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SYSTEMS ANALYSIS

CONVERGENCE OF TWO-STAGE METHOD

WITH BREGMAN DIVERGENCE FOR SOLVING

VARIATIONAL INEQUALITIES
�

D. A. Nomirovskii,
1†

B. V. Rublyov,
1‡

and V. V. Semenov
1††

UDC 517.988

Abstract. A new two-stage method is proposed for the approximate solution of variational inequalities

with pseudo-monotone and Lipschitz-continuous operators acting in a finite-dimensional linear

normed space. This method is a modification of several well-known two-stage algorithms using

the Bregman divergence instead of the Euclidean distance. Like other schemes using Bregman

divergence, the proposed method can sometimes efficiently take into account the structure of the

feasible set of the problem. A theorem on the convergence of the method is proved and, in the case

of a monotone operator and convex compact feasible set, non-asymptotic estimates of the efficiency

of the method are obtained.

Keywords: variational inequality, pseudo-monotonicity, monotonicity, Lipschitz condition,

two-stage method, Bregman divergence, convergence.

INTRODUCTION

A lot of important problems in operations research and mathematical physics can be written in the form of

variational inequalities [1, 2]. Such inequalities are applied especially often in mathematical economics, mathematical

modeling of transportation flows, and game theory [1, 2]. Many methods are proposed for their solution, in particular,

projection methods (which use the operation of metric projection onto feasible set) [1–17]. The Korpelevich

extra-gradient method [3] is the most well-known analog of the gradient projection method for variational inequalities.

Many publications are devoted to its generalization and analysis [4–6, 9–14]. In particular, modifications of the

Korpelevich algorithm with one metric projection onto the feasible set are proposed [9–14]. In so-called subgradient

extra-gradient algorithms [9, 10, 13, 14] and the Korpelevich algorithm, the first stages of iteration coincide, and to

obtain the next approximation, projection is carried out not onto the feasible set but on some half-space being the support

for the feasible set. In the early 1980s, Popov proposed an interesting modification of the Arrow–Hurwitz algorithm of

finding saddle points of convex–concave functions [15]. A modification of the Popov method for solution of variational

inequalities with monotone operators is analyzed in [16]. A two-stage proximal algorithm is proposed in [18] for solution

of the equilibrium programming problem, which is an adaptation of the method [15] to general Ky Fan inequalities.

The majority of the above methods use Euclidean distance and projection. In certain cases, this does not allow

application of the structure of feasible sets and efficient problem solution. A possible way out is a more flexible selection
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of the distance for projection onto the feasible set. Bregman was the first to successfully implement such strategy in [19],

where he proposed a method of the type of cyclic projection for finding the common point of convex sets. This paper has

initiated a new field in mathematical programming and nonlinear analysis. To solve convex optimization problems,

Nemirovskii and Yudin proposed the mirror descent method in the late 1970s [20], which became widely used to solve

high-dimensional problems. In case of constrained problems, it can be interpreted as a version of the subgradient

projection method, where projection is understood in the sense of Bregman divergence [21]. The mirror descent method

allows taking into account the structure of feasible set of the optimization problem. For example, the Kullback–Leibler

divergence can be used as the distance for simplex and an explicitly calculated operator of projection onto simplex can be

obtained [21]. Nemirovskii’s proximal mirror method [4] is one of the modern variants of the extra-gradient method

for variational inequalities. Such methods are considered in detail in [5]. An interesting method of dual extrapolation for

solution of variational inequalities is proposed in [6]. The paper [17] analyzes the two-stage proximal mirror method,

which is a modification of the two-stage proximal algorithm [18] with the use of the Bregman divergence instead

of Euclidean distance.

The present paper continues the study [22] and analyzes a new two-stage method for approximate solution of

variational inequalities with pseudo-monotone and Lipschitz-continuous operators defined in finite-dimensional linear

normed space. The method is a modification of the two-stage algorithms described earlier [16, 18]. The proposed scheme

can also be obtained by replacing the feasible set with special support half-spaces at the first stage of the proximal mirror

method [17].

PROBLEM STATEMENT AND ALGORITHM DESCRIPTION

Let E be a finite-dimensional real linear space with norm | | | |� (not necessarily Euclidean one). Denote

the dual space by E *

. For a E�

*

and b E� , denote by ( , )a b the value of the linear function a at point b. Define dual

norm | | | |

*

� on E *

in a standard way: | | | | max ( , ): | | | |

*

a a b b� �{ }1 , ensuring the Schwarz inequality

( , ) | | | | | | | |

*

a b a b� for all a E�

*

and b E� .

LetC be a nonempty subset of space E and A be an operator acting from E into E *

. Let us consider the variational

inequality: find

x C� : ( , )Ax y x� � 0 � �y C , (1)

denote its set of solutions by S .

Assume that the following conditions are satisfied:

	 set C E
 is convex and closed;

	 operator A E E:

*

� is pseudo-monotone and Lipschitz-continuous with constant L � 0 on C;

	 set S is not empty.

Remark 1. Let us remind that pseudo-monotonicity of operator A on set C implies that for all x, y C� from

( , )Ax y x� � 0 it follows that ( , )Ay y x� � 0.

Let us consider the dual variational inequality: find

x C� : ( , )Ay x y� � 0 � �y C . (2)

Denote the set of solutions of (2) by S
d
. Note that set S

d
is convex and closed. Inequality (2) is sometimes called

weak or dual statement of (1), solutions (2) are called weak solutions of (1) [1]. Indeed, for pseudo-monotonicity of

operator A, we have S S
d


 . Under the considered conditions, S S
d

� [1].

Let us introduce the structures necessary to formulate the algorithm. Let function �:E � � 
 ��� � { } satisfy

the following conditions:

	 int dom � 
 E is a nonempty convex set;

	 � is continuously differentiable on int dom �;
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	 if int dom bd dom� �� � �x xn , then | | ( ) | |

*

� � ��� xn ;

	 � is strongly convex with respect to the norm | | | |� with the strong convexity constant � � 0:

� � �
�

( ) ( ) ( ( ), ) | | | |a b b a b a b� � � � � �

2

2

� �a dom �, b� int dom �.

Remark 2. Functions � are called distance generating functions.

The Bregman divergence corresponding to the function � is defined by the formula [21]

V a b a b b a b( , ) ( ) ( ) ( ( ), )� � � � �� � � � �à dom �, b� int dom �.

Remark 3. Bregman divergence is sometimes called a distance [4, 21, 23], but it is not a correct definition: out of

the metrics axioms for V , only V x y( , ) � 0 � �x y holds in the general case.

Examples of practically important Bregman divergences are presented in [21]. We will consider here two main

examples. For �( ) | | | |� � �

1

2

2

2

, where | | | |�

2

is a Euclidean norm, we haveV x y x y( , ) | | | |� �

1

2

2

2

. For the nonnegative orthant

� �
�

� � �

m m

ix x{ }: 0 and function of negative entropy �( ) lnx x xi i

i

m

�

�

�

1

(strongly convex with constant1with respect to

�
1

-norm on simplex S x x xm

m

i ii

m
� � � �

�

�

�

�

�

�

�

�

� : ,0 1

1

), we obtain the Kullback–Leibler divergence (distance)

V x y x x y x yi i i i i

i

m

i

m

( , ) ln ( / ) ( )� � �

��

��

11

, x
m

�

�

� , y
m m

�

�� �

� �= int ( ).

The useful three-point identity takes place [21]:

V a c V a b V b c b c a b( , ) ( , ) ( , ) ( ( ) ( ), )� � � � �� �� � . (3)

From the strong convexity of function �, the estimate follows

V a b a b( , ) | | | |� �

�

2

2

� �a dom �, b� int dom �.
(4)

Let K 
 dom � be a nonempty closed convex set and K � ��int dom � . Let us consider strongly convex

minimization problems of the form

P a a y x V y xx

K

y K( ) min ( , ) ( , )� � � �

�

arg { } � �a E *

, x� int dom �. (5)

Problem (5) is known [4, 21] to have a unique solution z K� � int dom � and

� � � � �� � �( , ) ( ( ) ( ), )a y z z x y z� � 0 � �y K . (6)

Remark 4. In the Euclidean case, point P ax

K
( ) coincides with the Euclidean metric projection

P x a y x aK y K( ) arg min | | ( ) | |� � � �

� 2

.

Remark 5. For the simplex S x x xm

m

i ii

m
� � � �

�

�

�

�

�

�

�

�

� : ,0 1

1

and the Kullback–Leibler divergence, we get [21]

P a
x e

x e

x e

x e

x e

x e

x

S
a

j

a

j

m

a

j

a

j

m

m

a

j

m

j j

m

( ) , , ,�

� �

� �

1

1

2

1

1 2

�
a

j

m j

�

�

�

�

�

�

�

 

!

"

"

"

1

, a
m

�� , x Sm�ri ( ).

For the case of half-space H b y b y
�

� �( , ) : ( , )� �{ }, where b E�

*

\ { }0 , � �� , we get [23]

P a x ax

H b
�

� � � �

�( , )

( ) ( ) ( ( ) )

�
� �

1
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if ( ) ( ( ) ) ( , )� � � �

�

�

� � �
1

x a H b ; otherwise,

P a x a bx

H b
�

� � � � �

�( , )

( ) ( ) ( ( ) )

�
� � �

1

,

where � � � �� � � � �

�

arg min ( ( ) )

*

t x a tb t
0

, �*

is a function conjugate to �, i.e.,

� ��
*

( ) sup (( , ) ( ))y y x xx� �

�dom

.

Let us describe the algorithm for solution of variational inequality (1).

Algorithm 1. The two-stage method with Bregman divergence. Choose elements x
0

, y C
0

� and positive

number � . Put n �1.

Step 0. Calculate

x P Ay
x

C

1 0

0

� �( )� , y P Ay
x

C

1 0

1

� �( )� .

Step 1. Calculate x P Ayn x

T

n
n

n

�

� �

1

( )� and y P Ayn x

C

n
n

�

� �

�

1

1

( )� ,

where

T z E x Ay y z yn n n n n� � � � �� � �

�

{ }: ( ( ) ( ), )� � �
1

0 .

Step 2. If x xn n�

�

1

and y y yn n n� �

� �

1 1

, then STOP and y Sn � ; otherwise, put n n:� �1and go to Step 1.

Remark 6. We get C Tn
 . Indeed, if we assume that point w C Tn� \ exists, then the inequality

( ( ) ( ), )� � �� � �

�

� � �x Ay y w yn n n n1

0

contradicts the equality y P Ayn x

C

n
n

� �

�

( )�
1

.

Remark 7. If �( ) | | | |� � �

1

2

2

2

, then Algorithm 1 takes the form of the method proposed in [16]:

T z H x Ay y z y

x P x Ay

y

n n n n n

n T n nn

� � � � � �

� �

�

�

{ : ( , ) ,

( ),

�

�

1

1

0}

n C n nP x Ay
� �

� �

�

�

#

�

#

1 1

( ).�

The following lemma takes place.

LEMMA 1. If for some n�� in Algorithm 1 we have x xn n�

�

1

and y y yn n n� �

� �

1 1

, then y Sn � .

Proof. Due to (6), equality x P Ayn x

T

n
n

n

�

� �

1

( )� is equivalent to the inequality

( , )

( ( ) ( ), )

Ay y x
x x y y

n n
n n n

� �

� �� �

�

�

�

1

1

0

� �

�
� �y Tn .

From the equality x xn n�

�

1

it follows that

( , )Ay y xn n� � 0 � �y Tn . (7)

Considering that x Tn n�

�

1

and y yn n�

�1

, we obtain ( ( ) ( ), )� � �� � �� � �x Ay y x yn n n n n 0, whence ( , )Ay x yn n n� � 0.

Let us represent (7) as

( , ) ( , )Ay y y Ay x yn n n n n� � � � 0 � �y Tn .

Hence,

( , ) ( , )Ay y y Ay x yn n n n n� � � � 0 � �y Tn .

Since y C Tn n� 
 , we get y Sn � . �
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In what follows, we will assume that for all numbers n�� the stopping condition at Step 2 of Algorithm 1 does

not hold and go to substantiation of the convergence of Algorithm 1.

THE MAIN INEQUALITY FOR POINTS GENERATED BY THE ALGORITHM

First, let us prove an important estimate that relates Bregman divergence between point xn generated by the

two-stage Algorithm 1 and arbitrary element from the solution set S .

LEMMA 2. For sequences ( )xn and ( )yn generated by Algorithm 1, the inequality

V z x V z x
L

V y xn n n n( , ) ( , ) ( ) ( , )

�

� � � �

�

�

�

 

!

"
1

1 1 2

�

�
� �

�

�

�

 

!

"

�

� �

1 2

1 1

�

�

�

�

L
V x y

L
V x yn n n n( , ) ( , )

(8)

holds, where z S� .

Proof. Let z S� . Let us write the three-point identity (3) as

V z x V z x V x x x x xn n n n n n n( , ) ( , ) ( , ) ( ( ) ( ),

� � � �

� � � � ��

1 1 1 1

� � � z). (9)

From the definition of point xn�1 and z S Tn� 
 it follows that

� � �( , ) ( ( ) ( ), )Ay z x x x z xn n n n n� � � �� � �

� � �1 1 1

0. (10)

Using inequalities (10) for the estimate of the scalar product in (9), we obtain

V z x V z x V x x Ay z xn n n n n n( , ) ( , ) ( , ) ( , )

� � �

� � � �

1 1 1

� . (11)

From pseudo-monotonicity of A and y Cn� it follows that ( , )Ay z yn n� � 0. Adding the term �( , )Ay y zn n � to the

right-hand side of inequality (11) yields

V z x V z x V x x Ay y xn n n n n n n( , ) ( , ) ( , ) ( , )

� � �

� � � �

1 1 1

�

� � � � � �

� � � �

V z x V x x Ay y x Ay Ay yn n n n n n n n( , ) ( , ) ( , ) ( ,

1 1 1 1

� � n nx�

�1

). (12)

Let us write the term �( , )Ay y xn n n� �

�

1 1

as

� � � �( , ) ( ( ) ( ), )Ay y x x Ay y x yn n n n n n n n� � � �

� � � � �� �

1 1 1 1

� � �� �

�

( ( ) ( ), )� �y x x yn n n n1

.

Inclusion x Tn n�

�

1

yields the inequality

( ( ) ( ), )� � �� � �

� �

� � �x Ay y x yn n n n n1 1

0.

Hence, we get

� � �( , ) ( ( ) ( ), )Ay y x y x x yn n n n n n n� � �

� � � �� �

1 1 1

.

Using the three-point identity (3), we obtain

�( , ) ( , ) ( , ) ( , )Ay y x V x x V x y V y xn n n n n n n n n� � � �

� � � �

1 1 1 1

. (13)

Estimating the right-hand side of (12) by means of (13), we obtain the inequality

V z x V z x V x y V y x Ay Ayn n n n n n n n( , ) ( , ) ( , ) ( , ) ( ,

� � �

� � � � �

1 1 1

� x yn n�

�

1

). (14)

Let us now estimate the term �( , )Ay Ay x yn n n n� �

� �

1 1

. We get

� �( , ) | | | | | | | |

*

Ay Ay x y Ay Ay x yn n n n n n n n� � � �

� � � � �

1 1 1 1
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� � � � � �

� � �

� �L y y x y L y y xn n n n n n n| | | | | | | | | | | | | |

1 1 1

2

1

2 2

1

2

�

�

�

�

�

�

�

�

1

2

yn | |

� � � � � � �

� �

� �L
y x x y

L
x yn n n n n n

2 2

2 2 2

2

1

2 2

1

{ }| | | | ( )| | | | | | | |

2

� � �

�

� � �

� �

�
�

�L
y x L x y

L
x yn n n n n n

2

1 2

2

2

1

2 2

1

2

| | | | | | | | | | | | . (15)

We have used the elementary inequalities

ab a b� �

�

�

2

2

2

2

2

1

2

, ( ) ( )a b a b� � � �

2 2 2

2 2 2 .

Estimating the norms in (15) by means of inequality (4), we get

�
�

�
( , ) ( , )Ay Ay y x

L
V x yn n n n n n� � �

� � �1 1 1

� � �

�

�

�

�

�

L
V y x

L
V x yn n n n( ) ( , ) ( , )1 2 2

1

.

(16)

Applying (16) in (14) yields

V z x V z x V x y V y xn n n n n n( , ) ( , ) ( , ) ( , )

� �

� � �

1 1

� � � �

� �

�

�

�

�

�

�

L
V x y

L
V y x

L
V x yn n n n n n( , ) ( ) ( , ) ( , )

1 1

1 2 2

� � �

�

�

�

 

!

"

� � �

�

�

�

 

!

"
�

V z x
L

V x y
L

Vn n n( , ) ( , ) ( ) (1 2 1 1 2

1

�

�

�

�
y x

L
V x yn n n n, ) ( , )�

�

�

�
1

,

as was to be shown. �

Let us prove the convergence of Algorithm 1.

CONVERGENCE OF ALGORITHM 1

To prove the convergence of the algorithm, we will need the elementary lemma about numerical sequences.

LEMMA 3. Let ( )an and ( )bn be sequences of nonnegative numbers satisfying the inequality a a bn n n�

� �

1

for

all n�� . Then there exists a finite limit lim

n
na

��

and bn

n�

�

�

$ ��

1

.

Let us formulate one of the main results of the present study.

THEOREM 1. Let set C E
 be convex and closed, operator A E E:

*

� be pseudo-monotone and

Lipschitz-continuous with the constant L � 0, S ��, and �
�

� �

�

�

�

 

!

"

0 2 1, ( )

L
. Then sequences ( )xn and ( )yn generated by

Algorithm 1 converge to some point z S� .

Proof. Let z S� . Assume that

a V z x
L
V x yn n n n� �

�

( , ) ( , )

�

�
1

,

b
L

V y x V x yn n n n n� � �

�

�

�

 

!

"

�

�

1 1 2

1

�

�
( ) ( ( , ) ( , )).
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Inequality (8) becomes a a bn n n�

� �

1

. Then from Lemma 3 about numerical sequences there follows the

existence of the finite limit

lim ( , ) ( , )

n
n n nV z x

L
V x y

��

�

�

�

�

�

 

!

"

�

�
1

,

1 1 2

1

1

� �

�

�

�

 

!

"

� $ ��

�

�

�

�

�

�

L
V y x V x yn n n n

n

( ) ( ( , ) ( , )) .

From here we obtain

lim ( , ) lim ( , )

n
n n

n
n nV y x V x y

�� ��

�

� �

1

0 (17)

and convergence of the numerical sequence ( ( , ))V z xn for all z S� . From (17) it follows that

lim | | | | lim | | | |

n
n n

n
n ny x x y

�� ��

�

� � � �

1

0. (18)

Hence,

lim | | | |

n
n nx x

��

�

� �

1

0. (19)

The inequality V z x z xn n( , ) | | | |� �

�

2

2

and (18) yield boundedness of the sequences ( )xn and ( )yn .

Let us consider a subsequence ( )xnk
converging to some point z E� . Then from (18) it follows that y znk

� and

x znk�
�

1

and z C� . Let us show that z S� . We have

( , ) ( ( ) ( ), )Ay y x x x y xn n n n nk k k k k
� � � �� � �

� � �1 1 1

1

0

�
� � � � 
y C Tn . (20)

Passing to the limit in (20) and taking into account (18) and (19), we obtain ( , )Az y z� � 0 � �y C, i.e., z C� .

Let us show that x zn � (then from | | | |x yn n� � 0 it follows that y zn � as well). It is known that there exists

the limit

lim ( , ) lim ( ( ) ( ) ( ( ), ))

n
n

n
n n nV z x z x x z x

�� ��

� � � � �� � � .

Since lim ( , )

n
nV z x
k

��

� 0, we also have lim ( , )

n
nV z x

��

� 0, whence | | | |x zn � � 0. �

EFFICIENCY ESTIMATE OF ALGORITHM 1

Let us consider variational inequality (1) with the monotone Lipschitz-continuous operator A and convex compact

set C. For this case, let us obtain non-asymptotic estimates of the efficiency of Algorithm 1.

Let us remind one important concept. Gap function is a function of the form

G x Ay x y

y C

( ) max ( , )� �

�

, x C� .

Gap function is convex, nonnegative, and takes zero value at point x C� if and only if this point belongs to the set S [1].

Gap function is often used to estimate the quality of approximate solution of variational inequality (1) [4, 6, 22].

The following theorem is true.

THEOREM 2. Let set C E
 be convex and compact, operator A E E:

*

� be monotone and

Lipschitz-continuous with constant L � 0, and �
�

� �

�

�

�

 

!

"

0 2 1, ( )

L
. Then the inequality

G z Ay z y

R x
L
V x y

N
N

y C

N

C

( ) max ( , )

( ) ( , )

� � �

�

�

1

1 1 0

� �

holds, where z
y

N
N

nn

N

�

�

�

1

is an averaged output of Algorithm 1, R x V y xC
y C
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Proof. For an arbitrary element y C� , the inequality holds
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From the monotonicity of operator A it follows that

( , ) ( , ) ( , ) ( , ) (Ay y x Ay y y Ay y x Ay y y An n n n n n n n� � � � � � � �

� �1 1

y y xn n n, )�

�1

.

Thus,
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Like in the proof of Lemma 2, from (21) we obtain the inequality
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Let us rearrange (22) as
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Summing (23) over n from 1 to N yields
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From here it follows that
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. Passing to the maximum with respect to y C� in (24), we obtain
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The corollary below follows from Theorem 2.
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COROLLARY 1. Let it be required to solve problem (1) by means of Algorithm 1 for �
�

�

3L
and �� 0. Then the

following estimate holds after

N
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where z
y

N
N

nn

N

�

�

�

1

is an averaged output of Algorithm 1 after N iterations.

CONCLUSIONS

We have proposed a new two-stage method for approximate solution of variational inequalities with

pseudo-monotone and Lipschitz-continuous operators defined in a finite-dimensional linear normed space. This method

is a modification of several two-stage algorithms described earlier [16, 18] with application of Bregman divergence

instead of Euclidean distance. As well as other schemes that use Bregman divergence [4–6, 17, 19–23], in certain cases

the method allows efficient application of the structure of feasible set of the problem, i.e., construction of the sequence of

approximations by means of explicitly calculated operator of projection onto the feasible set.

The theorem about the convergence of the method has been proved. For the case of monotone operator and convex

compact feasible set, we have obtained non-asymptotic estimates of the efficiency of the method.

Of interest is to construct an adaptive analog of the considered method, which would allow us to obtain

approximating sequences with unknown exact value of the Lipschitz constant of the operator. Note also that advent of

generative adversarial networks (GAN) has caused an interest in adaptive algorithms of solution of variational

inequalities among machine training experts.
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