ) ,� � � �
� �

� �

3 6

0 0 � 
I F u, ( )

�
0}.

Since the rotation angles are fixed, the systems of inequalities W k� (12) are linear.
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COMPUTING EXPERIMENTS

The experiments were conducted with a C# software. The software is developed according to the modularity

principle and consists of the following modules: input of initial data; calculation of Ô-functions; generation of

265

Fig. 2. Packing 20 polyhedra: (a) method HAPE3D (volume 32,550; time

26,202 sec); (b) the developed approach (volume 28,500; time 6,656 sec).

a b

Fig. 3. Packing 30 polyhedra: (a) method HAPE3D (volume 48,300; time

53,741 sec); (b) the developed approach (volume 42,450; time 9,543 sec).

a b

Fig. 4. Packing 36 polyhedra: (a) method HAPE3D (volume 12,480;

time 9,637 sec); (b) the developed approach (volume 10,720; time 4,789 sec).

a b



subproblems; generation of initial points; local optimization; global optimization. Software modularity has allowed

decomposition of the algorithm and application of the parallel computing technology, which has reduced the solution

time. To find local extrema, a modern solver for nonlinear programming problems as a free library IPOPT v. 3.9.1

(Interior Point OPTimizer) [18] was used. Note that the IPOPT library is efficient due to the method of internal points.

Parameters of the computer used for the computing experiments are Intel Ñore I5-750 processor, 2.5 GHz, 6 Gb RAM.

To test the developed approach for efficiency, a number of test examples from [12] were solved using the

HAPE3D method. The results of polyhedra packing are presented in Figs. 2–5.
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Fig. 5. Packing 40 polyhedra: (a) method HAPE3D (volume 6,150;

time 99,952 sec); (b) the developed approach (volume 56,012; time 24,543 sec).

a b

Fig. 6. Forms of polyhedral bodies.

Fig. 7. Packing nonconvex polyhedral bodies: (a) 150 polyhedral bodies;

(b) 200 polyhedral bodies.

ba



As can be seen from the figures, all the test examples show improvements by both the result and solution time.

Thus, the computing experiments confirm the efficiency and reliability of the developed methods.

The packing problem was solved for sets of 150 and of 200 polyhedral bodies shown in Fig. 6. The corresponding

results are shown in Fig. 7. The problem time was 32 and 41 hours, respectively.

CONCLUSIONS

In the paper, we have constructed an exact mathematical model for the problem of optimal packing of nonconvex

unoriented polyhedra. We applied the method of Ô-functions, which allows the use of modern methods of nonlinear

programming at all stages of solution of problem (1), (2), including construction of initial points, calculation of local

minima, and search for “approximations” to the global minimum.

Due to the method of clustering of nonconvex unoriented polyhedral three-dimensional bodies, construction of

initial points reduces the problem of packing a twice smaller number of convex bodies of much simpler spatial form.

Thus, the time for generating the initial points significantly reduces. Noteworthy is that the computing costs are reduced

due to division of search for a local extremum into two stages: the stage of solving the linear problem by fixing the

rotation angles and the stage of solving the nonlinear programming problem (1), (2).

The iterative processes used to solve the problem can be easily parallelized. The results have shown the efficiency

of the proposed approach to the problem solution.
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