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ALGORITHMS FOR SOLUTION INFERENCE BASED

ON UNIFIED LOGICAL CONTROL MODELS

A. Litvinenko UDC 519.816(045)

Abstract. Unified forms of knowledge representation models in expert control systems are proposed.

It is proved that at quantitative measurement of the characteristics of the state of the controlled object,

the problem of deriving a managerial solution is reduced to the investigation of a combinatorial

optimization problem with a linear structure and two-sided inequality constraints. An algorithm for

solving such problems is given, which implements the idea of directional selection of variants.

Keywords: expert systems, control, logical models, algorithms, inference of decisions, optimization.

INTRODUCTION

Increasing complexity of technical devices and technologies as well as speed-up of economic, social, and political

processes have caused gradual transformation of modern information society into knowledge society. This

transformation, in its turn, triggers the need for building various AI-driven information systems, including expert control

systems. Mathematical basis for such systems in most cases represents logical knowledge representation models (control

models) with corresponding algorithms for logical inference of managerial solutions [1–10].

Practice shows that when developing such systems, it is logical model building stage where major complications

emerge, since there is no unified technique for their building at the moment. Diversity of control model forms leads to

additional difficulties due to the need to develop new algorithms of logical inference, geared towards specific models or

their adaptation to the known method structure. As for the latter ones, the most widely used method is a cumbersome and

informatively excessive J. Robinson’s resolution method, initially intended for automatic theorem proving [10].

At the same time, comparative analysis of logical models being used in various expert control systems permits building

certain mathematical constructions that can be considered as unified forms of knowledge representation for a wide range of

practical tasks. Such forms allow for systematization of expert polling procedure, automation of knowledge base building,

selection (or development) of simple but efficient algorithms for logical inference of managerial solutions.

PRIMITIVE MODELS AND ALGORITHMS

Most primitive logical control models are built according to “situation” � “action” scheme. As such, situation

usually refers to “a set of indicators, describing status of the controlled object (CO) at a certain moment of time,” [11],

i.e., situation is associated with CO status. This definition limits applicability of such models because control action

selection is based not only on the CO status but also on the resources available to the control system at the moment of

decision making. Thus, a more functional scheme is “resource” & ”action” � “result,” where “action” refers to execution

of one or several control operations, “resource” refers to means required for execution of each such operation, and the

required “result” is defined depending on the CO status.
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Let z z i mi� �( | , )1 be a vector of CO status parameters.

A logical control model, built according to this scheme, can be represented by the following formula:
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; J i is a set of control operation numbers,

execution of which causes the ith parameter of CO status to change; u j is the identifier of jth control operation; Pj is

a set of resource types, needed for implementation of jth control operation; rjp is the identifier of p type resource,

needed for implementation of jth control operation; s jp is the status indicator of the resource rjp (its availability or

quantity); aij is the indicator of zi parameter change in response to the jth control operation; R r sjp jp( , ) is the predicate

that, after the model is adjusted to the situation, corresponds to availability (if R r sjp jp( , ) �1) or lack (if R r sjp jp( , ) � 0)

of the p type resource, needed for implementation of the control operation u j ; X u rj j

P
( , ) is the predicate defining

execution (if X u rj j

P
( , ) �1) of the control operation u j using all required resources rjp , p Pj� ; D z ai ij( , ) is the

predicate that shows change (at D z ai ij( , ) �1) of the value of the ith parameter of CO status, resulting from

implementation of the control operation u j .
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An algorithm of searching control operation capable of bringing the value of parameter z
i*
to the acceptable range

provides performing the following actions.

1. Forming a set of control operation numbers, capable of bringing the value of this parameter to the acceptable

range: J j J z z a z
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*
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3. Selecting control operation u
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*

� , to be implemented.
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If J
i

D

*

� 
, then model (1) does not provide any control operation that can (without invocation of other

operations) bring the value of parameter z
i
*

to the acceptable range. In this case, it makes sense to consider simultaneous

implementation of several control operations u j , j J
i

�
*

, that cause the parameter in question to change.

If J
i

R

*

� 
, then none of control operations, capable of bringing the value of parameter z
i*

to the acceptable

range, has required resources available. In this situation, the problem has no solution.

DEFINING A COMBINATION OF CONTROL OPERATIONS

FOR A SINGLE PARAMETER

A logical control model for simultaneous execution of multiple operations, aimed at changing a single CO status

parameter value, is built according to the following formula:
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A search algorithm for combination of control operations to bring the value of a single CO status parameter to the

acceptable range provides sequential performing of the following actions.

1. Forming a set of control operation numbers, capable of changing (increasing or decreasing) the value of OC

status parameter z
i
*

that the required resources for their implementation are available J j J
i

R

i*

*

:� �{ R r s
P

j

P

j

P
( , ) �1}.

If J
i

R

*

� 
, then model (2) does not enable necessary change of the parameter value z
i*
in the current situation due to the

lack of required resources. In this case, computation stops. If J
i

R

*

� 
, then Item 2 of this algorithm is executed.

2. Detecting a combination of control operations, implementation of which can bring the value of CO status

parameter z
i*

to the acceptable range.

This is a combinatorial problem. So its solution is based on algebraic model, adequate to logical model (2) with

regard to the contents of the subset J
i

R

*

of control operations intended for value change of the CO status parameter z
i*

that have the required resources available.

To build such an algebraic model, each predicate X u rj j

P
( ; ) is assigned a boolean variable x j �{ }0 1, , j J
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, and

the following two-sided inequality is formed:
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The intention behind these boolean variable is as follows: if solving inequality (3) results in a certain variable

x j ' �1, then the control operation u
j '

is to be implemented; if x j ' � 0, then this assertion is false, j J
i

R
' �

*

. The following

algorithm that implements the idea of directional selection of variants can be used to solve two-sided inequality (3).

SIDE EFFECT

A side effect can manifest itself as the fact that control operations j J
i

R
�

*

, implemented in order to bring the value

of any parameter z
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To define the full set I i
E
( )
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of CO status parameters, subject to possible value changes due to implementation of

the control operations, intended to bring the value of parameter z
i
*

to the acceptable range, the following step-by-step
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First, accept that I i i
E

0

( )

* *

� { }; J i J
E

i

R

0

( )

*

*

� . Then, at each lth step, sequentially define the sets

I i i m J J i
l

E

i

R

l

R
( ) , , : ( )

* *

� � � 

�

{ { } }1

1

� � ;

J i J
l

R

i I i

i

R

l

E

( )

*

( )

*

�

�

�

, l �1 2, ,� .

The procedure is complete if J i J i
l

R

l

R
( ) ( )

* *

�
�1

or (as an equivalent) I i I i
l

E

l

E
( ) ( )

* *

�
�1

.

189



The set I i I i
E

l

E
( ) ( )

* *

� , formed using the method discussed, contains numbers of all CO status parameters

(including z
i
*

), whose values can change due to implementation of control operations, intended to bring the value of

parameter z
i*

to the acceptable range.

In view of this side effect, the logical control model changes to
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This logical model corresponds to the two-sided inequality system that include expressions, similar to (3) in terms

of their structure, but formulated for all values i I i
E

� ( )

*

. To solve this system and define a combination of control

operations, capable of bringing the value of parameter z
i*

to the acceptable range, the following algorithm that

implements the idea of directional selection of variants can be used.

DEFINING A COMBINATION OF CONTROL OPERATIONS

FOR MULTIPLE PARAMETERS

Let I * be the set of CO status parameters, whose values are outside the acceptable range. The logical control

model can be represented as (2) without the side effect, or as (4) where the side effect exists. Corresponding systems of

inequalities are developed on expressions in the form of (3), laid down separately for each i I�
*

in the former case and

for each i I I
E

� ( )

*

in the latter case, where I I
E
( )

*

is a set of numbers of all CO status parameters, whose values can

change as a result of control operations, implemented for bring the collection of parameter values zi , i I�
*

, to the

acceptable range.

To define the set I I
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The procedure completes with finding the set I I I I
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.

Finding a combination of control operations, capable of normalizing the CO status, is a multi-variant and,

therefore, an optimization problem. Thus, apart from two-sided inequality system (3), mathematical model of this

problem should include criterion function

f x c xj j

j J
X

( ) �

�

� , (5)

where J
X

is a set of identifiers for the discussed control operations, J J
X

i I

i
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X

�

�

�

; I
X

is the set of CO status

parameters, such that I I
X

�
*

with no side effect, and I I I
X E

� ( )

*

where the side effect exists; c j , j J
X

� , are

coefficients showing preference levels for specific control operations (e.g., implementation costs, technological

benefits, etc.); x is a vector of independent boolean variables: x x j Jj

X
� �( | ), x j �{ }0 1, , j J

X
� . Whereas

minimum of the function f x( ) is reached at the same argument values as maximum of the function opposite in sign,

without loss of generality we may proceed with assumption that criterion function (5) requires maximizing.
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It makes sense to represent the system of two-sided inequality constraints in a more compact form

b a x b
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� .

Formal statement of the problem is reduced to finding the vector of boolean variable values x x j Jj

X
� �( | ) that

maximize criterion function (5) with respect for the system of inequality constraints (6).

The problem discussed is a combinatorial optimization problem with linear structure. It can be solved using an

algorithm that implements the idea of directional selection of variants, adapted to the structure of two-sided inequality

constraints [9]. This directional selection method provides for sequential fragmentation of full set G of solution variants,

performed until an optimal plan or inconsistency of the constraint system is established. New subsets of variants,

acquired as a result of such fragmentation, are subject to formal analysis, aimed at processed data reduction, cutting down

the number of algorithm steps leading to the desired result, and, consequently, minimizing duration of solution process.

This effect can be achieved by means of excluding subsets containing no acceptable plans from further treatment,

removal of constraints that have rendered inactive regardsing the plans of the subset of variants from the mathematical

model as well as by means of establishing single-option variables and assigning them the only acceptable values.

Suppose that at a certain stage of solving problem (5), (6), in a full set of variants G , � disjoint subsets Gk ,

k �1, � , that contain acceptable plans are extracted.

Let J J
k

X1

� be a set of numbers of independent variables that in the plans of the kth subset have gained the

value 1 and J Jk

X
� is a set of numbers of variables that have no fixed values withinGk . Similar sets, related to

criterion function (5) and each constraint of system (6), are defined by the formulas
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Model (5), (6) brought into correspondence with the kth subset of variants is of the following form:
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, p�{ }1 2, , i I k� ; I k is the set of system (8)

constraint numbers that are active with respect to the plans within the variant subset Gk .

To analyze model (7), (8) on the sets J k0 and J ik , i I k� , the following subsets are extracted: a set of numbers

of independent variables J j J c
k k j

0

3

0

0� � �{ }: , included into criterion function (7) with positive coefficients;

sets of numbers of independent variables J j J a
ik ik ij

2

0� � �{ }: and J j J a
ik ik ij

3

0� � �{ }: , included into the ith

constraint of system (8) with positive and negative coefficients, respectively; a set of numbers of independent variables

J j j j J a a
ik ik ij ij

2 2

( ) :' ' '� � �{ } { }� , included into the ith constraint of system (8) with negative coefficients that do not

exceed the value of aij ' ; a set of numbers of independent variables J j j j J a a
ik ik ij ij

3 3

( ) :'' '' ''� � �{ } { }� , included into

the ith constraint of system (8) with positive coefficients no less than aij ''.
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be sums of negative and positive coefficients of the ith constraint of system (8), hence,
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It is supposed that �
ik

p( )

� 0 if J
ik

p
� 
, p�{ }2 3, .

Properties of the kth (k �1, �) subset of solution variants to problem (5), (6) can be expressed as the following

statements.

Statement 1. Subset Gk contains no acceptable plans if for a certain constraint i I k� the following condition is

satisfied: ( (� �
ik ik ik ik

b b
( ) ( ) ( ) ( )

) )

3 1 2 2

� � � .

Statement 2. Constraint i I k� is not active with respect to the plans within the subset Gk if the following

condition is satisfied: (�
ik ik

b
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b
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The algorithm of directional selection of variants provides the execution of the following sequence at each stage of

solution process for problem (5), (6).

1. Selecting a subset of variants to be fragmented, for which purpose we select subset G
k
*

, corresponding to the

maximum estimate of the criterion function � � �( ) max ( ), ,
*

G G k
k k� �{ }1 , where �( )Gk � c c

j

j J

j

j Jk k� �

� �	

0

1

0

3

.

2. Selecting a variable x
j*
, j J

k
*

*

�
0

, whose values are to be fixed, included in the criterion function f x
k*
( ) with

the maximal coefficient c c j J
j j k* *

max ;� �{ }

0

.

3. Fragmenting the subset of variants into two disjoint subsets. By fixing values of the selected variable x
j
*

subset G
k*

is fragmented into two disjoint subsets G
k
*

0

and G
k*

1

. Plans of the former have x
j*

,� 0 and plans of the latter

have x
j*

.�1

4. Analyzing subsets of variants G
k*

0

and G
k*

1

. Analysis procedure for any kth subset of solution variants for

a combinatorial optimization problem involves sequential checking whether conditions of each formulated statement are

satisfied for all the constraints of system (8). Depending on the results of this check, specific sequence of actions is

performed in the analysis cycle.

If a certain constraint i I k� satisfies the condition of Statement 1, then subset Gk is excluded from further

treatment.

Constraints i I k� that satisfy the condition of Statement 2 are deleted from system (8) and their numbers from the

subset I k . Thus, corrected set of constraint numbers that are active with respect to the complementary plans within the

variant subset Gk are referred to as �I
k
.

If the ith constraint (i I
k

� � ) satisfies the condition of any Statement 3–6, then the single-option variables, specified

therein, are assigned the only acceptable values. These values are substituted into all constraints i I
k

� � and after that

analysis cycle is repeated for the subset Gk .

It is recommended to start checking fulfilment of conditions of Statements 3–6 for the next ith constraint (i I k� � )

with typifying as aij ' and aij '' the minimal (negative) and the maximal (positive) coefficients of, respectively,

a a j Jij ij ik' � �min ,{ }

2

and a a j Jij ij ik'' � �max ,{ }

3

. Afterwards, if this choice of aij ' and aij '' enables the conditions of

the mentioned statements to be satisfied, then it is feasible to use the following as these parameters, respectively:
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a a j J a bij ij ik ik ij ik'' ''� � � �min , :
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a a j J a bij ij ik ik ij ik' '� � � �max , :

( ) ( )

{ }

2 2 1
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a a j J a bij ij ik ik ij ik'' ''� � � �min , :

( ) ( )

{ }

3 3 2

� .

Such choice of parameters a ji ' and a ji '' ensures that the subsets of variants with the greatest cardinality

containing no acceptable plans are cut off from Gk .

Procedure of analyzing the variant subset Gk completes if proven that it contains no acceptable plans; constraint

system (8) contains no active constraints ( � � 
I
k

); a full acceptable plan x is formed by assigning values to single-choice

variables; none of the single-choice variables has been assigned a specific value at the final analysis cycle of this subset.

After completing the analysis procedure for subsets G
k*

0

and G
k*

1

, the remaining subsets are numbered anew with

positive integers from 1 to �'. It is obvious that � � �� � 1if both subsets G
k*

0

and G
k*

1

turn out to contain no acceptable

plans; � �' � if only one of them contains no acceptable plans; � �' � 	1 if absence of acceptable plans has not been

proved for both variant subsets being considered.

Computation process is completed in the following two cases: inconsistency of constraint system (6) is established

as shown by the equation � �� 0 ; a vector x * of variable values is found that sets criterion function (5) at a value of no

less than possible, f x G kk( ) max ( ), ,

* � � �{ }� �1 .

It is feasible to start solving with analyzing the full set G of variants. In certain cases, it allows us to establish

inconsistency of constraint system (7) a priori or cut off a subset containing no acceptable plans from G.

CONCLUSIONS

The discussed unified forms of logical models allow us to reduce decision-making tasks in expert control systems

to researching mathematical models of combinatorial optimization problems. Such problems are NP-class problems. It

means that theoretical estimate of solution process duration exponentially depends on dimensionality of the mathematical

model. However, variant subset analysis, based on formulated statements, substantially cuts down the number of

algorithm steps leading to the end result, thus reducing required computer time. Practice shows that by means of

detecting and excluding subsets that contain no acceptable plans from further consideration, removal of constraints that

have rendered inactive as regards plans of the currently treated subset of variants from the mathematical model as well as

by means of establishing single-option variables and assigning them the only acceptable values, one can ensure highly

targeted search and find the desired managerial solution within acceptable time.
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