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COMBINATORIAL CONFIGURATIONS IN BALANCE

LAYOUT OPTIMIZATION PROBLEMS
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Abstract. The balance layout optimization problem for a given set of 3D objects in a container divided

by horizontal racks into subcontainers is considered. For analytical description of non-overlapping

and containment constraints, the phi-function technique is used. Combinatorial configurations

describing the combinatorial structure of the problem are defined. Based on the introduced

configurations, a mathematical model is constructed that takes into account not only the placement

constraints and mechanical properties of the system but also the combinatorial features of the problem

associated with generation of partitions of the set of objects placed inside the subcontainers.

A solution strategy is proposed. The results of numerical experiments are provided.

Keywords: balance layout, combinatorial configurations, 3D objects, phi-function method,

mathematical model, optimization.

INTRODUCTION

Balance layout problems are NP-hard arrangement problems [1] and are a subject of research in computing

geometry [2], and methods of their solution are a new direction in the theory of operations research [3]. The essence of

the problem is to find optimal arrangement of a given set of 3D objects in some bounded area (container) with regard for

behavior constraints, which ensure balance of the system under study.

The necessity of taking into account behavior constraints in arrangement optimization problems occurs in various

application domains of science and engineering, for example, in logistics problems (cargo packing for transportation or

storage), in mechanical engineering (arrangement of aircraft, ships, submarines, as well as equipment, devices, and

product details). Design in space-rocket engineering draws a special attention to this class of problems. At the initial

stage of design (arrangement) of a spacecraft, it is necessary to consider a number of constraints on static and dynamic

characteristics (center of mass, axial and centrifugal moments of inertia) [4].

The studies [5–9] consider problems of layout of cylinders in a cylindrical container with behavior constraints,

which should be taken into account to counterbalance satellite system. These publications present mathematical models

with different objective functions. To solve these problems, heuristic algorithms are proposed, which take into account

special features of each of them.

Mathematical models of some balance layout optimization problems can be constructed with regard for special

features of their discrete structure. For mathematical modeling and solution of such problems, it is necessary to use

combinatorial configurations that have respective properties. The main approaches to mathematical modeling and

solution of optimization problems on combinatorial configurations are described in [10, 11].

2211060-0396/18/5402-0221

©

2018 Springer Science+Business Media, LLC

1

Kharkiv National University of Radio Electronics, Kharkiv, Ukraine,

†

igor.grebennik@nure.ua;
‡

hanna.kovalenko@nure.ua;
††

inna.urniaieva@nure.ua.
2

A. Podgorny Institute for Mechanical Engineering Problems,

Kharkiv, Ukraine, sherom@kharkov.ua.
3

Kharkiv National University of Home Affairs, Kharkiv, Ukraine,

tarom7@yahoo.com. Translated from Kibernetika i Sistemnyi Analiz, No. 2, March–April, 2018, pp. 55–67. Original

article submitted July 17, 2017.

DOI 10.1007/s10559-018-0023-2



The studies [12, 13] present mathematical models and solution techniques for balance layout problems (BLP) for

sets of 3D objects in a given container, which is divided into subcontainers by circular racks. And partition of the set of

objects into subsets according to the arrangement of objects inside the subcontainers is assumed to be specified.

In the present paper, we will consider the problem of balance layout of 3D objects (a full-sphere, a cylinder, a torus,

a spherocylinder, a parallelepiped, and a regular prism) in a container (in the form of a parallelepiped, a cylinder, a paraboloid

of revolution or a cone). Partition of the set of objects with respect to the membership in subcontainers is not specified.

The purpose of the present study is to construct and implement the mathematical model of the problem of optimal

balance layout of a set of 3D objects, which takes into account not only arrangement constraints and mechanical

properties of the system, but also combinatorial features of the problem related to generation of partitions of the set of

objects placed inside subcontainers.

PROBLEM STATEMENT

Let � be a container of height H , in the form of a parallelepiped, cylinder, paraboloid of revolution or a cone.

Container � is defined in the intrinsic fixed frame Oxyz, where Oz is longitudinal symmetry axis. Assume that � is

divided by horizontal racks S j into compartments �
j
, j J mm� � { }1, ,� . Denote the distance between racks S j and

S j�1 by t j and j Jm� , t Hj

j

m

�

� �

1

. The origin of the intrinsic frameOxyz is centered at the bottom of the container.

We have the set A i ni� �{ }� , , ,1 � of homogeneous 3D objects with given metric characteristics. Each object

has height hi and mass mi , i J nn� � { }1, ,� .

Object �i is defined in the intrinsic frameO x y zi i i i . Position of object �i inside the container� is defined by vector

u v zi i i i� ( , , )� , where ( , )v zi i is the vector of translation of the object in fixed frame Oxyz, � i is the angle of rotation of

object �i in plane O x yi i i , v x yi i i� ( , ), and the value of zi , i Jn� , is uniquely defined by subcontainer �
j
, j Jm� ,

in which the object �i is located. The following constraints are imposed on the layout of object �i , i Jn� , inside�
j
:

z t hi l

l

j

i� ��

�

� 1

1

,

where j Jm� . We suppose that t
0

0� and � �i Jn there exists j Jm
*

� : h ti j
	

*

.

Unlike the BLP problems considered in [12, 13], where objects are required a priori to be placed in specific

subcontainers �
j
, j Jm� , in the present study we will formulate a balance layout problem that assumes generating and

choosing the partition of set A into nonempty subsets A
j
, j Jm� . Here, A

j
is a subset of objects that should be placed

on rack S j inside subcontainer �
j
.

Let J Jn

j

n
 be the set of subscripts of objects placed in subcontainer �
j
, j Jm� , J Jn

j

n

j

m

�

�1

�

, J Jn

i

n

j
� ��,

i j Jm � ; k Aj

j
� | | is the number of objects placed in subcontainer �

j
, k j � 0, j Jm� , and

k nj

j

m

�

� �

1

. (1)

In some applications, additional constraints can be imposed on the total mass of objects placed in subcontainers�
j
,

j Jm� , for example,

m m mi

i

k

i

i k

k k

i

i k k k

n

m

� � �

� � �

�

� � � � �

� � �
�1 1 1

1

1

1 2

1 2 1

�

�

, (2)

where k Aj

j
� �| | 1, j Jm� .
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Moreover, the following conditions of the arrangement should be satisfied:

int int� �i i
1 2

� ��, i i Jn
j

1 2

� � , j Jm� ,

(3)

�i

j
� � , i Jn

j
� , j Jm� , (4)

h t
j

j	 , h h i J
j

i

j

n

j
� �max ,{ }, j Jm� . (5)

Denote by� A the system generated as a result of the arrangement of objects �i of family A in container� and by

O XYZs the frame� A , whereO x v y v z vs s s s� ( ( ), ( ), ( )) is center of mass� A , and axesO X Oxs | | ,O Y Oys | | ,O Z Ozs | | ,

x v

m x

M
s

i i

i

n

( ) �
�

�
1

, y v

m y

M
s

i i

i

n

( ) �
�

�
1

, z v

m z

M
s

i i

i

n

( ) �
�

�
1

,

M mi

i

n

�

�

�
1

is the mass of system � A .

As the objective function, in the present study we consider the deviation of the center of mass Os of system � A

from the given point ( , , )x y z
0 0 0

.

Combinatorial Balance Layout Problem (CBLP). It is necessary to find a partition of set A into nonempty

subsets A
j
, j Jm� , taking into account constraints (1)–(5) and layout parameters ( , , )

* * *

x y zi i i of objects �i , i Jn� , that

minimizes the objective function.

We assume that the problem has at least one feasible solution.

Remark. Behavior constraints (constraints on the axial and centrifugal moments of the system) and constraints on

feasible distances between objects can also be imposed on the layout of objects.

Variants of partition of set A into nonempty subsets A
j
, j Jm� , are defined by the number of elements in each

subset and by the order of the latter. Consider subcontainers �
j
and sets of objects corresponding to them A

j
, j Jm� .

Then the tuple of natural numbers ( , , , )k k km1 2

� such that k nj

j

m

�

� �

1

, defines possible number k j of objects in each

subcontainer �
j
. The quantity of all such tuples is equal to the quantity of compositions of number n of length m [14],

which makes C
n

m

�

�

1

1

.

Let us consider how many ways are there to decompose n different objects from set A into m subcontainers �
j
,

j Jm� , provided that they contain, respectively, k k km1 2

, , ,� objects, and the sets of objects A
j
, j Jm� , inside the

corresponding subcontainers �
j
, j Jm� , are not ordered. Without loss of generality, we will distinguish objects with

identical values of metric characteristics, height hi and mass mi (for example, assume that they differ in number).

Let us order the set of elements A. Let us associate each object with the number of subcontainer in which it will be

placed. We will obtain a tuple consisting of n elements, which generate a permutation with repetitions out of m numbers

1 2, , ,� m, in which the first element (number of the first subcontainer) is repeated k
1

times, the second one k
2

times, and

the last one km times. Each such permutation defines its own layout technique, and their total number is

P n k k k
n

k k k
m

m

( , , , , )

!

! ! !

1 2

1 2

�

�

�
� � �

.

Then the number of variants of distributing n different objects from set A among m subcontainers �
j
provided that

each subcontainer contains at least one object and the order of the arrangement of objects inside the subcontainer is

unimportant, can be calculated as

P n k k k
n

k k k
m

k k k n mk km

( , , , , )

!

! ! !

1 2

1 2

1 2 1 2

�

�

�� � � � � �

� �
� � �

�� �

�
k nm

. (6)
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Note that the number of terms in the sum is equal to the number of compositions of n of length m, which is

N C
n

m
�

�

�
| |

1

1

.

To generate various variants of subsets A
j
, j Jm� , let us construct a combinatorial configuration as follows.

Denote by Pt n m( , ) the set of compositions of number n of length m (corresponds to the distribution n of different

cylinders from set A among m subcontainers�
j
, j Jm� , provided that each subcontainer contains at least one object and

the order of objects inside the subcontainer is unimportant). Here, | ( , ) | | |Pt n m N C
n

m
� �

�

�

1

1

.

Let ( , , , ) ( , )k k k Pt n mm1 2

� � , k nj

j

m

�

� �

1

, k i � 1, i Jm� . Let us introduce combinatorial set �, which is

a composite image of combinatorial sets (k-set) Pt n m( , ), Cn

k
1

, C
n

k

1

2

, C C
n

k

n

k

m

m

2

3

1

, ,�

�

, generated by sets I n
0

, I n
1

,

I In nm2 1

, ,�

�
[15], where n n k ki i� � � �

1

� , i Jm� �1,

I Jn n
0

� ,

I I j j jn n

n n

k

n

1 0

0 0

1

0

1 2

� \ , , ,{ }� , ( , , , )j j j C
n n

k

n

n

k

1 2

0 0

1

0 1

� � ,

I I j j jn n

n n

k

n

2 1

1 1

2

1

1 2

� \ , , ,{ }� , ( , , , )j j j C
n n

k

n

n

k

1 2

1 1

2

1

1

2

� � ,

�����������������������

I I j j jn n

n n

k

n

m m

m m

m

m

� �

� �

�

��
1 2

2 2

1

2

1 2

\ , , ,{ }� , ( , , , )j j j C
n n

k

n

n

km m

m

m

m

m

1 2

2 2

1

2

2

1� �

�

�

�

��� ,

I j j jn

n n

k

n

m

m m

m

m

�

� � ��
1

1 1 1

1 2

{ }, , ,� , ( , , , )j j j C
n n

k

n

n

km m

m

m

m

m

1 2

1 1 1

1

� � �

�

�� .

Note that

I I I J nn n n nm0 1 1

1 2� � � � �
�

� �{ }, , , ,

I In ns t
� ��, s t J m

m
 � � �

�1

0

0 1 1{ }, , ,� .

Element q q qn� �( , , )

1

� � can be described as follows:

q q q q qk k k k� � �( , , , , , ,

1 1

1 1 1 2

� � � , q qk k k km m m1 1 1

� � �� ��

�, , ),

where ( , , ) ( , , , )q q j j j Ck

n n

k

n

n

k

1

1 21

0 0

1

0 1

� �� � ,

( , , ) ( , , , )q q j j j Ck k k

n n

k

n

n

k

1 1 2

1 1

2

1

1

2

1

1 2

� � � �� � ,

������������������

( , , ) ( , , , )q q j j jk k k k

n n

k

n

m m m

m m

m

m

1 1 1

1 1 1

1 2

� � �� �

� � �� �
�

� � C
n

k

m

m

�1

.

The cardinality of set � is defined by formula (6).

In what follows, we will call element q q qn� ( , , )

1

� of set � a tuple of partition of the set of objects À into

subsets A
j
, j Jm� .

Let us define the vector of basic variables of ÑBLP: u v z� ( , , )� , where v v vn� �( , , )

1

� R
2n
,

� � �� �( , , )

1

� n

n
R , v x yi i i� �( , ) R

2

, x yi i i, , � are continuous variables, z z zn
n

� �( , , )

1

� R , zi are discrete

variables.
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The values of variables zi , i n�1 2, , .., , are found in the order specified by elements q q qn� ( , , )

1

� of the

combinatorial set � as follows:

z t hq l

l

s

qi i
� ��

�

� 1

1

, (7)

where

s

i k

k i k k

m k k k i k km

�

	

� 	 �

� 	 ��

1

2

1

1 1 2

1 2 1 1 2

if

if

if + + < +

,

,

�

� �+ km ,

�

�

�
�

�

�

�

i n� �1 2, , , , q ni �{ }1 2, , .., , q q qn� �( , , )

1

� �.

Constraints on the layout of objects of set A in container � of the form (3), (4) are described by the system of

inequalities �
1

0( , )u � � , �
2

0

*

( )u � , where �
1

0( , )u � � is a constraint that describes nonintersection of 3D objects,

�
2

0

*

( )u � is constraint that describes inclusion of 3D objects in container � . Here,

� �
1

1

( , ) min ( , ),u u j J
j

m� �� �{ },

� �
1

1 2

1 2

1 2 1 2

j

q q

j

q q q q n

j
u u u u q q J( , ) min ( , , ),� � � �{ }, (8)

� �
2

2

* *

( ) min ( ),u u j J
j

m� �{ }, � �
2

* *

( ) min ( ),

j

q q i n

j
u u q J

i i
� �{ }, (9)

�
q q

j

q q q qu u u
1 2

1 2 1 2

( , , ) is function that describes the condition of nonintersection of objects �q
1

and �q
2

,

u x y zq q q q q
1 1 1 1 1

� ( , , , )� , u x y zq q q q q
2 2 2 2 2

� ( , , , )� , � q qi i
u

*

( ) is function that describes the condition of nonintersection

of objects �qi
and � �

*

/

j j
� R

3

int .

Let u v z
1 1 1 1

3

� �( , , )� R , u v z
2 2 2 2

3

� �( , , )� R , v x y
1 1 1

� ( , ), v x y
2 2 2

� ( , ), x y
1 1 1

, , � , x y
2 2 2

, , � be

continuous variables, z
1

and z
2

be discrete variables, and u
12

be vector of additional variables.

Definition 1. Function �
12 1 2

( , )u u is called D-phi-function for 3D objects �
1

and �
2

if for fixed values of

z z
1

1

0

� and z z
2

2

0

� function �
12 1

1

0

1 2

2

0

2

( , , , , , )v z v z� � is a phi-function �
12 1

1

0

1 2

2

0

2

( , , , , , )v z v z� � for objects �
1

and

�
2

.

Definition 2. Function ��
12 1 2 12

( , , )u u u is called quasi-D-phi-function for 3D objects �
1

and �
2

if for fixed values

of z z
1

1

0

� and z z
2

2

0

� function ��
12 1

1

0

1 2

2

0

2
12

( , , , , , , )v z v z u� � is a quasi-phi-function ��
12 1

1

0

1

( , , ,v z � v z u
2

2

0

2 12

, , , )�

for objects �
1

and �
2

.

Thus, in relations (8) and (9) for fixed values of zq
1

and zq
2

we get �
q q

j

q q q q q q q qu u u u u
1 2

1 2 1 2

1 2

1 2

( , , ) ( , )� �
��

is

phi-function [2] for objects �q
1

and �q
2

or �
q q

j

q q q q q q q q q qu u u u u u
1 2

1 2 1 2

1 2

1 2 1 2

( , , ) ( , , )� ��
��

is quasi-phi-function [16] for

objects �q
1

and �q
2

; �q q q qi i
i

j

i
u u

*

( ) ( )

*

� �
��

is phi-function for objects �qi
and �

* j
.

If minimum admissible distances between objects are specified, pseudo-normalized phi-functions

(quasi-phi-functions) for respective pairs of objects [2, 15] are used.

THE MATHEMATICAL MODEL

We can define the mathematical model of CBLP problem as follows:

F u F u( , ) min ( , )

*

� �� s.t. ( , )u W� � ,

(10)
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W u u u u� � � � �{ }( , ) : ( , ) , ( ) , ( )

*

� � �
�

R � �
1 2

0 0 0 , (11)

where

F u d x v z y v z z zs s s( ) ( ( , )) ( ( , )) ( )� � � � �
2 2

0

2

,

u v z� ( , , )� , v v vn� ( , , )

1

� , � � �� ( , , )

1

� n , v x yi i i� ( , ) , i I n� , z z zn� ( , , )

1

� , function �
1

( , )u � is described

by relation (8) for � ��

�

j

j

m

1

�

, �
j
�{ }( , ):q q q q Jn

j

1 2 1 2

� � , � � �� ( , , )

1

� s is the vector of auxiliary variables for

constructing the quasi-phi-functions, s � | |� , function �
2

*

( )u is defined by formula (9), elements of vector z are

defined by relation (7), and �( )u � 0 are behavior constraints.

For example, mathematical model (10), (11) for ÑBLP problem of the layout of cylinders in a cylindrical container

becomes

min d, s.t. u v z W� �( , ) ,

where v x y x yn n� ( , , , , )

1 1

� , z z zn� ( , , )

1

� ,

d m x m y m zi i

i

n

i i

i

n

i i

i

� �

�

�

�

�

 

!

"

"

� �

�

�

�

�

 

!

"

"

� �

� � �

� �
1

2

1

2

1

n

�
�

�

�

�

 

!

"

"

2

,

and the domain W can be described by the system of inequalities

( ) ( ) ( ) ,

, , ,

x x y y r r

q q j J

q q q q q q

j

m

2 1 2 1 2 1

2 2 2

1 2

0� � � � � �

� �

�

�

x y R r

q j J

q q q

z

q

i

j

m

i i i
i

2 2 2

0� � � �

� �

�

�

�

�

�

�

�

( ) ,

, .�

Note that � � �m
m

M
i

i
const and M mi

i

n

� �

�

�
1

const.

The mathematical model of CBLP can be represented as a mixed integer programming problem (MIP) with the use

of Boolean variables. However, unlike (10), (11), such approach substantially increases the number of discrete variables

of the model, and hence increases the CBLP dimension.

SOLUTION STRATEGY

To solve CBLP, the following strategy is used.

Step 1. Randomly generate the set { }q of partition tuples q q qn� �( , , )

1

� � with the use, for example, of the

algorithm presented in [17].

Step 2. Check conditions (2) and (5) for each of the tuples q q�{ }. Construct the subset { } { }� 
q q whose elements

satisfy conditions (1)–(5). If { }� ��q , then go back to Step 1.

Step 3. Construct the set of feasible starting points { }�u
0

for each tuple from set { }�q .

Step 4. Find local extremum of problem (10), (11) for each starting point � �u W
0

for a fixed tuple �q .

Step 5. Take the best of the obtained local extrema for all the tuples of set { }�q and feasible starting points of set

{ }�u
0

as a locally optimal solution of the CBLP.

The proposed strategy uses reasonable choice of feasible starting points and NLP-solver to find locally optimal

solutions of the NP-hard conditional optimization problem (10), (11).
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To reduce computational cost (time and memory), modification of the LOFRT algorithm proposed in [16] is used.

This algorithm reduces high-dimensional problem (10), (11) with a great number of inequalities to a sequence of

subproblems with much smaller number of variables and inequalities.

To solve nonlinear programming problems, IPOPT is used (https://projects.coin-or.org/Ipopt), which implements

the interior point method [18].

Algorithm of Finding Feasible Starting Points. The algorithm includes the following steps for the given tuple �q .

Step 1. Randomly generate set of points v x yi i i

0 0 0

� ( , ), i I n� , which belong to respective cuts of the container.

Form vector v x y x yn n

0

1

0

1

0 0 0

� ( , , , , )� . Fix rotation angles � �i i� �
0

0, i I n� .

Step 2. Let � �� i be coefficient of homothety for objects Ai , i I n� . Using obvious geometrical constructions,

find the vector of additional variables �u
0

of dimension �, such that each phi-function or quasi-phi-function in (11) attains

its maximum value with respect to additional variables �u
0

at point ( , )u u
�

0 0

� , where u v
�

� �
0 0 0 0

� ( , , ), �
0

0� ,

v v vn
0

1

0 0

� ( , , )� , � � �
0

1

0 0

� ( , , )� n .

Step 3. Calculate �
� �

0

1

0 0

2

0

� �min ( , ) , ( ){ }� �u u u . If �
0

0� , go to Step 4; otherwise form point u u u� �
�

*

( , , )� �
0 0 0

and go to Step 5.

Step 4. Specify � � 0, � �i i� �
0

0, i I n� , and use u u u� �
�

0 0 0 0

� �( , , ) as a starting point for the solution of the

following auxiliary nonlinear programming problem:

� �
*

max� , s.t. u W� �� ,

(12)

W u u u u
n

� �
�

� �� � �� � � � � � � � �
� �

{ }�
3 1

1 2

0 0 0: ( , ) , ( ) ,� � , (13)

where u u u� � �� �( , , ).

If �
*

� 0, then point u u u� � �
* * * *

( , , )� � of global maximum of problem (12), (13) has been found; go to Step 5. If

�
*

� 0, then it is impossible to find feasible starting point for problem (12), (13) since layout constraints are not satisfied

for � � 0. In this case, go back to Step 1.

Step 5. Assume that parameters � i , i I n� , are variable. Randomly generate starting values of rotation angles

� �i

*

[ , )� 0 2 , i I n� .

Step 6. Form a feasible starting point ( , )

* *

u u� � using u�
*

and solve the following auxiliary nonlinear programming

problem:

� �
*

max� , s.t. ( , )u u W� �� � , (14)

W u u u u u
n

� �
�

� � � �� � � � � � � � �
� �

{( , ) : ( , ) , ( ) , ,�
3 1

1 2

0 0 1 0 0� � }. (15)

If �
*

�1, then point ( , ) ( , , , )

* * * * * *

u u v u� � �� � � of global maximum (14), (15) has been found; go to Step 7. If

�
*

� 1, then go back to Step 1.

Step 7. Calculate � �( , )

* *

v . If � �( , )

* *

v � 0, then go to Step 8; otherwise go to Step 9.

Step 8. Starting from point u v u u
	

� 	 �
0 0

� � �( , , , ( ))

* * * *

, solve the auxiliary problem

	 	
*

max� , s.t. u W	 	� ,

(16)

W u u u u u
n

	 	
�

� 	 	� � � � � � � � �
� �

{ }�
3 1

1 2

0 0 0 0: ( , ) , ( ) , ( ) ,� � ,

(17)

where 	 is residual, u u u	 	� �( , , ), u v� ( , )� .
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If 	
*

� 0, then point u v u	 � 	
* * * * *

( , , , )� � of global maximum of problem (16), (17) has been found; go to Step 9.

If 	
*

� 0 , then go back to Step 1.

Step 9. Form a feasible starting point u v u W
0

� � �( , , )

* * *

� for the CBLP.

RESULTS OF NUMERICAL EXPERIMENTS

Problem 1. Consider the problem of balance layout of cylinders � i , i �1 8, ,� , in a cylindrical container divided

by two circular racks into subcontainers in order to minimize the deviation of the center of mass of the system� A from

point ( , , )x y z
0 0 0

.

Let n � 8, m � 3, H � 6, R � 2 5. , t t
1 2

2� � , and ( , , ) ( , , )x y z
0 0 0

0 0 3� . The masses and metric characteristics

(radii and heights) of cylinders � i , i �1 8, ,� , are given in Table 1.

The results of numerical experiments for Problem 1 are as follows: the value of the objective function d
*

� 0.3851

for q
1

1 4 7 3 5 8 2 6� ( , , , | , , , | , ); the value of the objective function d
*

� 0.8847 for q
2

3 7 8 1 5 6 2 4� ( , , , | , , , | , ); the value of the

objective function d
*

� 1.3938 for q
3

1 5 6 8 2 7 3 4� ( , , , , | , , | , ); and the value of the objective function d
*

� 1.8847 for

q
4

1 3 5 6 7 8 2 4� ( , , , , | , , | , ). The best result d
*

� 0.3851 is obtained for Problem 1 for q
1

1 4 7 3 5 8 2 6� ( , , , | , , , | , ).

Figure 1 shows locally optimal layouts of cylinders in subcontainers, corresponding to the tuples q
1

, q
2

, q
3

, and q
4

.

Problem 2. Consider the problem of balance layout of a family of 3D objects (full-spheres � i , right circular

cylinders � i , tori � i , spherocylinders � � i
, right rectangular parallelepipeds �i , and regular prisms � i ) in a cylindrical

container with regard for behavior constraints (constraints imposed on axial and centrifugal moments of the system) and

constraints on the minimum admissible distances between objects, as well as between objects and container’s boundary

in order to minimize the deviation of the center of mass of system � A from point ( , , )x y z
0 0 0

.

Let n � 20, m � 3, H �1, R � 0.45, t t
1 2

� � 0.35, A ii i� �{� �, , , , ,1 4� i � 5 8, , ,� � i i, , ,� 9 12� ,

� � i
i, , ...,�13 16, �i i, , ,�17 18 19, �

20

}, ( , , )x y z
0 0 0

� (0, 0, 0.5),

{ , , , } { . , . , . , . , .m ii � �1 20 20 944 15 2681 27 8764 34 5575 63 7� 115 418146 30 4106 28 4245, . , . , . ,

49 9649 24 8714 38 6888 26 2637 20 7764 17 2159 16. , . , . , . , . , . , . , . , . , . , . }8756 52 8 52 8 52 8 231489 ;

r
1

0 1� . , r
2

0 09� . , r
3

0 11� . , r
4

0 11� . be radii of full spheres � i , i �1 4, ,� ;

r
5

0 1� . , h
5

0 11� . , r
6

0 13� . , h
6

0 12� . , r
7

0 11� . , h
7

0 11� . , r
8

0 11� . , h
8

0 08� . be radii and semiheights of

cylinders � i , i � 5 8, ,� ;

r
9

0 08� . , h
9

0 07� . , r
10

0 09� . , h
10

0 075� . , r
11

0 07� . , h
11

0 06� . , r
12

0 08� . , h
12

0 07� . be distances from the

centers of generating circles to spin axes and semiheight of tori � i , i � 9 12, ,� ;

r
13

0 1� . , h
13

0 05� . , l
13

0 07� . , r
14

0 05� . , h
14

0 05� . , l
14

0 08� . , r
15

0 08� . , h
15

0 05� . , l
15

0 06� . , r
16

0 08� . ,

h
16

0 04� . , l
16

0 07� . be radii, semiheights of cylinders, and heights of spherical segments for spherocylinders � � i
,

i �13 16, ,� ;

w
17

0 11� . , l
17

0 1� . , h
17

012� . , w
18

0 11� . , l
18

0 1� . , h
18

0 12� . , w
19

011� . , l
19

0 1� . , h
19

0 12� . be the half-widths,

semilengths, and semiheights of the parallelepipeds �i , i �16 18 19, , ;

r
20

0 09� . , h
20

0 11� . be the length of the base and semiheight of the right hexagonal prism.
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Parameters of

a Cylinder

�
1

�
2

�
3

�
4

�
5

�
6

�
7

�
8

m
i 4 2 2 1 3 3 5 5

r
i 1 0.7 0.6 0.45 0.8 0.85 0.9 1

h
i 1.27 1.3 1.77 1.57 1.49 1.32 1.96 1.59

TABLE 1. Initial Information about Cylinders



Let the minimum admissible distances between objects, as well as between objects and container’s boundary be


 
i ij

� �
� � 0 02. , i j� �1 20, ,� ; feasible values of the axial and centrifugal moments of inertia be # #J JX Y� �170,

# JZ �150, and # # #J J JXY YZ XZ� � � 0.

The results of numerical experiments for Problem 2 are as follows: the value of the objective function d
*

.� 0 0019

for q
1

1 5 6 9 13 14 17 2 3 7 10 15 18 20 4 8 11� ( , , , , , , , | , , , , , , , | , , , 12 16 19, , ); the value of the objective function d
*

.� 0 0056 for

q
2

3 5 6 7 10 13 17 2 4 11 12 14� ( , , , , , , , | , , , , , 18 19 1 8 9 15 16 20, , | , , , , , ); the value of the objective function d
*

.� 0 0018 for

q
3

1 5 7 11� ( , , , , 13 15 19 20 2 4 8 10 12 14 17 3 6 9 16 18, , , , | , , , , , , , | , , , , ); the value of the objective function d
*

.� 0 0030 fo

q
4

2 3 7 9 13 16 18 19 5 6 8 11 12 14 20 1 4 10� ( , , , , , , , , | , , , , , , , | , , , , )15 17 . The best result d
*

.� 0 0018 was obtained for Problem 2

for q
3

1 5 7 11 13 15 19 20 2 4 8 10 12� ( , , , , , , , , | , , , , , 14 17 3 6 9 16 18, , | , , , , ).
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Fig. 1. Locally optimal layouts of cylinders in subcontainers � � �
1 2 3

, ,

for Problem 1, corresponding to tuple q
1

(a), tuple q
2

(b), tuple q
3

(c),

and tuple q
4

(d).
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Figure 2 shows locally optimal layouts of objects in subcontainers �
1

, �
2

, and �
3

, corresponding to the tuples

q
1

, q
2

, q
3

, and q
4

.

CONCLUSIONS

We have considered the problem of balance layout of 3D objects in a container divided by horizontal racks into

subcontainers. We have constructed a mathematical model, which takes into account not only behavior and layout

constraints but also the combinatorial features of the problem, related to the necessity of constructing partitions of the set

of cylinders being arranged into subcontainers. We have proposed a solution strategy that includes procedures of

generating partition tuples, constructing starting points from the domain of feasible solutions, and local optimization.

This approach uses the principle of “multistart” for finding “good” feasible solutions. The results of numerical

experiments have shown the efficiency of the proposed approach for the considered class of balance layout problems.
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Fig. 2. Locally optimal layouts of objects in subcontainers � � �
1 2 3

, ,

for Problem 2, corresponding to tuple q
1

(a), tuple q
2

(b), tuple q
3

(c)

and tuple q
4

(d).
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