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WITH NONNEGATIVE INTEGER COORDINATES
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1
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Abstract. This article considers problems of partition of a set of vectors with nonnegative integer

coordinates into two classes with respect to a threshold value and a threshold relation using

adaptable logical networks. The correctness of the corresponding algorithms for implementing such

a partition is proved for an arbitrary threshold value and a dimension of vectors.
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INTRODUCTION

The adaptation of hardware to the solution of the problem of partitioning a full set of values of Boolean functions

based on a threshold value and a threshold relation was considered in [1]. This approach is well-known as “the

technology of reconfigurable computing” [2, 3], and its embodiment in real projects became possible owing to the

appearance of programmable logic integrated circuits (PLIC). In [4-8], the problem of adaptation of hardware with

a formalized substantiation of algorithms of adapting structures of adaptive logic networks (ALNs) to the implementation

of classification algorithms was considered.

This article considers the problem of classification of a given set of n-dimensional vectors with nonnegative

integer coordinates on the basis of the well-known method of partitioning a given set of vectors into subsets [7–10] with

an implementation based on structures such as ALNs.

STATEMENT OF THE PROBLEM

LetV u u u u u un n m m mn� � � �{ }� � �
1 11 1 2 21 2 1

( , , ), ( , , ), , ( , , )� � � � be a set n-dimensional vectors, where

u Nij � and N is the set of natural numbers. We consider the following classification problems.

Problem 1. Find the partition of the setV into two subsetsV
1

andV
2

under the following condition: if, for given

j j n, 1� � , and a fixed k N� , a coordinate uij is smaller than or equal to k, then a vector � i V�
1

and, otherwise, � i V�
2

for all i, where 1� �i m.

Problem 2. Find the partition of the set V into two subsets V
1

and V
2

under the following condition: if, for all

1� �i m, 1� �j n, and a fixed k N� , the value of uij is smaller than or equal to k (for all coordinates of vectors from

V ), then � i V�
1

and, otherwise, � i V�
2

.
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Problem 3. Find the partition of the set V into two subsets V
1

and V
2

under the following condition: for a given

vector a a an� ( , , )

1

� , which belongs to the setV or does not to belong to it, and a fixed k N� , assign � i V� to the setV
1

if the vector � �� � � � �i i in na u a u a( , , )

1 1

� has all coordinates smaller or equal to k and, otherwise, assign � i toV2

.

Note that Problems 1 and 2 are particular cases of Problem 3. In fact, Problems 1 and 2 turn out to be Problem 3 if

a � ( , , )0 0� is a zero vector.

The above statement of the classification problem makes it possible to reduce the solution of Problems 1–3 to the

problem of classification of Boolean functions based on a threshold value and a threshold relation [1].

REDUCING PROBLEMS TO BOOLEAN FUNCTIONS

We represent coordinates of vectors from V in binary notation, i.e., in the form of words over the alphabet

X � { }0 1, . Let t u a
i m j n

ij i
� �

� � � �

max ( )

,1 1

be the greatest value of coordinates of vectors from V . Then the length of

each vector does not exceed the value of m t� log , and the lengths of coordinates do not exceed log t. As a result, vectors

from V assume the form � i i i inp p p� ( , , , )

1 2

� , where pij is a word of length � log t in the binary alphabet X . We

refine the partition problem for Boolean vectors and describe the computational structure with the help of which the

partition is performed.

Let � �X x x xn{ }

1 2

, , ,� be an alphabet of Boolean variables assuming their values in the set X � { }0 1, . Let also

� i i i i np p p� ( , , , )

1 2

� be a Boolean vector, and let A be the set of all vectors that correspond to vectors fromV . We call

the set A the full set corresponding to the set of vectorsV . We fix some vector à that has the same dimension as vectors

from V (the vector à does not necessarily belong to V ) and a binary relation R on the set A. We call the vector a

a threshold vector and the relation R a threshold relation. This article considers the case of the following four binary

threshold relations specified on the set A R R R: ( ), ( ), ( ),

1 2 3

	 
 � and R
4

( )� .

The problem of partitioning the set A into two subsets with respect to the threshold value a and threshold

relation R is to divide the set A into two subsets A
1

and A
2

such that A x A x a R
1

� � �{ }: ( , ) and

A x A x a R
2

� � �{ }: ( , ) . For example, if R � � , then

A x A x a
1

� � �{ }: , A x A a x
2

� � 
{ }: .

In practice, there is no need to explicitly construct a partition of the set À, and only the value of the following

function corresponding to the relation R should be computed:

�R x a
x a R

x a R
( , )

( , ) ;

( , ) .

�

�

�




�

�

1

0

if

if

It follows from the definition of this function that it assumes the value 1 on the set A
1

and the value 0 on the set A
2

.

(In this article, some calculations from [1] are used).

DIRECT ALGORITHM FOR SOLVING THE PROBLEM

Since the set of values consists of Boolean words, i.e., words over the alphabet X � { }0 1, , the following bit-by-bit

Boolean operations over these words are naturally introduced: � (conjunction), & (disjunction), � (negation), and �

(modulo 2 addition). The following logical functions are constructed from these operations:

a b� , a b� , a b� , a b� , a b& , a b& , a b& , a b& , a b� , a b� , a , b .

The result of computing the value of the function �R x a( , ) is obvious since the threshold relation R can be

extended to digits. Then, comparing the threshold value of the vector a with the values of the current vector x beginning

with high-order digits, we obtain ( , )x a R� whose kth digits are different, all previous digits are identical, and

( , )x a Rk k � , where xk and ak are the kth digits (kth symbols) of the words x and a, respectively. If all digits of the

words a and x are identical, then ( , )x a R� � R is one of the relations { }� �, .
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Based on this description, we obtain an obvious algorithm for solving the partition problem. Let

a a a a an n�
�1 2 1

� be the value of the threshold vector, and let x x x x xn n�
�1 2 1

� be the current vector whose

coordinate values are applied to the input of the algorithm, where ak is the kth digit of the threshold vector a . When

using this notation, the algorithm assumes the following form.

PARTITION ( , , )a R x

Input: a is a threshold vector, R is a threshold relation, and x is an input vector.

Output: the value of the function �R x a( , ).

Method:

begin

i n� ;

while (x a ii i� � � 0) do i i� �1 od

if i � 0 then if R � � �{ }, then return (1) else return (0)

else if ( , )x a Ri i � then return (1) else return (0)

end

The correctness of this algorithm is obvious and does not require any substantiation. We call it a direct algorithm.

Example 1. Assume that a �11001, x �11010, y � 01110, z �11001, and R
1

�	 . Then, for R
1

and x , y, and z, we

obtain the following values generated by the algorithm:

— for x, the first three digits are identical and the other digits are different, i.e., a x
2 2

� and a x
2 2

	 and,

therefore, a x	 and ( , )x a R�
1

; hence, the final value of the predicate �R x a( , ) equals 0;

— for y, we have a y
5 5

� and a y
5 5


 and, therefore, y a	 and the final value of the predicate �R x a( , ) equals 1;

— for z, all digits are equal to the corresponding digits of a , and since R
1

� � �{ }, , the final value of the predicate

�R x a( , ) equals 0.

ALGORITHM FOR SOLVING THE PROBLEM ON AN ALN

The situation with substantiating the algorithm changes if there is a fixed ALN consisting of universal logical

elements (implementing an arbitrary logical function) that should be used to implement the function �R x a( , ) computed

by the algorithm PARTITION. A feature of the structure of ALN elements is that they can be tuned to implementing any

logical function �, & , � , or � [11]. It should be noted that the digits of the current word x are applied to the input of the

structure in such a way that the high-order digit is applied to each lower level node and to all subsequent levels as one of

arguments.

The solution of the partition problem on the computational structure shown in Fig. 1 is informally described as

follows. The formation of the environment of computations based on this structure is realized by tuning each of its levels

to a given logical function depending on the value of the threshold of the vector a and the threshold relation R . The type

of the logical function for the ith level ( [ , ])i n� �1 2 is determined according to the rule

F a bi

R
� � if ai � 0;

F a bi

R
� & if ai �1. (1)

For the threshold relation and some threshold vector à, the computation of the value of the function �R x a( , )

differs from the accepted rule. Such vectors are called singular points of the threshold relation.

Before determining the values of threshold relations at singular points, we will consider the computational

structure presented in Fig. 1 as an illustrative example.

Example 2. Put n � 5, R �	 , a �10101, x �10111, and y � 01010. Then, at each level of the structure, for a and x,

we have the following values: 0111 111 11� � , which determines the value 0 for the threshold relation R and, for a and

y, the values 0000 000 00� � , which determines the value 1 for the threshold relation R. This means that �R x a( , ) � 0

and �R y a( , ) �1 since a x	 and y a	 .
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It follows from this example that the final value of the function �R x a( , ) for a given threshold and a given

specified relation is determined by the values of the last two bits obtained at the level i �1. Let a
2

a
1

be the last two bits

obtained as a result of computation. Then the values of the threshold relation at this level of the computational structure

are specified by the following functions:

a a
2 1

0 0� �, implies F a b
R

1

2

:� � , F a b
R

1

3

: &� ;

a a
2 1

0 1� �, implies F a b
R

1

1

: &� , F a
R

1

2

:� , F a
R

1

3

:� , F a b
R

1

4

:� � ; (2)

a a
2 1

1 0� �, implies F a
R

1

1

:� , F a b
R

1

2

: &� , F a b
R

1

3

:� � , F a
R

1

4

:� ;

a a
2 1

1 1� �, implies F a b
R

1

1

:� � , F a b
R

1

4

: &� .

Using these functions in Example 2, we obtain the required values.

We now consider threshold relations and their singular points. Tuning to the function �R x a( , ) of computing the

value of the threshold relation is performed by the analysis of the first bit of the threshold vector and the threshold

relation of one of the following types.

Threshold relation R1 �	 . The singular point of this relation is the value of the threshold a � �100 0. Then the

value of R
1

is computed with the help of the functions

F a F a b
i

R

i

R
1 1

1

� �

�

, & .

For the level i �1, the value of the relation is equal to zero if zero is obtained at the lower level and is equal to one

if one is obtained at the lower level. In particular, assume that a �10000, x �11001, and y � 01101. Then we have

the following values at levels for a and x :

0000 000 00 0� � � since a x	 ;

for a and y, we obtain

1111 111 11 1� � � since y a	 .

Threshold relation R2 � 
. The singular point of this relation is the value of the threshold a � �011 1. Then the

value of R
1

is computed with the help of the functions

F a F a b
i

R

i

R
2 2

1

� �

�

, & .
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For the level i �1, the value of the relation is equal to zero if zero is obtained at the lower level and is equal to one

if one is obtained at the lower level. For example, assume that a � 01111, x �11001, and y � 01101. Then we have

the following values at levels for a and x :

1111 111 11 1� � � since a x	 ;

for a and y, we obtain the value

0000 000 00 0� � � since y a	 .

Threshold relation R3 � � . The singular point of this relation is the value of the threshold a � �011 1. Then the

value of R
3

is computed with the help of the functions

F a F a b
i

R

i

R
3 3

1

� �

�

, & .

For the level i �1, the value of the relation is equal to zero if zero is obtained at the lower level and is equal to one

if one is obtained at the lower level. For example, assume that a � 01111, x �11001, and y � 01101. Then we have

the following values at levels for a and x :

0000 000 00 0� � � since a x	 ;

for a and y, we obtain

1111 111 11 1� � � since y a	 .

Threshold relation R4 � � . The singular point of this relation is the value of the threshold a � �100 0. Then the

value of R
4

is determined with the help of the functions

F a F a b
i

R

i

R
4 4

1

� �

�

, & .

For the level i �1, the value of the relation is equal to zero if zero is obtained at the lower level and is equal to one

if one is obtained at the lower level. For example, assume that a � 01111, x �11001, and y � 01101. Then we have

the following values at levels for a and x :

1111 111 11 1� � � since a x	 ;

for a and y, we obtain

0000 000 00 0� � � since y a	 .

SUBSTANTIATION OF THE ALGORITHM

The algorithm implemented on the computational structure presented in Fig. 1 is called PART-ALN and is

considered to be correct if the value found by this algorithm for any a, x, and R coincides with the value of the function

�R x a( , ) computed by the algorithm PARTITION.

The complete substantiation of the correctness of operation of this algorithm is presented in [1] where the

following statement is proved.

THEOREM 1. The algorithm PART-ALN is correct.

The proof of the theorem is based on several lemmas of the same type for each type of the threshold relation.

To demonstrate the method of proof, we restrict ourselves to the proof of only Lemma 1, and the formulations of other

lemmas are presented in [1].

LEMMA 1. The algorithm PART-ALN correctly computes the value of �R x a
1

( , ) for the threshold relation R
1

�	 .

Proof. Let a a a a an n�
�1 2 1

� be a threshold value, and let x x xn n�
�1

� � x x
2 1

be an input vector. Let also

a xj j� for all j n i� � �, , 1 and a xi i� and, at the same time, let a a a a aj j�
�1 2 1

� do not contain the singular point

of the relation R
1

for j n i� � �, , 1. Let us consider possible cases.
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1. Let ai �1, and let xi � 0.

Then, at all subsequent levels, according to the PART-ALN algorithm, before the appearance of a singular point,

we obtain vectors consisting of zero strings.

If we obtain a a
2 1

00� at the end of the threshold value, then this means that, at the kth level (i k� 	 3), there is

a singular point of the relation R
1

. Then, at this level, the computational structure is adjusted to the functions F a
i

R
1

�

and F a b
i

R

�

�

1

1

& and, beginning with this level, all input values become equal to one. Therefore, at the output of the

computational structure, we obtain F a b
R

1

1

1� �& . This value coincides with the value computed by the algorithm

PARTITION for the function �R x a
1

1( , ) � .

If we obtain a a
2 1

01� at the end of threshold value, then F a b
R

1

1

� & and, with the values x x
2 1

00� at the output

of the computational structure, we obtain F
R

1

1

� a b& �1 and, with the other values of the vector x x
2 1

, the output values

will be equal to zero. The obtained value coincides with the value computed by the algorithm PARTITION for the

function �R x a
1

( , ).

If we obtain a a
2 1

10� at the end of the threshold value, then F a
R

1

1

� and, again, with the values of x x
2 1

00� and

x x
2 1

01� , we obtain F a
R

1

1

1� � at the output and, for the other values of the vector x x
2 1

, the output values are equal to

zero. The obtained values coincide with the values computed by the algorithm PARTITION for the function �R x a
1

( , ).

If we obtain a a
2 1

11� at the end of the threshold value, then F a b
R

1

1

� � and, with all values of x x
2 1

except for

the value of x x
2 1

11� , we obtain F
R

1

1

� a b� �1 at the output. These values coincide with the values of the function

�R x a
1

( , ) computed by the algorithm PARTITION.

2. Let ai � 0 and xi �1. Then, according to the PART-ALN algorithm, we obtain vectors consisting of ones at all

subsequent levels before the appearance of a singular point (if any).

If we obtain a a
2 1

00� at the end of the threshold value, then this means that, at the kth level (i k� 	 3), there is

a singular point of the relation R
1

. Then the computational structure at this level is adjusted to the functions F a
i

R
1

� and

F a b
i

R

�

�

1

1

& and, beginning with this level, all input values become zero strings. Therefore, at the output of the

computational structure, we obtain F a b
R

1

1

0� �& . This value coincides with value computed by the algorithm

PARTITION for the function �R x a
1

0( , ) � .

If we obtain a a
2 1

01� at the end of the threshold value, then F a b
R

1

1

� & and, again, with the values of

x x
2 1

00� , we obtain F a b
R

1

1

1� �& at the output of the computational structure, and, with the other values of the vector

x x
2 1

, the output values will equal zero. The obtained value coincides with the value computed by the algorithm

PARTITION for the function �R x a
1

( , ).

If we obtain a a
2 1

10� at the end of the threshold value, then F a
R

1

1

� and, with all values of x x
2 1

00� and

x x
2 1

01� , we obtain F a
R

1

1

1� � at the output and, with the other values of the vector x x
2 1

, the output values will be equal

to zero. The obtained values coincide with the values computed by the algorithm PARTITION for the function �R x a
1

( , ).

If we obtain a a
2 1

11� at the end of the threshold value, then F a b
R

1

1

� � and, with all values of x x
2 1

except for

the value of x x
2 1

11� , we obtain F
R

1

1

� a b� �1 at the output. The obtained values coincide with the values computed

by the algorithm PARTITION for the function �R x a
1

( , ).

Lemma 1 is proved.

LEMMA 2. The algorithm PART-ALN correctly computes the value of �R x a
2

( , ) for the threshold relation R
2

� 
.

LEMMA 3. The algorithm PART-ALN correctly computes the value of the function �R x a( , ) at the singular

points of the threshold relations.
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SOLUTION OF PROBLEMS 1–3

It is obvious that the above ALN structure (see Fig. 1) is independent of the width of the input word and is adjusted to

any threshold vector. This feature allows one to solve Problems 1–3 formulated above using the following structure.

Solution of Problem 1. The value of the parameter k used in the problem statement is represented in the form

a binary word that is the threshold vector à in the problem of partitioning the set À. Specifying the threshold relation R,

we obtain all necessary values for adjusting ALN.

Example 3. Let k �14, and let the set of vectors V include the vectors

� � �
1 2 3

7 16 5 11 10 3 17 22 8� � �( , , ), ( , , ), ( , , ).

The maximum values of coordinates of the vectors do not exceed 22, and it suffices five bits (since log 22 5	 ) to

represent these coordinates by binary words. In this representation, to vectors of the set V correspond Boolean

vectors that belong to the set À and are as follows:

p p p
1 2 3

00111 10000 00101 01011 01010 00011� � �( , , ), ( , , ), (10001 10110 01000, , ).

If the partition is carried out with respect to the second coordinate, then the set À will be divided into the subsets

A
1 2

� { }� and A
2 1 3

� { }� �, . This is easily verified directly. To the value of the parameter k will correspond the

threshold vector p � ( )01110 (i.e., the vector à), and if the threshold relation R is given (for example, R �	), then all

necessary values for adjusting ALN are available (the size of input words of ALN equals 5 bits, i.e., four levels).

According to the algorithm PART-ALN considered above, we will determine the types of functions for all four levels of

ALN for the ALN structure (see Fig. 1) on the basis of the analysis of bits (starting with the most significant bit) of the

threshold vector p � ( )01110 for R �	 with allowance for rules (1) and (2) as follows:

(1) the most significant bit is equal to zero and, therefore, the type of the logical function for the first level is

defined as f a b
1

� � ;

(2) the next bit is equal to one and, therefore, the type of the logical function for the second level is defined as

f a b
2

� & ;

(3) the next bit equals one and, therefore, the type of the logical function for the third level is defined as

f a b
3

� & ;

(4) based on the analysis of two least significant bits (01), for the threshold relation R �	 , the type of the logical

function for the last (fourth) level is defined as follows: f a
4

� .

The results of transformation that are presented in Table 1 confirm that the partition is carried out with respect to

the second coordinate, and the set À is divided into the subsets A
1 2

� { }� and A
2 1 3

� { }� �, .
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TABLE 1

Boolean

Vectors

of the Set À

Value of the

Vector

Obtained Types of ALN Functions of

the 1st level

( )f a b
1

� �

the 2nd level

( & )f a b
2

�

the 3rd level

( f a b
3

� & )

the 4th level

( : )f a
4

�

p
1

(00111) (0111) (000) (00) 1

(10000) (1111) (111) (11) 0

(00101) (0101) (000) (00) 1

p
2

(01011) (1011) (011) (00) 1

(01010) (1010) (010) (00) 1

(00011) (0011) (000) (00) 1

p
3

(10001) (1111) (111) (11) 0

(10110) (1111) (111) (11) 0

(01000) (1000) (000) (00) 1



Solution of Problem 2. The solution follows from the method of solving Problem 1. In fact, representing the

coordinates of the threshold vector à k k k� �( , , , ) in the form of binary words, we execute n iterations for each

coordinate. It should be noted that this partition can be performed concurrently by adjusting each of n ALNs to the same

threshold value and the same relation. In this case, further acceleration of the classification is possible as follows: if, for

one coordinate of some vector, the value of the function �R x a( , ) � 0, then further computations with this vector should

not be executed since it will be assigned to the second subset V
2

.

If necessary, ALN can be adjusted to different values of coordinates of the threshold vector and different relations

for each coordinate separately.

Solution of Problem 3. To solve the problem, the vector à should be summed with a vector K k k k� �( , , , ) and

the obtained vector à K� should be considered to be the threshold vector. Then verification is performed by the way of

solution of Problem 2. If a vector � i satisfies the threshold relation R, then it belongs to the set A
1

and, otherwise,

it belongs to the set A
2

.

The considered ways of solving problems imply the need for executing the addition operation. To implement this

operation, we will consider the implementation of an adder based on ALN and, in this case, in contrast to the structure of

the threshold device from [12], an ALN structure of the trapezoidal type is used [3], i.e., a structure with 2 1n� inputs and

� outputs (� � �log

2

1n ). The adder implements the following operation [13]:

C A B c a b c

n n

� � � � � �

�

�

�

�

� �int int

2 2

0

1

0

1

�

�

�

�

�

�

,
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Fig. 2. Block diagram of the adder based on the basic

logical operations XOR and AND.



where a
�
and b

�
are components containing the value of the �th bit of the binary representation of the binary

vectors A and B, respectively; 2
�
is the weight of the �th bit of binary vectors; c

int

are values of the carry input.

The result of the adder is represented by (n�1) bits (taking into account the carry output c
out

).

The implementation of the adder is based on a bit-level (h is the number of levels of processing, and s h� �1 )

transformation scheme that uses modulo 2 addition and multiplication (the logical operations XOR and AND) as basic

bit operations.

Transformations are executed by pairwise processing of input vectors. Processing groups of weighted components

of vectors at each level involves the formation of information bits with their current weights (the operation of modulo 2

addition) and carry bits whose weight is larger by one (the operation of modulo 2 multiplication). Thus, at the level s �1,

groups with the weights 2

1

and 2

0

are formed. The group with the weight 2

1

represents the carry bit created with the help

of the operation AND. The group with the weight 2

0

is the information bit created with the help of the operation XOR,

etc. The group with a weight 2

�
is processed until the cardinality of the weighted group becomes equal to 1, i.e., will be

represented by one information bit. The information bit with the greatest weight 2

�
�( )� n will be created last.

Let us consider an example of synthesizing the adder for binary vectors A and B ( )n �1 , which is based on the

basic logical operations XOR and AND and whose block diagram is presented in Fig. 2.

Example 4. Assume that the vectors from the set V are such as in Example 2, that the parameter k � 8,

that the threshold relation R � � , and that the threshold vector à � ( , , )7 6 3 . Then à K� � � �( , , ) ( , , ) ( , , )7 6 3 8 8 8 15 14 11

will be the threshold vector, and vectors � i are divided by the ALN structure (see Fig. 1) into two subsetsV
1 2

� { }�

and V
2 1 3

� { }� �, .

CONCLUSIONS

This article considers the solution of the problem of classifying a set of vectors with nonnegative integer coordinates

with the help of adaptable logical networks. The presented solution is independent of the digit capacity of coordinates of

vectors and is applicable to arbitrary digit capacities of coordinates of vectors and threshold values. This solution requires

the execution of the operation of addition and, to this end, an adder is constructed that uses only the operations AND and

XOR that underlie the construction of ALN for solving the classification problems being considered. The proposed solution

is also applicable to the problem of classifying a set of vectors with negative integer coordinates. To this end, it is necessary

to perform a displacement as a result of which negative quantities are transformed into nonnegative ones and, at the end of

transformations, the reverse displacement is performed for obtaining true values.
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