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Abstract. We consider the problem of packing convex polytopes in a cuboid of minimum volume.

To describe analytically the non-overlapping constraints for convex polytopes that allow continuous

translations and rotations, we use phi-functions and quasi-phi-functions. We provide an exact

mathematical model in the form of an NLP-problem and analyze its characteristics. Based on the

general solution strategy, we propose two approaches that take into account peculiarities

of phi-functions and quasi-phi-functions. Computational results to compare the efficiency of our

approaches are given with respect to both the value of the objective function and runtime.

Keywords: packing, convex polytopes, phi-function, quasi-phi-function, mathematical model,

nonlinear optimization.

INTRODUCTION

Optimization problems of packing 3D-objects are a part of the theory of operations research and have a wide range

of practical application, for example, in solving modern problems in biology, mineralogy, medicine, materials

technology, nanotechnologies, robotics, and pattern recognition.

Solving such problems is important since they allow replacing full-scale expensive experiments with computer

simulation of real processes and structures of materials. This considerably saves time and financial resources.

For example, three-dimensional modeling of microstructures of various materials (including nanomaterials) is

an innovative application of polytope allocation problems. The latest advances in this field are related to development

of the computer technology of 3D tomographic analysis of mineral particles [1]. The paper [2] describes application of

the polytope packing problem to powder metallurgy. These problems are also used to efficiently solve the problem

of disposal of dangerous waste and automation of the process of crucible packing in manufacturing semiconductor plates.

Problems of packing 3D-objects are NP-hard and various heuristics are usually used to solve them.

The available approaches to solving three-dimensional packing problems can be divided into the following groups:

— heuristic methods (heuristics based on relaxation of information about the form of objects [3], as well

as algorithms, namely, genetic ones [4], based on the idea of simulated annealing [5], ant algorithms [6], and those using

pattern search [7]);

— traditional methods of linear and nonlinear optimization [8];

— combined approaches, which use heuristics and mathematical programming methods [9].

In [10], the conclusion is made that solving packing problems for complex three-dimensional objects reduces to

cyclic execution of the following steps: generating the sequence of objects being allocated; formalizing the conditions

of non-intersection of the objects with regard for their translation (parallel displacement) and rotation, placement

at a prescribed distance; and calculating the objective function.
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In the majority of studies in three-dimensional packing, continuous rotations of objects are not admitted.

For example, transformation of translation is only used in [11]. In [12], the HAPE3D algorithm is proposed, which

allows rotation of polytopes about each coordinate axis discretely by angles multiple of 45�.

In the present study, we will compare two approaches to the solution of the problem of packing convex polytopes

(taking into account their continuous translations and rotations) in a parallelepiped of minimum volume depending on the form

of functions (either phi-functions or quasi-phi-functions [13]) used to model the constraints of non-intersection of polytopes.

PROBLEM STATEMENT

Given a set of convex polytopes Ki , i n I n� �{ }1 2, , ,� , and a direct parallelepiped � � � � �{( , , ) : ,x y z R x l
3

0

0 0� � � �y w z h, } with variable dimensions l w, , and h. Each polytope Ki is defined by the coordinates of its vertices

p xij ij� ( , yij , zij ), j mi�1, ,� , in the intrinsic frame.

Let us introduce the following notation for the polytope Ki : Gi is the set of edges gij that belong to planes

{ }( , , ) :x y z A x B y C z Dij ij ij ij� � � � 0 , j IGi
� ; Pi is the set of vertices p x y z

ik ik ik ik� ( , , ), k I Pi
� ; Ti is the set of edges

til specified by pairs of vertices ( pil
1

, pil
2

), l ITi
� . Note that A A uij ij i� ( ), B B uij ij i� ( ), C C uij ij i� ( ), D D uij ij i� ( ),

x x uik ik i� ( ), y y uik ik i� ( ), and z z uik ik i� ( ).

Let K X x y z R f X A x B y C z Di ij ij ij ij ij� � � � � � � �{ ( , , ) : ( )

3

0, j IGi
� }.

Without loss of generality, we assume that the center of the intrinsic frame of the polytope Ki coincides with the

center of circumscribed sphere S i of radius ri .

The position and orientation of the polytope Ki are defined by the vector of its allocation parameters ( , )� �i i ,

where � i i i ix y z� ( , , ) is the translation vector, � � � �i i i i� ( , , )

1 2 3

is the vector of rotation parameters, � �i i

1 2

, , and � i

3

are respective angles of rotation from axis OX to OY , from axis OY to OZ, and from axis OX to OZ in the local frame

of the polytope Ki , respectively.

Simultaneous translation of polytope Ki by vector � i and its rotation by vector � i is defined as

K u p R p M p p Ki i i i i( ) : ( )� � � � � 	 �{ }

3 0 0 0

� � ,

where Ki

0

is non-translated and non-rotated polytope Ki , M i( )� � M M Mi i i1

1

2

2

3

3
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The problem of packing convex polytopes is to allocate a given set of disjoint convex polytopes K ui i( ), i I n� ,

in a parallelepiped � of minimum volume F l w h� � � .

MATHEMATICAL MODELING OF THE ALLOCATION CONSTRAINTS

To generate the mathematical model in the form of a nonlinear programming problem, it is necessary to describe

analytically the constraints of non-intersection of polytopes K
1

and K
2

, int intK K
1 2

� � �, and membership of polytope K
1

in the allocation domain � , K K
1 1

� � � �

�

� �int � , where � �

�

� R
3

\ int . To this end, two types of continuous

functions are used: phi-functions and quasi-phi-functions. Their definitions and properties are described in [14–18].
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Constructing phi-functions (normalized) for 3D-objects is generally a challenge. Currently, phi-functions are

constructed for some regular 3D-objects [14, 19], including full-spheres, parallelepipeds, and convex polytopes.

For the polytopes K u
1 1

( ) and K u
2 2

( ), which admit continuous translations and rotations, phi-function can be

defined as follows:

�

K K

iu u u u i1 2

1 2 1 2

1 2 3( , ) max ( , ), , ,� �{ }� ,

where function �
1

1 2 1 2 1 2 1 2 1

1 2

( , ) max min (u u A x B y C z D
j I k I

j k j k j k

G P

� � � �

� �

j ) describes interaction of vertices of the polytope

K u
2 2

( ) with edges of the polytope K u
1 1

( ), function �
2

1 2 2 1 2 1 2 1 2

2 1

( , ) max min (u u A x B y C z D
j I k I

j k j k j k

G P

� � � �

� �

j )

describes interaction of vertices of the polytope K u
1 1

( ) with edges of the polytope K u
2 2

( ), and function

�
3 1 2 1 2

1 2

( , ) max ( , ), ,u u u u a I b I
ab

T T� � �{ }� describes interaction of edges of the polytope K u
1 1

( ) with edges of

the polytope K u
2 2

( ). Here,

�

ab

i j

ab

o

ab

ku u F p u u u F p u( , ) min ( ( ), , ), ( ( ),� {

12

1 1 1 2

12

1 1

u u
1 2

, ),

F p u u u F p u u u
ba

s

ba

21

2 2 1 2

21

2 2 1 2

( ( ), , ), ( ( ), , )

�
},

F x y z u u x x u x x u x x
ab

o k

ab

12

1 2 1 1 1 1

12

( , , , , ) ( ( ))( ( ))( (� 
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, ))
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( ( ))( ( ))( ( , ))y y u y y u y y u uo k

ab

1 1 1 1

12

1 2
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( ( ))( ( ))( ( , )),z z u z z u z z u uo k

ab

1 1 1 1

12

1 2

F x y z u u x x u x x u x x
ba

s

ba

21

1 2 2 2 2 2
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�
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, ))

� 
 
 
( ( ))( ( ))( ( , ))y y u y y u y y u us

ba

2 2 2 2

12

1 2�
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( ( ))( ( ))( ( , ))z z u z z u z z u us

ba

2 2 2 2

12

1 2�
,

p uo1 1

( ) and p uk1 1

( ) are vertices of the edge a of the polytope K
1

; p us2 2

( ) and p u
2 2�

( ) are vertices of the edge b

of the polytope K u
2 2

( ); a u u p u p u
ab

o s
12

1 2 1 1 2 2

( , ) ( ) ( )� 
 � p uk2 2

( ), and a u u p u p u p u
ba

s o k
12

1 2 2 2 1 1 1 1

( , ) ( ) ( ) ( )� 
 � .

In order to expand the class of 3D-objects for which it is possible to construct the mathematical model of

the packing problem in the form of a nonlinear programming problem (for example, for ellipsoids, cones, and cylinders),

the concept of quasi-phi-function is introduced in [14].

For some types of 3D-objects (for example, convex polytopes), the form of quasi-phi-functions is much simpler

than the form of respective phi-functions.

However, unlike phi-function, quasi-phi-function depends not only on the vector of parameters of allocation of

the polytopes but also on additional variables.

Qausi-phi-function for polytopes K u
1 1

( ) and K u
2 2

( ), which admit continuous translations and rotations, can be

defined as follows [18]:

� �

�

� � �

K K

P

K P

P

K P

Pu u u u u u u1 2 1 2

1 2 1 2

( , , ) min ( , ), ( , ){ },

where uP xP yP P� ( , , )� � � is the vector of additional variables, which defines parameters of half-plane of the form

P u x y z x y zP P( ) ( , , ) :� � � � � � � �{ � � � � �P � 0}, � �� sin yP , � � �� 
 �sin cosxP yP , � � �� �cos cosxP yP ;

�

K P

Pu u1

1

( , ) � min ( )

1

1

1

� �i m
P ip� is a phi-function for K u

1
1

( ) and P uP( ); �

K P

Pu u2

2

�

�( , ) min ( ( ))

1

2

2

� �




j m
P jp� is

a phi-function for K u
2 2

( ) and P u R P uP P

�

�( ) \ int ( )

3

. Note that max ( , , )

u

K K

P

P

u u u��
1 2

1 2

is a phi-function for the

polytopes K u
1 1

( ) and K u
2 2

( ).

MATHEMATICAL MODEL OF THE PROBLEM

OF PACKING CONVEX POLYTOPES

Generally, it is possible to present the mathematical model of the problem of packing convex polytopes into

a cuboid of minimum volume as follows:
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min ( )

u W R

F u

� �

	

, (1)

W u R f f i n j n j iij i� � � � � � �{ }

	
: , , , , , , , , , ,0 0 1 2 1 2� � , (2)

where F u l w h( ) � � � , f ij is either a quasi-phi-function or phi-function for polytopes Ki and K j (which describes

the conditions of non-intersection of the polytopes Ki and K j ), f i is a phi-function for the polytope Ki and object

�

�

(which describes the conditions of allocation of the polytope Ki inside the parallelepiped �).

The dimension of vector u R�

	
of variables of problem (1), (2) depends on the approach used to generate the

mathematical model. In case of quasi-phi-functions, the vector of variables of the problem is defined as follows:

u l w h u u u Rn� �( , , , , , , , )

1 2

� 

	
, where ( , , )l w h are variable dimensions (length, width, and height) of the

parallelepiped � ; u x y zi i i i i i i i i� �( , ) ( , , , , , )� � � � �
1 2 3

is the vector of parameters of allocation of the polytope Ki ,

i I n� ; 
 � ( , , )u u
P P

m1

� is the vector of additional variables; u
P

k

xP

k

yP

k

P

k
� ( , , )� � � is additional variables for the kth pair

of polytopes, k m�1, ,� , m � 0.5( )n n
1 . Thus, the number of variables in the problem (1), (2) if quasi-phi-functions are

used is 	 � � �3 6 3n m, and if phi-functions are used, it is 	 � �3 6n.

SPECIAL FEATURES OF TWO IMPLEMENTATIONS

OF THE MATHEMATICAL MODEL (1), (2)

Let us mention some distinctive features of the mathematical model (1), (2) that influence the choice of the method

of problem solution with the use of the above-mentioned tools of mathematical modeling.

1. Problem (1), (2) is an exact mathematical model of the formulated problem of optimal packing of convex

polytopes and contains all its global solutions.

2. The domain of feasible solutionsW of the form (2) can be described by n inequalities of the form f i � 0 and by

1

2

1n n( )
 inequalities of the form f ij � 0. Function f i is the minimum out of 6mi differentiable functions, and f ij

is the maximin function when f ij is a phi-function. Each inequality f ij � 0 can be represented as a set of systems

of inequalities with differentiable functions, including gi systems of m j inequalities, g j systems of mi inequalities, and

t ti j� systems consisting of one inequality. If f ij is a quasi-phi-function, then f ij � 0 can be described by a system of

m mi j� inequalities with differentiable functions.

3. Using the phi-function method allows representing the problem as a nonsmooth optimization problem.

The domain of feasible solutions can be described by the system of inequalities with maximin functions and has the

property W W

q

q�

�1

�

�

, where each of the subdomains Wq is defined by the system of inequalities with differentiable

functions. Thus, problem (1), (2) can be represented as

F u F u q
q

( ) min ( ), , , ,

� �

� �{ }1 2 � � , (3)

where

F u F u
q

u Wq

( ) min ( )

�

�

� . (4)

In the model (3), (4), each subproblem (4) is a multiextremum nonlinear programming problem.

4. The domain of feasible solutions of problem (1), (2), generated with the use of quasi-phi-functions, can be

described by a system of inequalities with differentiable functions. In this case, we have a nonconvex nonlinear

programming problem, which can be immediately solved by modern solvers for global and local optimization.

For example, for two three-dimensional simplexes, i.e., m m m
1 2

4� � � , depending on the form of functions f ij

in (2), problem (1), (2) can be reduced to the following:

— a problem of dimension 	 �18 with the domain of feasible solutions W, which is described by a system of

6 6 2 56m m m� � � inequalities if quasi-phi-functions are used;
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— a sequence of subproblems of dimension 	 �15, in each of which the domain of feasible solutions Wq

is defined either by 6 6 52m m m� � � or by 6 6 5 54m m� � � inequalities if phi-functions are used.

THE PROBLEM SOLUTION STRATEGY

Taking into account the properties of the mathematical model (1), (2), two solution techniques are proposed to

solve the problem. They are based on the multistart strategy, which consists of the following stages.

Stage 1. Finding Feasible Starting Points of Problem (1), (2). This stage is common for the both approaches.

First of all, the convex polytopes Ki are covered with full-spheres S i of minimum radii ri
�

, i I� . To this end,

the optimization problem is solved:

r ri
r D R

i

i i i

�

� �

� min

( , )�
4

,

(5)

where D r R r x x y y z zi i i i ij i ij i ij i� � 
 
 
 
 
 
 �{( , ) : ( ) ( ) ( )�
4 2 2 2 2

0, , , , ,r j mi i� �0 1 2 � }. As a result of

solution of problem (5), vector r r r r Rn

n
� �( , , , )

1 2

� is generated.

Then sufficiently large dimensions ( , , )l w h
0 0 0

of container � are selected so as to certainly guarantee the allocation

of all disjoint full-spheres S i , i I� , inside this container. The dimensions of the container � are fixed, and radii ri of the

full-spheres S i , i I� , are assumed to be variable.

At the next step, the nonlinear programming problem is solved:

max ( , ) max

( , )

� �

�

r r
r G

i

n

i�

�

�

�

1

, (6)

where

G r R r r i j I r
n

ij

SS

i j i j i

S

i i� � � � �{( , ) , ( , , , ) , , ( , )� � � �
4

0� � � 
 � �0 0, ,

*

r r i Ii i }, (7)

�ij

SS

i j i j i j i j i j ir r x x y y z z r( , , , ) ( ) ( ) ( ) (� � � 
 � 
 � 
 
 �

2 2 2

rj )
2

,

�i

S

i i i i i i i i i i i ir x r y r z r l x r w y r( , ) min , , , ,� � 
 
 
 
 
 
 
{

0 0

, h z ri i

0


 � }.

Specifying randomly point ( , )�
0 0

r , � � �
0

1

0 0

� ( , , )� n , � i

0 0

� �� � ( , , )l w h
0 0 0

, r r rn
0

1

0 0

� ( , , )� , ri
0

0� ,

i I� , we can find the point of global maximum ( , )�
� �

r of problem (6), (7). Note that the global maximum always exists

since the dimensions of the domain are selected sufficiently large.

Stage 2. Finding the Local Minima of Problem (1), (2). Generate the point u
s s s

� ( , )� � , where � �
s

�

�

,

and randomly generate the vector �
s
of angular parameters. Find a local minimum of problem (1), (2), starting with the point u

s
.

If quasi-phi-functions are used, then the Local Optimization Feasible Region Transformation (LOFRT) procedure

described in [18] is immediately applied to problem (1), (2). The proposed local optimization procedure substantially

reduces computing costs (time and memory) at the expense of decomposition of problem (1), (2) into a sequence of

nonlinear programming subproblems with a smaller number of inequalities and (in case of application of

quasi-phi-functions) of smaller dimension as well. Go to Stage 4.

If phi-functions are used, then for each feasible starting point u
s
, a subregion W W

s
� , u W

s s
� is formed.

The LOFRT procedure is applied to solve subproblems (4) on subregion W W u
s

q

s
� ( ). Passage from one subregion to

another is carried out by means of the algorithm described in [19].

Stage 3. Finding the Approximation to the Global Minimum of Problem (1), (2). If phi-functions are used,

then the procedure of incomplete directional search of local minima with application of the Jump algorithm [19]

is executed.

Stage 4. Search of Local Minima. The best local minimum obtained at the previous stages is taken as the

approximate solution of problem (1), (2).
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RESULTS OF THE COMPUTING EXPERIMENTS

The computing experiments were carried out using an AMD Athlon 64 X2 5200 + computer. Solver IPOPT [20]

was used to find local minima in the nonlinear programming problems. Let us consider an example.

Example 1. There are sets of polytopes for n � 7, n �12, and n � 98 (n is the number of polytopes) from the

study [18, Examples 1, 2, and 4, respectively]. The results of solving the polytope packing problem by two approaches

are presented in Table 1.
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TABLE 1. Results of Solving the Polytope Packing Problem

Approaches

to the Solution

Value of the

Objective

Function

Time
Locally Optimal Allocation

of the Polytopes

n � 7

Phi-function 1837 370 sec

Quasi-phi-function 1699 323 sec

n � 12

Phi-function 3150 450 sec

Quasi-phi-function 3131 410 sec

n � 98

Phi-function 22623 7 hours

Quasi-phi-function 23113 41 hours



The results of the computing experiments allow making the following conclusions.

1. For n � 50, the obtained results slightly differ in the value of the objective function and solution time.

2. For problems of greater dimension (n� 50), the time of problem solution by means of the approach based on

phi-functions is much less. This result follows from the fact that in the mathematical model (1), (2) constructed by means

of phi-functions, there is no vector of additional variables, which reduces the problem dimension by 3m.

3. An advantage of the approach based on phi-functions is that it possible to solve problems for a considerable

quantity of objects in a reasonable time. Figures 1a and 1b show the results of allocation of 400 and 500 convex

polytopes, respectively. The runtime for the problem of allocation of 400 convex polytopes with the use of phi-functions

is 30 hours. If the approach based on quasi-phi-functions is applied, a 48-hour constraint (during which the solution has

not been obtained) was established for the problem solution.

4. An advantage of the approach based on quasi-phi-functions is that it is possible to obtain a locally optimal

allocation of convex polytopes with regard for the given minimum feasible distances [18, 21, 22]. Figure 2 gives

an example of allocation of 25 polytopes with regard for the given minimum feasible distances. Moreover, to solve

nonlinear programming problems, it is possible to use modern NLP-solvers to find local and global extrema.

591

Fig. 1. Locally optimal allocations of 400 convex polytopes with 16 vertices (a)

and of 500 convex polytopes with three vertices (b).

a b

Fig. 2. Locally optimal allocations of 25 convex polytopes without regard

for minimum feasible distances (a) and with regard for minimum feasible

distances (b).

a b



CONCLUSIONS

Using quasi-phi-functions instead of phi-functions substantially simplifies the analytical description of the

conditions of non-intersection of convex polytopes and allows formalizing the constraints on minimum feasible

distances. Quasi-phi-functions can also be used to model allocation constraints in problems of packing various

three-dimensional objects that admit continuous rotations for which phi-functions are too complicated (for example,

nonconvex polytopes) or have not been constructed (for example, ellipsoids, cylinders, cones, and spherocylinders).

However, using quasi-phi-functions has disadvantages related to introducing additional variables, which considerably

increases problem dimension. To find efficient solutions to problems of packing convex polytopes, separating their

combinatorial structure is also promising [23, 24].
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