
Cybernetics and Systems Analysis, Vol. 55, No. 3, May, 2019

NEW MEANS OF CYBERNETICS, INFORMATICS,

COMPUTER ENGINEERING, AND SYSTEMS ANALYSIS

PARTITIONING A SET OF VECTORS

WITH INTEGER COORDINATES
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Abstract. The problem of partitioning a set of vectors with integer coordinates is considered with

respect to the coordinate-wise and lexicographic order on vectors using automaton interpretation.

An FPGA-based hardware implementation of three-valued logic operations is proposed to check

the satisfiability of formulas of this logic.
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INTRODUCTION

Synthesizing hardware to solve the problem of partitioning a set of Boolean vectors and vectors with

integer-valued non-negative coordinates with respect to a threshold value was considered in [1] (using algorithms from

[2, 3]). This approach is well-known as “the technology of reconfigurable computing” [4, 5] and its implementation in

real projects (see [6–13]) became possible owing to the emergence of the programmable logic integrated circuits (PLIC).

This article considers a generalization of the method for solving the problem of partitioning a set of vectors, which

was considered in [1], and the use of this method to check the satisfiability of formulas of three-valued logic.

PROBLEM STATEMENT

A finite set of vectors V m� { }� � �
1 2

, , ,� of dimension n N� and a fixed threshold vector a c c cn� ( , , , )

1 2

�

are given, where � i , a Z
n

� , and Z is the set of integer numbers. An order relation is specified on the set of vectors. Most

frequently, such a relation is the coordinate-wise (partial) order or lexicographic (complete) order.

Definition 1. Let x x x Zn

n
� �( , , )

1

� , and let y y y Zn

n
� �( , , )

1

� . The binary relation x y i n� � � �1, , ,�

x yi i� is called the coordinate-wise order.

The binary relation x y i j x y x yi i j j� � � � � � �( ) ( ), i j n, , ,�1� , is called the lexicographic order.

We consider that, with respect to the coordinate-wise order x y� , for at least one i n�1, ,� , we have x yi i� .

Partition problem. It is necessary to partition the set V with respect to the threshold vector a into the subsets

V V a
1

� � �{ }� �| , V V a
2

� � 	{ }� �| , V V
3

� �{� | � � a}, and V V a
4

� �{ }� �| � , where the symbol� means that

the corresponding vectors are not comparable (there are the following three subsets for the lexicographic order:V
1

,V
2

, andV
3

).

This article considers the coordinate-wise order since the solution of the partition problem for the lexicographic

order obviously follows from the solution of the partition problem for the coordinate-wise order.
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AUTOMATON INTERPRETATION OF THE PARTITION PROBLEM

Case of integer nonnegative coordinates of vectors. The automaton approach to the solution of the partition

problem consists of constructing a homogeneous network from simple automata whose final states determine the

membership of a vector � �V in one of the subsetsV
1

,V
2

,V
3

, orV
4

. An advantage of the automaton approach is that it

allows partitioning the set V into the subsets V
1

, V
2

, V
3

, and V
4

simultaneously for all the relations R � � 	 �{ }, , ,� .

The automata from which the network is constructed are automata without outputs [14, 15], and the formal definition of

a network of automata is as follows.

Definition 2. A network of automata is understood to be an n-tuple A � ( , , )A An1

� consisting of automata presented

in the form A S X f a Fi i i i

i

i� ( , , , , )

0

, i n�1 2, , ,� . A state of the network A is an n-tuple of states ( , , )a an1

� , where

a Si i� for each i n�1 2, , ,� . A network state ( , , )a an1

� is called initial if a ai

i
�

0

and final if a Fi i� for all

i n�1 2, , ,� . Then an n-tuple x x xn� ( , , )

1

� , where x X i ni i� �, , , ,1 2 � , is called an action in the network A

that switches the network from the state ( , , )a an1

� into a state ( , , )b bn1

� so that ( , , )b bn1

�

� ( ( , ), , ( , ))f a x f a xn n n1 1 1

� .

A network is called homogeneous if all its automata are of the same form.

To solve the classification problem, a homogeneous network of automata [14, 15] is used whose form is shown

in Fig. 1. The initial state of an automaton is its zero state, all the states of an automaton are final, and its input alphabet

consists of column vectors in binary alphabet that represent the corresponding pairs of coordinates of a vector � fromV

and the threshold vector a .

We will explain this representation by an example.

Example 1. Let � � ( , )3 4 , and let a � ( , )3 2 . These vectors are represented by the binary words

� � � �
T

�




�

�



�

� �

�

�

�

�

�

�

�

3

4

011

100

3 2 1

, where �
3

0

1

�

�

�

�

�

�

�

, �
2

1

0

�

�

�

�

�

�

�

, and �
1

1

0

�

�

�

�

�

�

�

; a a a a
T

�




�

�



�

� �

�

�

�

�

�

�

�

3

2

011

010

3 2 1

, where a
3

0

0

�

�

�

�

�

�

�

,

a
2

1

1

�

�

�

�

�

�

�

, and a
1

1

0

�

�

�

�

�

�

�

. Thus, the alphabet of the automaton A
1

consists of the symbols x
1

0

0

�

�

�

�

�

�

�

, x
2

0

1

�

�

�

�

�

�

�

, x
3

1

0

�

�

�

�

�

�

�

, and

x
4

1

1

�

�

�

�

�

�

�

. The following words are applied to the input of the automaton A
1

: p x x x
1 1 4 4

011

011

�

�

�

�

�

�

�

� and

p x x x
2 3 2 1

100

010

�

�

�

�

�

�

�

� beginning with their high-order digits; these words represent the first and second coordinates of the

vectors � and a, respectively.

End of Example 1.

The set to which belongs the vector � is determined depending on the final state at which the network of automata A

completes its operation. In the above example, we have the vector � 	 a with respect to the coordinate-wise and

lexicographic orders, and it should be attributed to the subset V
2

.

Proposition 1. The automaton A
1

correctly computes the relation x y� between two integer positive numbers x

and y represented in binary number system.
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Fig. 1. Automaton A
1

.



The proof obviously follows from the fact that the order relation x y� on vectors is extended to digits of their

binary representation of coordinates. Indeed, let p x x xx k�
1 2

� and p y y yy k�
1 2

� be binary words representing the

numbers x and y, respectively. Since binary words are applied to the input of the automaton A
1

beginning with their

high-order digits, x y� if x yj j� for some1� �j k and x yi i� for all i j� . This means that the jth digit of the number

x is less than the jth digit of the number y, and then the automaton transits from state 0 to state 2 (see Fig. 1). This means

that x y� . The other cases are similar.

End of the proof.

A general solution of the problem of partitioning the set V is find by the network of automata A � ( , , )A An1

�

(the case of n-dimensional vectors fromV ). Tuning a network to solve the partition problem is as follows: all the automata of

the network are identical (n instances of the automaton A
1

in Fig. 1); the network is in its initial state; words are applied to the

inputs of the automata of the network beginning with high-order digits. The binary word representing the first coordinates of

the vectors � and a is applied to the input of the first automaton of the network, the word representing the second coordinates

of the vectors is applied to the input of the second automaton of the network, etc. As has been noted above, the membership of

the vector � in a subset Vi depends on the final network state to which the automaton transits after reading input words.

If the order relation is coordinate-wise and the final state of the network is of the form

(a) (0, 0, 0), then � � a and, therefore, � �V
3

;

(b) (p q r, , ), where p q r, , ,�{ }0 1 and not all the values of p q, , and r are equal to zero, then � 	 a and, therefore, � �V
2

;

(c) (p q r, , ), where p q r, , ,�{ }0 2 and not all the values of p q, , and r are equal to zero, then � � a and, therefore, � �V
1

;

(d) (1, 2, 0), (0, 1, 2), (2, 1, 0), (2, 1, 2). (2, 2, 1), …, then the vector � is not comparable with a and, therefore, � �V
4

.

If the order relation is lexicographic and the final state of the network is

(a' ) (0, 0, 0), then � � a and, therefore, � �V
3

;

(b' ) (p q r, , ) and p q� or p q� and q r� , then � 	 a and, therefore, � �V
2

;

(c' ) (p q r, , ) and p q	 or p q� and q r	 , then � � a and, therefore, � �V
1

.

Example 2. Assume thatV � �{�
1

4 5 0( , , ), �
2

3 4 2� ( , , ), �
3

0 1 1� ( , , ), �
4

1 1 2� ( , , ), and �
5

4 3 1� ( , , )} and that

the threshold vector a � ( , , )1 1 2 . Then the pair ( , )�
1

a is represented as follows:

�
1

4

5

0

100

101

000

�




�

�

�

�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

, a �




�

�

�

�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1

1

2

001

001

010

and the words corresponding to the first coordinates are of the form p
1

100

001

�

�

�

�

�

�

�

, those corresponding to the second

coordinates are of the form p
2

101

001

�

�

�

�

�

�

�

, and those corresponding to the third coordinates are of the form

p
3

000

010

�

�

�

�

�

�

�

.

The word p
1

is applied to the input of the first automaton of the network, the word p
2

is applied to the input of

the second automaton of the network, and p
3

is applied to the input of the third automaton. As a result, we obtain the

states (1, 1, 2) in which the automata have stopped. This means that the vectors �
1

and a are not comparable with respect

to the coordinate-wise order, and, with respect to the lexicographic order, �
1

	 a . Next, for the coordinate-wise order,

we obtain the coordinates

�
2 1

011

100

010

011

001

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

p , p
2

100

001

�

�

�

�

�

�

�

, p
3

010

010

�

�

�

�

�

�

�

that switch the network to the states (1, 1, 0), which signifies that �
2

	 a ;
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the coordinates

�
3 1

000

001

001

000

001

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

p , p
2

001

001

�

�

�

�

�

�

�

, p
3

001

010

�

�

�

�

�

�

�

that switch the network to the states (2, 0, 2), which signifies that �
3

� a ;

the coordinates

�
4 1

100

100

010

001

001

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

p , p
2

001

001

�

�

�

�

�

�

�

, and p
3

010

010

�

�

�

�

�

�

�

that switch the network into the state (0, 0, 0), which signifies that �
4

� a ;

the coordinates

�
5 1

100

011

001

100

001

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

p , p
2

011

001

�

�

�

�

�

�

�

, p
3

001

010

�

�

�

�

�

�

�

that switch the network to the state (1, 1, 2), which means that the vector �
5

is not comparable with a.

Thus,V V V V V� � � �
1 2 3 4

, whereV
1 3

� { }� ,V
2 2

� { }� ,V
3 4

� { }� , andV
4 1 5

� { }� �, is the partition of the set

A with respect to the coordinate-wise order.

End of Example 2.

Proposition 2. The homogeneous network of automata A � ( , , )A An1

� correctly computes the relation x y�

between two vectors x and y with integer positive coordinates that are represented in binary number system.

The proof follows directly from Proposition 1 and items (a)–(d) for the coordinate-wise order relation and from

items (a' )–(c' ) for the lexicographic order relation. Indeed, let x y� ; then, according to Proposition 1, one of automata of

the network A transits to terminal state 2 (see Fig. 1) and remains in it until the end of operation of the network; the other

automata remain in state 0 (equality of coordinates) or transit to state 2 and remain in it until the end of operation of the

network. According to item (c), for the coordinate-wise order, � � a . For the lexicographic order relation, the proof

follows from item (c' ). The other cases are similar.

End of the proof.

Case of integer-valued coordinates of vectors. Consider the above problem statement but in which the

coordinates of vectors fromV are not natural but integer numbers. In this case, the problem will be solved by the method

considered above if negative coordinates of vectors are represented in the form of 2’s complements. Note that the 2’s

complement of a number x whose binary representation is x x x xn n�1 1 0

... is defined as follows:

if x � 0, then xn � 0 and ( ) ...x x x xn2 1 1 0

0�
�

,

if x� 0, then xn �1and ( )x x xn2 1 0

1 1� �
�

� , where the bit xn is the sign bit and x xi i� �1 for 0 1� � �i n .

The automaton for computing a 2’s complement is represented by the composition of two automata, the first of

which constructs the complement and the second implements the operation of adding 1. The composition of these

automata is represented by the automaton C shown in Fig. 2.

In Fig. 3, the automaton B
1

is presented; a homogeneous network B is constructed from such automata. The state

a
0

is introduced to recognize the signs of the binary numbers representing the coordinates of vectors from V . All the

states of the automaton B
1

, except for the state a
0

are final. If sign bits are different, then one can immediately determine

the largest vector. If sign bits are identical, then positive coordinates are compared as is shown above, and if these bits are

negative, then they are compared by the part of the automaton that corresponds to state 3 in Fig. 3.
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Example 3. Assume that V � � �{�
1

4 5 0( , , ), �
2

3 4 2� �( , , ), �
3

0 1 1� �( , , ), and �
4

1 1 2� ( , , )} and that the

threshold vector a � �( , , )1 1 2 . Then the pair ( , )�
1

a is represented as follows:

�
1

4

5

0

1100

0101

0000

�

�


�

�

�

�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

, a �

�


�

�

�

�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1

1

2

1111

0001

0010

,

words corresponding to the coordinates are

p
1

1100

1111

�

�

�

�

�

�

�

, p
2

0101

0001

�

�

�

�

�

�

�

, p
3

0000

0010

�

�

�

�

�

�

�

,

and the result is represented by the state (1, 1, 2). This means that the vectors �
1

and a are not comparable.

For �
2

and a, we have

�
2 1

0011

0100

1110

1100

1111

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

p , p
2

0100

0001

�

�

�

�

�

�

�

, p
3

1110

0010

�

�

�

�

�

�

�

,

and the result is the state (1, 1, 2); consequently, �
2

and a are also not comparable.

For �
3

and a, we have

�
3 1

0000

1111

0001

0000

1111

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

p , p
2

1111

0001

�

�

�

�

�

�

�

, p
3

0001

0010

�

�

�

�

�

�

�

,

and the result is the state (1, 2, 1); this means that �
3

and a are not comparable.

For �
4

and a, we have

�
4 1

0001

0001

0010

0001

1111

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

p , p
2

0001

0001

�

�

�

�

�

�

�

, p
3

0010

0010

�

�

�

�

�

�

�

,

and the result is (1, 0, 0), which means that a� �
4

.

End of Example 3.
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Proposition 3. The automaton B
1

correctly computes the relation x y� between two integer numbers x and y that

are represented in binary number system in the form of their 2’s complements.

The proof obviously follows from Proposition 1. Indeed, when transiting from the initial state a
0

, the automaton B
1

recognizes the sign, passes to the state 0 if the numbers are positive, and them operates as the automaton A
1

.

If the numbers are negative, then the automaton B
1

passes to the state 3 and then operates as the automaton A
1

, only the

transitions from the state 3 to the state 1 or 2 are asymmetric to the transitions of the automaton A
1

from the state 0 to the

state 1 or 2. If the signs are different, then the automaton B
1

immediately passes either to the state 1 (the case when x y	 )

or to the state 2 (the case when x y� ). In the process of comparison, passing to the state 1 (or 2), the automaton B
1

remains in it. This means that the comparison is performed unambiguously.

End of the proof.

The comparison of vectors of length n is performed by a homogeneous network composed of automata B
1

.

THEOREM 1. The networks A and B correctly partition a set of vectors with respect to the coordinate-wise and

lexicographic orders and a threshold vector.

The proof follows from Propositions 1–3.

The correctness of functioning the homogeneous network B for the lexicographic order is also illustrated by the

results of testing given in Table 1.

IMPLEMENTATION OF COMPARING TWO VECTORS BASED

ON LOGICAL STRUCTURES

Since the classification problem is solved by a homogeneous network of automata, it suffices, based on a logical

structure, to implement only the operations of comparing of two vectors, i.e., only the automata A
1

and B
1

. For an arbitrary

vector � �V of dimension n N� and a fixed threshold vector a, where �, a Z
n

� and Z is the set of integer numbers, it is

necessary to form the following results of comparison: � � a (Less), � 	 a (More), and � � a (Equal).

467

TABLE 1. Results of Comparison of Vectors A and B Represented in Direct and

Complementary Codes

Direct Binary Code Complementary Binary Code

Binary

vector A
j

Binary

vector B
i

Result of

comparison

Binary

vector A
j

Binary

vector B
i

Result of

comparison

A
1

000 0� �( )

B
1

000 0� �( ) A B� (Equal)

A
1

000 0� �( )

B
1

000 0� �( ) A B� (Equal)

B
2

010 2� �( ) B A	 (More) B
2

010 2� �( ) B A	 (More)

B
3

111 3� �( ) B A� (Less) B
3

101 3� �( ) B A� (Less)

B
4

110 2� �( ) B A� (Less) B
4

110 2� �( ) B A� (Less)

B
5

101 1� �( ) B A� (Less) B
5

111 1� �( ) B A� (Less)

A
2

001 1� �( )

B
1

000 0� �( ) B A� (Less)

A
2

001 1� �( )

B
1

000 0� �( ) B A� (Less)

B
2

010 2� �( ) B A	 (More) B
2

010 2� �( ) B A	 (More)

B
3

111 3� �( ) B A� (Less) B
3

101 3� �( ) B A� (Less)

B
4

110 2� �( ) B A� (Less) B
4

110 2� �( ) B A� (Less)

B
5

101 1� �( ) B A� (Less) B
5

111 1� �( ) B A� (Less)

A
3

011 3� �( )

B
1

000 0� �( ) B A� (Less)

A
3

011 3� �( )

B
1

000 0� �( ) B A� (Less)

B
2

010 2� �( ) B A� (Less) B
2

010 2� �( ) B A� (Less)

B
3

111 3� �( ) B A� (Less) B
3

101 3� �( ) B A� (Less)

B
4

110 2� �( ) B A� (Less) B
4

110 2� �( ) B A� (Less)

B
5

101 1� �( ) B A� (Less) B
5

111 1� �( ) B A� (Less)

A
4

110 2� �( )

B
1

000 0� �( ) B A	 (More)

A
4

110 2� �( )

B
1

000 0� �( ) B A	 (More)

B
2

010 2� �( ) B A	 (More) B
2

010 2� �( ) B A	 (More)

B
3

111 3� �( ) B A� (Less) B
3

101 3� �( ) B A� (Less)

B
4

110 2� �( ) A B� (Equal) B
4

110 2� �( ) A B� (Equal)

B
5

101 1� �( ) B A	 (More) B
5

111 1� �( ) B A	 (More)



Let A and B (A a� and B � �) be binary vectors of dimension n that are represented as follows:

A a a a an n n�
� �1 2 0

... and B b b b bn n n�
� �1 2 0

... , where an and bn are sign bits of A and B . The block diagram of

an algorithm for comparing binary vectors (in direct codes) is presented in Fig. 4. It demonstrates the result

of comparison of two vectors.

Example 4. Let A and B be sets of vectors with binary representation of their coordinates, i.e.,

a a a a a An n n� �
� �1 2 0

... and b b b b b Bn n n� �
� �1 2 0

... , where an and bn are the sign bits of a and b. Assume that, for

the case when n � 3, we have

A A A A A� � � � �{ }

1 2 3 4

000 001 011 110; ; ; ,

B B B B B B� � � � � �{ }

1 2 3 4 5

000 010 111 110 101; ; ; ; .

It is required to find the partition of vectors from the set B with respect to the lexicographic order and

corresponding threshold vectors from the set A for a relation R � � 	 �{ }, , .

We now consider the implementation of a comparison algorithm (numbers are represented in direct codes) based

on FPGA crystals using a CAD system with subsequent modeling in the environment of ModelSim. The results of

modeling (the time diagram presented in Fig. 5) confirm the correctness of functioning the structure for comparing signed

numbers and have the following designations:
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Fig. 4. Block diagram of algorithm for comparing signed binary numbers.

Fig. 5. Time diagram of the algorithm for comparing binary signed numbers

in direct code.



A h
1

000 3 0� � � , A h
2

001 3 1� � � , A h
3

011 3 3� � � , A h
4

110 3 6� � � ;

B h
1

000 3 0� � � , B h
2

010 3 2� � � , B h
3

111 3 7� � � , B h
4

110 3 6� � � , B h
5

101 3 5� � � .

The considered example of implementation of the algorithm for comparing two-digit signed numbers according to

the results of modeling is executed in an FPGA crystal during several nanoseconds. With increasing the digit capacity

of numbers, the time of executing the operation is not practically changed since the implementation presumes parallel

digit-by-digit comparison.

End of an Example 4.

IMPLEMENTATION OF OPERATIONS IN THREE-VALUED LOGIC

Consider a method for checking the satisfiability of formulas of Lukasiewicz’s three-valued logic [16] that is also

applicable to Kleene’s three-valued logic, to Bochvar’s three-valued logic, and also to any k-valued logic. The possibility

of using the described method is based on modeling the operations of three-valued logic using two-valued logic. We will

present the table of operations of Lukasiewicz’s three-valued logic in which the values 1, 1/2, 0 (Table 2) are used and

the table of modeling these operations by two-valued logic (Table 3).

To provide the correspondence with two-valued logic, the values of three-valued logic are coded as follows:

1 10� , 1 2 01/ � , and 0 00� .

Since two bits are used for coding values of three-valued logic, outputs will also be two-bit values. Let x x x�
1 0

,

let y y y�
1 0

, and let z z z�
1 0

be the bit representation of input and output values of variables. We will construct the

following algebraic expressions for the presented logical operations with allowance for the adopted encoding:

(1) the operation A B� is specified as follows:

z x x y y y y x x y y
0 1 0 1 0 1 0 0 1 1 0

� � �( ) , z x x y y
1 0 1 1 0

� ,

the scheme of implementation of this operation is presented in Fig. 6;

(2) the operation A B� is specified as follows:

z x y x x y
0 1 1 0 0 0

� �( ), z x y y x x y y y
1 1 1 0 0 1 1 0 1

� � �( ) ,

the scheme of implementation of this operation is presented in Fig. 7;

(3) the operation A B� is specified as follows:

z y x x y x x y
0 1 1 0 0 1 0 0

� �( ), z y y x x x x y x x y
1 1 0 1 0 1 1 1 0 0 0

� � � �( ) ( ),

the scheme of implementation of this operation is presented in Fig. 8;

(4) the operation A is specified as follows:

z x x
0 1 0

� , z x x
1 0 1

� ,

the scheme of implementation of this operation is presented in Fig. 9.

We now consider the implementation of operations of three-valued logic (which corresponds to Table 3) based on

FPGA crystals using a CAD system with subsequent modeling in the environment ModelSim. The results of modeling

(the time diagram presented in Fig. 10) confirm the correctness of functioning the structures of three-valued logic.

The following designations are used: Zand, Zor, AsB, and invA correspond to the logical operations A B� , A B� ,

A B� , and A , and the states �2 0h , �2 1h , and �2 2h correspond to the values of three-valued logic in the encoding

0 00� , 1 2 01/ � , and 1 10� ; �2 3h is the forbidden state.

THEOREM 2. The presented implementation of the logical operations for three-valued logic is correct,

i.e., the values of these operations are correctly computed.

The proof is reduced to the consideration of the correctness of implementation of each operation. Consider the

proof only for the case of the conjunction and disjunction operations since it is similar for the other operations.
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TABLE 2. Truth Values of Logical Functions for Three-Valued Logic

A x� B y�

min ( , )x y

corresponds to

A B�

max ( , )x y

corresponds to

A B�

min ( , )1 1 � �x y

corresponds to

A B�

( – )1 x

corresponds to

A

1 1 1 1 1 0

1 1 2/ 1 2/ 1 1 2/ 0

1 0 0 1 0 0

1 2/ 1 1 2/ 1 1 1 2/

1 2/ 1 2/ 1 2/ 1 2/ 1 1 2/

1 2/ 0 0 1 2/ 1 2/ 1 2/

0 1 0 1 1 1

0 1 2/ 0 1 2/ 1 1

0 0 0 0 1 1

TABLE 3. Modeling Truth Values of Logical Functions for Three-Valued Logic

A x� B y�

min ( , )x y

corresponds to

A B�

max ( , )x y

corresponds to

A B�

min ( , )1 1 � �x y

corresponds to

A B�

( – )1 x

corresponds to

A

10 10 10 10 10 00

10 01 01 10 01 00

10 00 00 10 00 00

01 10 01 10 10 01

01 01 01 01 10 01

01 00 00 01 01 01

00 10 00 10 10 10

00 01 00 01 10 10

00 00 00 00 10 10

AND

AND

AND

AND

AND

OR

AND

AND

OR

Fig. 6. Scheme of implementation of the operation A B� .

x
1

x
0

y
1

y
0

z
1

z
0

x x
0 1

x x
1 0

y y
0 1

y y
1 0



According to the encoding table, to the operation A B� corresponds the DNF z x x y y x x y y x x y y
0 0 1 1 0 1 0 1 0 1 0 1 0

� � �

that is transformed into the following final expression: z x x y y y y x x y y
0 1 0 1 0 1 0 0 1 1 0

� � �( ) and, for z x x y y
1 0 1 1 0

� , any

transformations are not required. It is these expressions that are implemented by the scheme for A B� .

According to the encoding table, to the operation A B� corresponds the DNF of the form

z x x y y x x y y y y x x
0 1 0 0 1 1 0 0 1 1 0 0 1

� � � that is transformed into the following final expression: z x y x x y
0 1 1 0 0 0

� �( )

and, for z
1

, its DNF is of the form z x x y y x x y y x x y y y y x x y y x x
1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0

� � � � � that is transformed

into the following final expression: z x y y x x y y y
1 1 1 0 0 1 1 0 1

� � �( ). It is precisely these expressions that are

implemented by the scheme for A B� .

End of the proof.
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Fig. 7. Scheme of implementation of the operation A B� .

x
1

x
0

y
1

y
0

z
1

z
0

x y
1 1

x y
0 0

AND

AND

AND

OR

AND

AND

AND

AND

OR

OR

AND

AND

AND

AND

OR

Fig. 8. Scheme of implementation of the operation A B� .
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1

1
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0 1
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1 0
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0 1
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1 0

y y
1 0

x y
0 0



Example 5. Let us compute the value of the following formula in Lukasiewicz’s three-valued logic:

F � � � � ��(( ) ( )) .A B C D B

To compute the value of this formula, the network is synthesized based on the structure of the formula F .

The synthesized network assumes the form

S S S S S
1 2 3 1 4

( ( ( , ), ( , )), ( ))A B C D B ,

where S
1

, S
2

, S
3

, and S
4

are the schemes of implementing the functions of conjunction, disjunction, implication,

and negation, respectively. In particular, let the following input values of the variables be given: A �1, B� 0,

C �1 2/ , and D � 0; then we obtain the following value of the formula F at the output:

S
3

10 00 00( , ) � , S
1

01 00 00( , ) � , S
4

00 10( ) � ,

S S S S S S S S
1 2 3 1 4 1 2 4

10 00 01 00 00 00 00( ( ( , ), ( , )), ( )) ( ( , ),� ( )) ( , )00 00 10 00

1

� �S .

Thus, the value of the formula is equal to zero, which corresponds to the value computed according to Table 2. For

the values of A �1, B�1, C �1 2/ , and D �1 2/ , we obtain the following value of the formula F :

S
3

10 10 10( , ) � , S
1

01 01 01( , ) � , S
4

10 00( ) � ,

S S S S S S S S
1 2 3 1 4 1 2 4

10 10 01 01 10 10 01( ( ( , ), ( , )), ( )) ( ( , ),� ( )) ( , )10 10 00 00

1

� �S .

End of Example 5.

It follows from Example 5 that this approach allows to synthesize a network from the structure of a specified

formula in three-valued logic and, using this network, to check this formula for the satisfiability for the values of the

input variables.
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AND

AND

Fig. 9. Scheme of implementation

of the operation A.

x
0

x
1

z
0

z
1

x x
0 1

x x
1 0

Fig. 10. Time diagram of functioning the operations of three-valued logic.



CONCLUSIONS

This article considers the solution of the problem of partitioning a set of vectors with integer coordinates with

respect to the coordinate-wise and lexicographic orders on vectors. In this case, the automaton interpretation of the

partition problem was used that solves the problem in general form. The presented solution is independent of the digit

capacity of coordinates of vectors and is applicable to arbitrary values of coordinates of vectors and threshold values.

Thus, the methods for solving partition problems are generalized that were considered in [1]. The correctness of the

proposed solution is proved and confirmed by a hardware implementation on FPGA crystals and the corresponding

modeling with obtaining time diagrams. These methods are used to check the satisfiability of formulas of three-valued

logic. The corresponding logical network is synthesized based on the structure of a formula.
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