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Abstract. The authors propose an algorithm to construct Chebyshev approximation for functions

of several variables by a generalized polynomial as a limiting approximation in the norm of space

L
p
as p � � . It is based on serial construction of power-average approximations using the least

squares method with variable weight function. The convergence of the method provides an original

way to consistently refine the values of the weight function, which takes into account the results

of approximation at all previous iterations. The authors describe the methods of calculating the

Chebyshev approximation with absolute and relative errors. The results of test examples confirm the

efficiency of using the method to obtain Chebyshev approximation of tabular continuous functions

of one, two, and three variables.

Keywords: functions of several variables, Chebyshev (uniform) approximation, power-mean

approximation, least squares method, variable weight function.

INTRODUCTION. PROBLEM STATEMENT
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. It is required to approximate this function by an expression F a Xm ( ; ) , where F a Xm ( ; ) is

a generalized polynomial
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with respect to the system of linearly independent basis functions � i X( ) , i m� 0, , where ai , i m� 0, , are unknown

parameters: { }a Ai i

m

�
�
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, A R
m

�
	1
, and R

m
is an m-dimensional vector space. We will call expression F a Xm ( ; )

*

the Chebyshev approximation of function f X( ) on the point set � if it satisfies the condition

max | ( ) ( ; ) | min max | ( ) ( ; ) |
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mf X F a X f X F a X

� � �
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� �

. (2)

Chebyshev approximation of functions of several variables is used to solve various applied problems, in particular,

to design hardware for measurement of physical quantities whose value depends on several information signals [1, 2].

To create Chebyshev approximation of functions of several variables, three techniques are mainly used:

optimization methods, serial computing of Chebyshev approximation with respect to each variable, and Remez-type
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iteration schemes [3, 4]. In [5], an improved algorithm is proposed for generating the Chebyshev approximation of

a function of several variables by a generalized polynomial; it solves the linear programming problem with regard for the

features of uniform approximation. Algorithms for computing the Chebyshev approximation of functions of several

variables and available program implementations are presented in [6, 7]. In the paper, we will propose a method for

generating the Chebyshev approximation of functions of several variables as a limiting approximation in the norm of

space L
p
as p � � , which sequentially generates power-mean approximations [8]. This method is a further development

of the idea of the Remez �-algorithm [9]. Power-mean approximations are calculated by the least squares method with

the use of a variable weight function whose value is specified sequentially with regard for all previous approximations.

POWER-MEAN APPROXIMATION OF FUNCTIONS

To estimate the error of power-mean approximation of functions, the norm in space L
p
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L

p

np

n

n

X x x x� � � �



�

�

�
�

�

�

�

����
� �

�

�

�

�

�

�

1

1

2

2

1 2

�

1 /

,

p

1� � �p , (3)

is used, where xi i i�[ , ]� � , i n�1, , and � ( ) ( ) ( ; )X f X F a Xm� 
 . For 1� � �p , || ||�
L
p gets intermediate values

between || ||�
L
1

and || ||� C [3, 9], where || ||� C is the norm in the space of continuous functions.

In the discrete case, the norm of the Euclidean space E
p

is used for error estimation of the power-mean

approximation. The error of power-mean approximation of function f X( ) defined on the point set � by expression (1)

can be estimated in the norm

|| || | ( ) |

/
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, (4)

where � ( ) ( ) ( ; )X f X F a Xm� 
 , 1� � �p . Similarly to the continuous case, the limiting value of the norm || ||�
E
p

as p � � corresponds to the norm in the space of continuous functions || ||� C .

The possibility of obtaining the Chebyshev approximation as a limiting approximation in space L
p
as p � � is

analyzed in detail in [9], where E.Ya. Remez theoretically substantiated convergence of the computing schemes for

creation of the Chebyshev approximation on the basis of power-mean approximation. The �-algorithm provides

calculation of the Chebyshev approximation of a function of several variables, as an improved one, with the use of

�-correction of power-mean approximation of some rather high power of ps. This algorithm consists in iterative

generation of power-mean approximations for the powers

p p p ps0 1 2

� � � �. . . , (5)

where p
0

2� , p
1

3� . Higher powers are recommended to be chosen from the relation p pi i/



�

1

4 , i s� 
2 1, [9].

The power-mean approximation can be found by the least squares method

X

i m
a A

X f X F a X

�

�
� 
 � ���

�

� ( )( ( ) ( ; )) min

2

, i s� 0 1, , ,� , (6)

with the weight function

�
0

1( )X � , � i i

p
X X i
( ) | ( ) |�



�

2

, i s�1 2, , ,� , (7)

where � i m iX f X F a X( ) ( ) ( ; )

,

� 


1

, F a Xm i, ( ; ) is power-mean approximation of the function f X( ) by the

expression F a Xm ( ; ) , which corresponds to the power exponent pi .

Beginning with the power p
1

(5), the power-mean approximations F a Xm i, ( ; ) , i s�1, , obtained by the method (6),

(7) are adjusted by the �-correction [9]. For the adjustment, the least squares method is used
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with variable weight function

� i j i j

p
X X i
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where

� i j m i jX f X F a X
, , ,
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1

, (10)

F a X F a Xm i m i, , ,

( ; ) ( ; )

0

� , F a Xm i j, ,

( ; ) is power-mean approximation of the function f X( ) by the expression

F a Xm ( ; ) obtained with the use of the weight function � i j X
,

( ) . The adjusted power-mean approximation

F a Xm i j, ,

( ; ) of power pi of function f X( ) can be found by the formula

F a X F a X F a Xm i j m i j m i j, , , , , ,

( ; ) ( ; ) ( ; )� 	

1

� , (11)

where F a Xm i j, ,

( ; ) is approximation obtained as a result of solution of problem (8), and the value of parameter �

can be found from the condition
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, , , ,
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Adjustment of the power-mean approximation (11) of power pi is carried out until the required accuracy �

is attained:

| max | ( ) | max | ( ) | | max | (

, , ,

X

i j
X

i j
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� ) | . (13)

When this condition is satisfied, the power-mean approximation of power pi of function f X( ) is set equal to

F a X F a Xm i m i j, , ,

( ; ) ( ; )� and passage to calculating the power-mean approximation of power pi	1 (5) is performed.

The program implementation of the �-algorithm is described in [10]. In [4, 11], to obtain uniform approximation

of functions of several variables f X( ) by the expression F a Xm ( ; ) (1), it is proposed to use the least squares method

� r m

X
a A

X f X F a X( )( ( ) ( ; )) min
 � ���

�

�
�

2

�

, r � 0 1, , � ,

(14)

with successive adjustment of the variable weight function

�
0

1( )X � , � r i

i

r

X X( ) | ( ) |�

�

� �
2

1

, r �1 2, , � ,

(15)

where � k m kX f X F a X( ) ( ) ( ; )

,

� 


1

, k r�1, , F a Xm k, ( ; ) is approximation, by the least squares method, of the

function f X( ) with the weight function � k X( ) .

The use of weight function (15) has ensured nearly uniform distribution of the approximation error at the points of

representation of function f X( ) [4, 11]. In [11], it is proposed to adjust the approximation obtained by the method (14),

(15) with the use of an additive (symmetrizable) correction.

METHOD TO DETERMINE PARAMETERS OF CHEBYSHEV

APPROXIMATION OF FUNCTION OF SEVERAL VARIABLES

Generation of the Chebyshev approximation of tabular functions of several variables is based on the idea of

successive obtaining of approximations in space E
p
for p � 2 3 4, , , . . . [8]. To generate an approximation in the space E

p
,
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we will use the least squares method (14) with the weight function

�
0

1( )X � , � r i

i

r

X X( ) | ( ) |�

�

� �

1

, r p� 
1 2, ,� , p � 3 4, , . . . , (16)

where � k m kX f X F a X( ) ( ) ( ; )

,

� 


1

, k r�1, , and F a Xm k, ( ; ) is approximation of the function f X( ) with the

weight function � k X( ) by the least squares method.

The least squares method (14) with variable weight function (16) ensures successive obtaining of power-mean

approximations F a Xm r, ( ; ) , r � 0 1, ,� , of the function f X( ) in the space E
r	 2

. According to (16), the value of the

weight function increases at each iteration (14) proportionally to the absolute value of the approximation error

�r m rX f X F a X( ) | ( ) ( ; ) |

,

� 
 (17)

of the function f X( ) by the expression F a Xm r, ( ; ) obtained at the previous iteration.

Since the greatest proportional increase of the weight function (16) corresponds to point X X( )�� with the

greatest deviation (17), application of such adjustment of the value of the weight function for iterations (14) successively

reduces a decrease in the approximation error of function f X( ) on the point set X X( )��

� � . . . �� � �
0 1

� � � r , (18)

where

� max ( )� �r
X

r X�

��

. (19)

Thus, application of the weight function (16), which proportionally increases at each iteration of (14) by

the absolute value of the error (17) of modeling of the value of function f X( ) causes successive reduction of the error of

its modeling (19) by the approximation F a Xm r, ( ; ) . Successive reduction of the error of modeling of the values

of function f X( ) as a result of each subsequent iteration (14) with the weight function (16) substantiates convergence of

the iterations (14), (16).

End of iterations (14) can be controlled by attaining some prescribed accuracy �:

| � � | �� � ��r r r


 �

1

. (20)

Using the absolute value on the left-hand side of condition (20) is caused by possible round-off errors in

calculation of the approximation errors �r X( ). Noteworthy is that accumulation of round-off errors is not typical for the

method (14), (16). The round-off errors obtained in the solution of problem (14) are only typical for it.

Then the obtained approximation is corrected with the use of a symmetrizing correction

a
0

2� 	( ) /

max min

� � , (21)

where �
max ,

max ( ( ) ( ; ))� 


�X
m rf X F a X

�

and �
min

,

min ( ( ) ( ; ))� 


�X
m rf X F a X

�

. As a result, the required

approximation of the continuous function f X( ) defined on the point set X �� by the generalized polynomial (1) will

be defined as follows:

F a X F a X am m r( ; ) ( ; )

,

� 	
0

. (22)

This method reminds the Remez scheme [12] for obtaining the Chebyshev approximation of a function of one

variable according to which the approximation error after each iteration decreases due to introduction of a point with the

greatest deviation to the alternance.

Thus, successive adjustment of the values of weight function (16) with regard for the errors of modeling of the

values of function f X( ) by the results of all previous approximations by the least squares method ensures convergence

of the iterative scheme (14), (16) and respectively convergence of the method of calculation of the Chebyshev

approximation. By specifying the value of � in (20), we can attain the required calculation accuracy for the parameters of

the Chebyshev approximation of function f X( ) .
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DETERMINING THE PARAMETERS OF CHEBYSHEV APPROXIMATION

OF THE FUNCTION OF SEVERAL VARIABLES WITH A RELATIVE ERROR

If a continuous function f X( ) on a point set � does not take zero values, then a similar method allows obtaining the

Chebyshev approximation of f X( ) with a relative error. To generate the Chebyshev approximation of the function f X( )

with a relative error, we will use the least squares method (14) with the weight function

�
0

2

1

( )

( )

X

f X

� , � r i

i

r

X X( ) | ( ) |�

�

� �

1

, r p� 
1 2, ,� , p � 3 4, , . . . , (23)
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X

f X F a X

f X
( )

( ) ( ; )

( )

,
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1

, k r�1, , (24)

and F a Xm k, ( ; ) is approximation of function f X( ) by the least squares method with the weight function � k X( ) .

When generating an approximation with a relative error, we can control the end of iterations (14) with the weight

function (23) by attaining some prescribed accuracy � according to the condition (20), where

� ( ) max | ( ) |�r
X

rX X�

�

	

�

�
1

, (25)

where �r X
	1

( ) is the error of modeling the function f X( ) by the expression F a Xm r, ( ; ) obtained by the least

squares method (14) at the rth iteration.

Then we adjust the obtained approximation F a Xm r, ( ; ) with the relative error with the use of the symmetrizing

correction

b
f X f X

F a X f X F a X fm r m r

�

	

2 ( ) ( )

( ; ) ( ) ( ; )

max min

, min max , max

( )

min

X
, (26)

where X
max

is a point at which relative approximation error �r X
	1

( ) (24) attains the greatest value on the point

set X �� and X
min

is the point at which the relative error is the least. As a result, the required approximation of

the continuous function f X( ) defined on the point set X �� by the generalized polynomial (1) with the relative

error can be found by the formula

F a X bF a Xm m r( ; ) ( ; )

,

� . (27)

The value of the correction b (26) is defined as a solution of the one-parameter problem of the Chebyshev

approximation of function f X( ) by the expression bF a Xm r, ( ; ) on the point set X �� with the relative error

max

( ) ( ; )

( )

min

,

X

m r

b

f X bF a X

f X�




� ��

�

. (28)

The results of computation of the parameters of the Chebyshev approximation for test examples confirm good

convergence of the iteration process (14) with the weight functions (16) and (23) in case of approximation of functions of one,

two, and three variables. In particular, in the solution of test examples for the functions defined on a set of 121 points,

coincidence of two to three significant digits in the approximation error was attained for � � 0.003 in six to nine iterations (14)

for both weight function (16) for absolute error and weight function (23) for relative error.

Example 1. Let us find the Chebyshev approximation by a quadratic polynomial of the function of one variable

y x x x( ) � 	 	1 2 3

2

defined at points xi , i � 0 20, , where x ii � 0 1. .

With the use of the proposed method for � � 0.003 in the condition (20) in eight iterations (14) with the weight

function (16) for the function y x( ) the polynomial

P x x x
2

2

1 006720776 0 7076428791 0 7445228708( ) . . .� 	 	 ,

(29)

was obtained; with regard for the correction a
0

0 0000619405� . , it provides the absolute approximation error

0.015613905. In the calculation of the Chebyshev approximation of function y x( ), the approximation error at

iterations (14) attained the following values:

0.021899282, 0.0163219491, 0.016111283, 0.016045417, 0.015902523, 0.015792476, 0.015720242, 0.015675845.
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Chebyshev approximation of functions y x( ) by the quadratic polynomial obtained by the Remez iteration

scheme [12] with adjustment of alternance points by the Vallee–Poussin algorithm ensures the approximation

error 0.01544. The error of approximation by polynomial (29) is by 0.0001739 greater than the error of the Chebyshev

approximation obtained by the Remez scheme. The error of approximation by the polynomial (29) 1.12% exceeds the

error of the Chebyshev approximation obtained by the Remez scheme.

The curve of approximation error (29) is presented in Fig. 1.

The approximation error curve presented in the figure corresponds to the characteristic property of the Chebyshev

approximation: it has four extremum points where the absolute value of the deviation is the largest (within the given

accuracy) and the deviation sign at these points alternates. These extremum points coincide with the points of alternance

obtained for the approximation by the Remez scheme [12].

The least value of the error of approximation of function y x( ) by a quadratic polynomial with the use of the

proposed method was attained at the 117th iteration (14) with the weight function (16) and was equal to 0.01544.

Approximation of function y x( ) by a quadratic polynomial with a relative error with the use of the iteration

method (14), (23) for � � 0.003 was obtained in seven iterations. Polynomial

P x x x
2

2

1 008795347 0 7207929316 0 7265246023( ) . . .� 	 	 (30)

ensures relative approximation error 0.94999% with the correction b � 0.9999505612 .

Chebyshev approximation of function y x( ) by a quadratic polynomial with relative error obtained by the Remez

iteration scheme [12] with adjustment of alternation points by the Vallee–Poussin algorithm provides the 0.9337%

approximation error. The approximation error (30) is 0.0163% greater than the Chebyshev approximation error obtained

by the Remez scheme, which is 1.75% of the Chebyshev approximation error.

Example 2. Find the Chebyshev approximation of the function z x y x y
1

2 2

( , ) � 	 specified at points ( , )x yi j ,

i � 0 10, , j � 0 10, , where x ii � 0 1. , y jj � 0 1. , by a quadratic polynomial with respect for variables x and y.

With the use of the proposed method for the function z x y
1

( , ) in seven iterations (14) with the weighting function (16),

condition (20) was satisfied for � � 0003. . The obtained polynomial

P x y x
2 2

0 03161824134 0 7318695249 0 7318695249

,

( , ) . . .� 	 	 y

– . . .0 6459607105 0 2640058033 0 2640058033

2 2

xy x y	 	 (31)

provides the absolute approximation error of function z x y
1

( , ) equal to 0.036805375, with the correction

a
0

0� 
 .00041013265 .

Figure 2 shows the surface view of the approximation error (31).

The surface shown in Fig. 2 confirms that the characteristic property of the Chebyshev approximation is satisfied,

i.e., the sign of the deviations with the largest absolute value alternate. It also follows from this figure that there are five

points at which the approximation error takes the largest value. This number of extremum points corresponds to the

solved problem. Since the function z x y
1

( , ) is symmetric with respect to the arguments x and y, its approximation by

a quadratic polynomial must also be symmetric, i.e., this polynomial can be represented as

P x y a b x y c x y dxy
2 2

2 2

,

( , ) ( ) ( )� 	 	 	 	 	 . (32)

123

Fig. 1. The curve of the error

of approximation of function y x( )

by polynomial (29).
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According to the characteristic property of the Chebyshev approximation, approximation by the polynomial (32)

with four unknown parameters should be characterized by the presence of five points with the largest absolute value of the

deviation. In approximation (31), the values of the coefficients of the same powers of variables x and y almost coincide. The

value of the error of approximation of function z x y
1

( , ) by the method (14), (16) in the form of polynomial (32) coincided

with the value of the error of approximation by polynomial (31).

The values of positive and negative deviations of approximation (31) with the largest absolute values from the

values of function z x y
1

( , ) coincide within the given accuracy. This is proved, in particular, by the relatively small value

of the correction a
0

0� 
 .00041013265 , which is 1.09% of the obtained absolute approximation error (31).

Example 2 is taken from [9], where to obtain the Chebyshev approximation of the function z x y
1

( , ) by a quadratic

polynomial with respect to the variables x and y, the �-algorithm is used with regard for the possibilities of effective error

reduction. The absolute error of approximation of function z x y
1

( , ) by a quadratic polynomial obtained in [9]

was 0.036351. The theoretical value (obtained in [9]) of the absolute error of the Chebyshev approximation of the

function z x y
1

( , ) by a quadratic polynomial is 0.036310. Therefore, the approximation error (31) exceeds by

0.000495375 the theoretically obtained error value, which is 1.36% of the theoretically obtained value of the error of

approximation of the function z x y
1

( , ) by a quadratic polynomial.

The least value of the absolute error of approximation of the function z x y
1

( , ) by a quadratic polynomial by the

method (14), (16) was obtained at the 55th iteration. The obtained polynomial

P x y x
2 2

0 03393618707 0 7230553918 0 723055391

,

*

( , ) . . .� 	 	 8 y

– . . .0 6483527459 0 2731844281 0 2731844281

2 2

xy x y	 	 (33)

provides the absolute error of approximation 0.03624001. The correction is a
0

0� 
 .000026703 . Obtaining the

approximation error (33) less than the theoretically calculated error value in [9] can be explained by the fact that

the calculated value of the Chebyshev approximation error in [9] corresponds to the approximation of the

analytically given function z x y
1

( , ).

Example 3. Find the Chebyshev approximation of function z x y t e
xyt

2

( , , ) �



defined at points ( , , )x y ti j r ,

i � 0 10, , j � 0 10, , r � 0 10, , where x ii � 0 1. , y jj � 0 1. , and t rr � 0 1. , by a first-order polynomial for each variable x , y ,

and t .

Using the proposed method (14), (16) for � � 0.003, in seven iterations we have obtained approximation of the

function z x y t
2

( , , ) by the polynomial

P x y t x
3 1

0 9787294020 0 01152161174 0 01152135

,

( , , ) . – . – .� 336 y + 0.005123721063xy – 0.01152121170 t

+ 0.005123542576 tx + 0.005123241453 yt – 0.6312148958 xyt , (34)

which provides absolute approximation error 0.0395586 with the correction a
0

0� 
 .00200142015.
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of approximation of function z x y
1

( , )

by polynomial (31).
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The Chebyshev approximation of function z x y t
2

( , , ) by the first-degree polynomial with respect to each variable

x, y, and t with the relative error with the use of iterations (14) with weight function (23) for � � 0.003 was obtained in

eight iterations. The polynomial

P x y t x
3 1

0 9974817898 0 002695606042 0 0026960

,

( , , ) . – . – .� 40932 y + 0.002240020262xy – 0.002694776433 y

+ 0.002238596308 xt + 0.002239105684 yt – 0.2594474214xyt , (35)

provides the relative approximation error 0.567% with the correction b � 0.9998333224 .

CONCLUSIONS

The method proposed for constructing the Chebyshev approximation of continuous tabular functions of several

variables makes it possible to calculate the approximation by the generalized polynomial (1) with the required accuracy.

The method is reliable, efficient, and simple to implement. The results of solution of the test examples confirm rather fast

convergence of the proposed method when constructing the Chebyshev approximation with absolute and relative errors

for functions of one, two, and three variables.

It is expedient to use this method for the high-accuracy calibration of measuring devices for physical values that

depend on several information signals, in particular, pressure gauges, thermoanemometric fluid flow rate meters, etc.
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