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AN EFFICIENT METHOD FOR STABILITY

ANALYSIS OF HIGHLY NONLINEAR

DYNAMIC SYSTEMS
*

E. R. Smol’yakov UDC 517.9

Abstract. A simple and quick method is proposed for estimating the asymptotic stability of highly

nonlinear dynamic systems, in particular, high-dimensional systems for which Taylor series of the

right sides of differential equations converge slowly and the sum of terms whose order of smallness

is more than two can considerably exceed the value of any second-order term. In this case,

the method of Lyapunov functions cannot guarantee a correct stability estimate. The new method is

based on a procedure of maximizing the rate of the change in the metric of the perturbed state space.

This metric can turn out to simultaneously be a Lyapunov function only in particular cases.

The proposed new method is not aimed at estimating the stability of linear systems.

Keywords: motion stability, nonlinear dynamic system.

INTRODUCTION

The basic foundations of the general stability theory of dynamic systems were laid in the thesis of A. M. Lyapunov in

1892 and were later replenished by N. G. Chetayev, N. N. Krasovskii, et al. Some partial stability investigation methods were

also earlier developed, for example, by E. J. Routh, N. E. Zhukovsky, and other scientists, but a systematized general

statement of motion stability problems was proposed and deeply worked out by A. M. Lyapunov. The Lyapunov method is

still most general and allows to exactly estimate the stability of linear dynamic systems, but it is not always correct in the

case of nonlinear systems [1–4].

The method of Lyapunov functions is simple in its ideological basis, but its practical use leads to large and quite

often insolvable difficulties. The first drawback is conditioned by the fact that a sign-defined function (a quadratic form)

V x( ) must be chosen so that its total time derivative

�V
V

x

dx

dt
�

�

�

, where

dx

dt
f x� ( ) is a vector differential motion equation,

is a sign-defined function of the opposite sign with respect to the functionV . However, the search for such a function can

rather be attributed to mathematical intuition than to science. The second drawback is that a Lyapunov function V x( )

is only a quadratic form composed of second-order infinitesimals in expanding the right sides of differential equations

into Taylor series. But a quadratic form in essentially high-dimensional problems ( )n � 5 with slowly convergent Taylor

series does not take into account the partial sums of expansion in a Taylor series that in high-dimensional problems can

exceed even the largest term of quadratic form. In this case, it cannot be the basis for estimating stability. For example,

the sum of all the terms of third-order smallness in essentially nonlinear high-dimensional problems in which Taylor

series converge slowly, as a rule, exceeds (due to a large number of third-order expansion terms when n is large) any of

second-order terms from which a Lyapunov function is constructed. It follows from this that a Lyapunov function does
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not take into account complete information on the dynamics of a system and, hence, it cannot ensure a reliable sensitivity

analysis of the system. This is the cause of errors in estimating stability by the method of Lyapunov functions and

an essential mismatch of the stability domains obtained based on different Lyapunov functions in the same problem.

The following question arises: how correct are the stability estimates obtained based on Lyapunov functions?

This work considers a “variation” method that has the following positive characteristics: the preliminary

decomposition of right sides of differential equations into Taylor series is not required; a complicated and not always

efficient search for a Lyapunov function is not required; the problem is reduced to a simple problem of searching for the

maximum of a function of a finite number of variables. This method ensures necessary stability conditions unlike of the

Lyapunov method that is based on sufficient conditions. The new method proposes to determine the maximum rate of

changing the Euclidean metric S x( ) in the space X instead of a laborious search for Lyapunov functions. In particular

cases when this metric turns out to be a Lyapunov function in a concrete problem being solved, the found stability

conditions become necessary and sufficient.

PROBLEM STATEMENT

Let some process in an n-dimensional Euclidean space be described by the following vector ordinary differential

equation:

dy

dt
Y y t t� ( ( ), ), (1)

where Y y t t( ( ), ) is a given vector function satisfying the requirements ensuring the existence of a solution to Eq. (1) and

y t y t y tn( ) ( , ,= ( ) ( ))

1

� is the vector function of phase coordinates y ti ( ), i n= 1, ..., . The existence and continuity of

second partial derivatives

�

�

2

,

Y

y

i

k

2

i k n, , ,= 1 � , are additionally supposed.

Let z t( ) be some solution to Eq. (1) concerning which it is required to establish whether it is stable against small

disturbances x t( ). These disturbances can be specified in the form

x t y t z t( ) = ( ) ( )� .

We substitute this equality into Eq. (1) and rewrite it in coordinates

dz

dt

dx

dt
Y z x z x t i n

i i
i n n+ = ( + + , ), = 1

1 1

, , , ,� � . (1a)

We will investigate the stability based on these equations or by previously decomposing the right sides of

Eqs. (1a) in Taylor series in the neighborhood of the solution z t( ) as follows:

dz

dt

dx

dt
Y z t

Y

x
x Y

i i
i

i

kk

n

z

k i+ = ( , ) +

�

�

�

�

�

�

	




�

�

�

�



1

� , i n= 1 ,, ,�

where �Yi is the sum of decomposition terms with higher than the first-order of smallness with respect to x.

Since the solution z t( ) that is examined for stability satisfies Eq. (1), i.e., the equation

dz

dt
Y z t� ( , ), (2)

we obtain the equations of perturbed motion in the form

dx Y

x
x Y

i i

k zk

n

k i
dt

�

�

�

�

�

�

�

	




�

�

�



1

+ ,� i n= 1, ,� . (3)
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The stability of the given solution z t( ) is determined by the character of tending the solution x t( ) of Eqs. (3)

or (1a) to zero. The use of only the linear part of Eq. (3) is rarely resultative, and the analysis of this equation with

allowance for its nonlinear terms is usually carried out with the help of Lyapunov functions V x( ) .

If, as the Lyapunov function, we manage to select a definite positive quadratic formV x( ) such that its total time

derivative

�

( )V V x
dx

dt
�

�

�

�

	




��grad 0 used taking into account differential equations (3) of perturbed motion turns out to be

definite negative, then the solution z t( ) to Eq. (2) according to the main Lyapunov theorem [1, p. 39] is asymptotically

stable. However, as a rule, the search for such a functionV x( ) is laborious and not always efficient; therefore, the search

for the asymptotic stability corresponding to the pair ( ,

�

)V V� �0 0 is replaced with the search for the pseudo-stability

corresponding to the pair ( ,

�

)V V� �0 0 [1–4].

DESCRIPTION OF THE VARIATION METHOD

We will consider an approach to the problem of investigating the stability of dynamic systems that is different

from the classical methods [1–4] and is based on the use of calculus of variations [5]. Let, in Euclidean space, a metric

(for practical computations, it is more convenient to use the “semimetric” S x
k

k

n

=

1

2

2

1�


) and some small number � � 0 be

given. We will analyze the solutions to Eqs. (3) or (1a) in a small neighborhood of zero of the space X , i.e., in a domain

S x
k

k

n

=

1

2

<

2

1�


�. (4)

Definition 1. Some solution to Eq. (1) is called �-stable if a small number � � 0 and a moment 0 < <t
1

� can be

found such that, for all t t>

1

, the trajectory of motion x t( ) will not leave domain (4). Assume that motion is monotone

asymptotically stable if, for any arbitrarily small number � � 0, the trajectory of x t( ) monotonically tends to zero in

domain (4) and reaches zero when t � � and, hence, the trajectory of motion in the space X meets the condition

�

�S S x= (grad ) 0� .

Assume that, in the problem being considered, asymptotic stability takes place. As follows from Definition 1,

an object moves in the space X into sphere (4) and, hence, the function

�S is nonpositive in domain (4) and its maximum

is reached (when t t�
1

) at some point x of this domain, in particular, when x � 0. It is obvious that the global maximum in

this domain, if any, is achieved at zero of the space X , which signifies monotone asymptotic stability, and any local

maxima in domain (4) that are reached at interior points of this domain with the exception of the point x � 0 can

determine no more than �-stability according to Definition 1.

In fact, this statement is the proof of the following theorem.

THEOREM 1. In order that some solution of dynamic system (1) be �-stable in relation to small disturbances (4),

it is necessary that the total time derivative

�S computed with allowance for differential equations (1a) or (3) of perturbed

motion achieve its maximum in domain (4), and, in the case of monotone asymptotic stability, the maximum be reached

at zero of the space X .

COROLLARY 1. In order that the asymptotic stability of the zero solution of Eq. (1a) or Eq. (3) with respect to

coordinates xi take place, it is necessary that, in an arbitrarily small neighborhood of the point x � 0, the following

relations be satisfied [5, pp. 35 and 36]:

�

�

�

�

�

� �

2

2

0 0 1 2

�

,

�

( , , ..., )

S

x

S

x
i n

i i

.

COROLLARY 2. In order that, in open domain (4), the asymptotic stability of the zero solution of Eq. (1a) or

Eq. (3) take place, it is necessary that, in an arbitrarily small neighborhood of the point x � 0, the following relations be
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satisfied [5, pp. 35 and 36]:

�

�

�

�

�

� �

2

2

0 0 1 2

�

,

�

, , , ,

S

x

S

x
i n

i i

� .

Sufficiency takes place only if the function S in a concrete problem also turns out to be a Lyapunov function.

It is expedient to use Theorem 1, which allows to quickly and simply estimate the stability of complex essentially

nonlinear dynamic systems, as a preliminary tool for estimating stability before passing to complex Lyapunov methods [1–4].

Comment 1. If a problem possesses asymptotic stability specified by Definition 1 and Theorem 1, then the

necessary conditions of Corollaries 1 and 2 are satisfied. However, their satisfaction does not necessarily imply

asymptotic stability. Hence, some confirmation of the obtained result is required using the theory of Lyapunov functions

V x( ) that gives sufficient stability conditions. We have such a confirmation, for example, when the function S turns out to

be a Lyapunov function in the problem being considered. Due to its simplicity, the proposed method can be used for

obtaining a fast preliminary estimate for stability, and Theorem 1 does not imply that the function S must be a Lyapunov

function. For Example 2 considered below, it was impossible in [1] to find the Lyapunov function guaranteeing the

asymptotic stability with respect to the coordinates ( , )x x
1 2

, and it was found only with respect to the variables ( , )x x
1

2

2

.

It is easy to find the complete domain of stability from the coordinates ( , )x x
1 2

with the help of Theorem 1.

Comment 2. In the classical theory [1–4] based on different Lyapunov functions found for the same concrete

problem, as a rule, different stability conditions are obtained. Then the following question arises before the researcher

(engineer): which of such Lyapunov functions is correct? If we presume that all functions are correct, then how many

functions should be “thought up” to reveal all the stability domains in the problem being considered with allowance for

the fact that the search for even one such a function is quite often unsuccessful? Thus, the estimation of the stability of

essentially nonlinear dynamic systems should not be based on the method of Lyapunov functions. At the same time,

the Lyapunov method is flawless with respect to linear systems and is probably irreplaceable for them.

Consider now the technique of using the proposed variation method (which is based on necessary optimality

conditions and is simple and efficient in comparison with Lyapunov methods) for investigating the stability of essentially

nonlinear dynamic systems.

EXAMPLES OF APPLICATION OF THE NEW VARIATION METHOD

Example 1 [1, p. 46]. To estimate the stability of the essentially nonlinear dynamic system

�

( )

x
x

x

x
1

1

1

2

2

2

1

2� �

�

� , �

( ) ( )

x
x

x

x

x
2

1

1

2

2

1

2

2

1

2

1

� �

�

�

�

,

the Lyapunov function

V
x

x

x= +

1

2

1

2

2

2

1( )�

is found in [1, p. 46] that has confirmed the asymptotic stability of this dynamic system.

Note that asymptotic stability in this problem is determined using the proposed method without any difficulties.

Formulating the function

�

� �S x x x x� �
1 1 2 2

and computing its second partial derivatives, we obtain

�

�

�

2

= 4< 0, = 1,2

�S

x

i

i

2

,

which implies asymptotic stability according to Corollary 2. Note that, in this case, the function S turns out to be

one more Lyapunov function.
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Example 2. Let the nonlinear differential equations of perturbed motion be of the form [1, p. 54, 55]

� �x ax bx x cx x ex
1 1

2

2

2 1 2

2

3

= + , = + .

(5)

It is required to find constraints on the parameters ( , , , )a b c e of the dynamic system being considered that ensure its

asymptotic resistance to small disturbances ( , )x x
1 2

.

In [1, pp. 54 and 55], the Lyapunov function for system (5) is searched for in the form

V x x x x� � �

1

2

2

1

2

1 2

2

2

( )� � , (6)

where � and � are selected proceeding from the condition that the function V is positively defined and

�V negatively

defined. For the positiveness of the function V according to the Sylvester criterion [1, p. 32], it is necessary

and sufficient that the principal diagonal minors of the matrix

� �

� 1

�

�

�

�

	




�

�

be positive, whence the inequalities � � 0 and

� ��

2

follow. By virtue of Eqs. (5), the function

�V is of the form

�

( ) (V ax b c x x ex ax x bx cx x ex x� � � � � � � �� � �
1

2

1

2

2

2

4

1 2

2

3

1

2

2 1

2

3

).

When � � 0, this function is sign-variable (the proof of this fact is nontrivial). Putting � � 0, we obtain the

following quadratic form

�V with respect to the variables x
1

and x x
2

2

2

� :

�

( ) ( )V ax b c x x ex ax b c x x ex� � � � � � � �� � � �
1

2

1

2

2

2

4

1

2

1 2

2

2

for which the Sylvester criterion (only with respect to the variables x
1

and x
2

2

)

�� �

�

1

2

1

2

( )

( )

b c

b c e

�

�

�

�

�

�

�

�

	




�

�

�

�

implies the inequalities

� � �a ae b c< 0, 4 ( + ) > 0

2

� . (7)

From this, taking into account the computation of the roots of the quadratic equation

4 ( + ) = 0

2

� �ae b c� ,

it follows that

a e bc ae� � � � �0 0

1 2

, , , � � � , (8)

where �
1

and �
2

are real positive roots of the trinomial in (7).

Under conditions (8), the function V x( ) becomes definitely positive, the function

�

( )V x becomes definitely

negative, and, by the Lyapunov theorem, asymptotic stability takes place not with respect to the variables x
1

and x
2

but

only with respect to x
1

and x x
2

2

2

� .

Note that if we put � �1 and � � 0 in function (6), then, as is easily seen, the obtained function (we will call it S

instead of V ) remains positively defined and

�S remains negatively definite. But, in this case, taking into account

inequalities (7) that assume another form, it turns out that asymptotic stability takes place under other constraints on the

parameters of the equations of perturbed motion (5),

a e b c ae< 0, < 0, ( + ) < 4

2

.

(9)
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It is obvious that the parametric domains of asymptotic stability (8) and (9) for two different Lyapunov functions

are essentially different, and it turned out to be impossible in [1, p. 54, 55] to find a Lyapunov function ensuring the

asymptotic stability with respect to the pair ( , )x x
1 2

since it is absent for problem (5), and the function S for this pair of

coordinates is, in fact, not a Lyapunov function (it is such a function only for the pair ( , ))x x
1

2

2

.

Let us find the asymptotic stability with respect to the pair ( , )x x
1 2

with the help of the variation method. We first

define the function

�S based on metric (4) as follows:

�

� �S x x x x ax x x b c ex= + = + ( + ) +

1 1 2 2

1

2

1

2

2

2

4

(10)

and obtain the first partial derivatives of function (10) that determine the extremals

�

�

�S

x
ax b c x

1

1

2

2

= 2 + ( + ) = 0, (11)

�

�

� � � �

�

( )

S

x
x x b c ex

2

1 2

2

3

2 4 0. (12)

Owing to the assumption on the existence of a maximum of the function

�S , its second partial derivatives must be

nonpositive,

�

�

� �

2

1

2

2 0

�S

x

a , (13)

�

�

� � � �

2

2

2

1

2

2

2 6 0

�

[ ( ) ]

S

x

x b c ex . (14)

From inequality (13), we obtain a � 0, and the substitution of extremal (11) into inequality (14) signifies that, for

any arbitrarily small x
1

and x
2

, the following relations hold:

�

�

� �

�
�

�

�

�

�

�

�

�

�

2

2

2

2

2

2

6

2

0

�

( )S

x

x e
b c

a
, (15)

whence we obtain

12

2

ae b c� �( ) . (16)

After substituting extremal (12) in inequality (14), we obtain 8 0

2

2

ex � , whence it follows that e � 0. Note that

extremals (11) and (12) are compatible if 4

2

ae b c� �( ) .

Thus, based on the variation approach, we determine that the asymptotic stability of motion (with respect to the

variables ( , )x x
1 2

) takes place in the problem being considered under the conditions12

2

ae b c� �( ) , a� 0, and e� 0.

Example 3. In this example as well as in Example 2, it was succeeded to find asymptotic stability in [1, p. 41]

only with respect to the variables x
1

2

and x
2

. Using the variation method, we will determine the stability of the following

equations of perturbed motion with respect to the variables x
1

and x
2

:

� , �x x x x x x x x x x x x x x x
1 2 1 2

1

3

1

2

2

2 2 1 2

1

2

2 1

1

2

3

1

2

� � � � � � � � � �

2

2

. (17)

In this case, the total time derivative of metric (4) is of the form

�S x x x x x x x x x x x x x� � � � � � � � �
1 2

1

2

2

1

4

1

2

2

2

2

2

1

2

2

1

2

2

2

1

1

2

3

1

2

x
2

2

. (18)

If asymptotic stability holds in problem (17), then the second partial derivatives of function (18) must be

nonpositive,
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�

�

� � � �

2

1

2

2

1

2

2

2

2 12 0

�S

x

x x x , (19)

�

�

� � � � �

2

2

2

1

2

1 1 2

6 2 3 0

�S

x

x x x x . (20)

Since, as follows from inequality (20), the inequality

�

�

� � �

2

2

2

6 0

�S

x

holds in any small neighborhood of zero,

asymptotic tending to zero takes place with respect to the coordinate x
2

. It follows from inequality (19) that, for an

arbitrarily small x
2

0� , it is transformed into the inequality

�

�

� � �

2

1

2

1

2

12 0

�S

x

x , whence implies also asymptotic

tending to zero with respect to the coordinate x
1

.

Example 4 [1, p. 45]. Consider now the following differential equations of perturbed motion:

� , �x x x x x x x
1 1

2

2

2 1 2

2

3

3� � � � � � .

(21)

Consider the function

�

� � ( )S x x x x x x� � � � �
1 1 2 2 1

2

2 2

and find its extremals

�

�

� � � �

�

( )

S

x
x x

1

1

2

2

2 0,

�

�

� � �

�

( )

S

x
x x x

2

2 1

2

2

4 0.

There is the following common extremal in this problem:

x x
1

2

2

�
(22)

that, as is easily verified, is not a solution to the system of equations (21) and, hence, any trajectories of this

system in domain (4) intersect this extremal. Let us find the second partial derivatives

�

�

� �

2

1

2

2

�S

x

, (23)

�

�

� � �

2

2

2

1

2

2

2

2

4 8

�

( )

S

x

x x x . (24)

It follows from Eq. (23) that the trajectory asymptotically tends to zero along the coordinate x
1

. Since all

trajectories of system (21) intersect extremal (22), by substituting it in Eq. (24), we obtain that, in any arbitrarily

small neighborhood of zero, the inequality

�

�

� � �

2

2

2

2

2

8 0

�S

x

x holds, which indicates the asymptotic tending of the

trajectory to zero also with respect to the second coordinate x
2

.

Example 5 [1, p. 52]. Let the equations of perturbed motion be of the form

� , �x x x x x x
1

1

2

2

5

2 1

2

2

2� � � . (25)

For this system, we obtain

�

� �S x x x x x x xx x x� � � � �
1 1 2 2

1

3

1

2

5

1

2

3

2 .

Computing the second derivatives, we have

�

�

�

2

1

2

1

6

�S

x

x ,

�

�

� �

2

2

2

1

2

3

1 2

40 6

�S

x

x x x x .
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As is obvious, in any neighborhood (4) of zero, these partial derivatives can have any sign, and, hence, the system of

equations (25) is unstable. The problem of stability or instability of system (25) is solved simply without much difficulty

using the proposed variation method. At the same time, the solution based on the theory of Lyapunov functions presented

in [1, p. 52] has turned out to be a complicated problem that required “to think up” a suitable Lyapunov function and to

use not only Lyapunov theorems but also a rather complicated theorem of N. N. Krasovskii [1, pp. 51 and 52].

The next example is interesting in that all well-known theorems did not allow to make any single-valued

conclusion about the stability or instability of motion.

Example 6 [1, pp. 10, 20, 21, and 105]. Let the equations of perturbed motion be of the form

� ( )x x x x x
1 2 1

1

2

2

2

� � � �� , � ( )x x x x x
2 1 2

1

2

2

2

� � �� .

(26)

With allowance for these equations, we obtain the function

�

� � ( )S x x x x x x x x� � � � �
1 1 2 2

1

2

2

2

1

2

2

2

�

whose extremals are of the form

�

�

� � �

�S

x
x x x

1

1

1

2

2

2

3 0� ,

�

�

� � �

�S

x
x x x

2

2

1

2

2

2

3 0� .

From this, as is easily seen, we obtain that the extremals x x
1 2

0� � satisfy equations (26) of perturbed motion,

which, in fact, makes them useless for investigating stability. At the same time, the second partial derivatives of the

function

�S also become identically zeros, which does not allow to make any single-valued conclusion about the

stability or instability of system (26).

CONCLUSIONS

The considered variation method for investigating the stability of complex nonlinear dynamic systems

considerably differs from the Lyapunov methods presented in [1–4] and is simple in implementation. It allows to

considerably simplify and to many times speed up the search for domains of motion stability since the need does not arise

to search for Lyapunov functions and to use the complicated and hardly computed criteria of J. J. Sylvester, L. Hurwicz,

E. J. Routh, etc. in the case of large dimensions. Simple examples show that it is expedient to use the variation method

for the preliminary stability analysis of essentially nonlinear dynamic system. Using this method, it is possible to find

asymptotic stability in several minutes or hours if it exists in the problem being considered. At the same time, this

method does not solve all stability problems and, in particular, cannot be used to estimate the stability of linear systems.
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