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HEURISTIC CRITERION FOR CLASS RECOGNITION

BY SPECTRAL BRIGHTNESS
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Abstract. The authors consider the problem of recognition of a class of objects by the results of

multispectral measurements (spectral brightness of signals) and available spectral and statistical

characteristics of the given classes. On the basis of probabilistic and statistical considerations,

as well as quantization of continuous distributions, the heuristic recognition criterion is proposed.

Based on the criterion, the heuristic method of recognition is presented. Modifications of the method

are proposed to improve its reliability and efficiency.
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INTRODUCTION

In the paper, we will represent a heuristic criterion for recognition of a class of objects by the results of

measurement of their spectral brightness and known mean values of spectral brightness of reference classes of objects.

Methods of probability theory and mathematical statistics [1–3] are actively applied to solve optimization problems,

in statistical theories of identification, recognition, and training [4–6], as well as in number theory [7]. These theories use

methods and algorithms of probability theory and mathematical statistics to acquire information and derive hypotheses

that are tenable to some extent. One of the problems is handling data from multispectral GPS surveys [8] in order to class

given objects among already known ones. Objects in the classes are described by appropriate attributes.

Practical needs and theoretical studies initiate new statements of recognition problems, form new problems, which

in turn stimulate the development of other methods of their research. In the present paper, we will apply probability and

statistical methods to represent heuristic recognition criterion for classes of objects of the specified recognition problem.

The heuristic reasons being used are partially caused by analogies between number theory and probability theory (see for

example [7, 9] and references therein). In brief, the content of the study is as follows: vector X X X X n� ( , , , )

1 2

� is

current vector of averaged sampled values (of spectral brightness) of a random sample with unknown value of class k .

Vectors Lk in the amount m are fixed vectors of averaged sampled values (of spectral brightness) of random samples from

m known (reference) classes. A class with unknown value of k belongs to one of the reference classes. Based on X and Lk ,

this value k can be calculated by the proposed heuristic method. In Sec. 1, the necessary concepts are introduced

and problem statement is given; Sec. 2 represents the heuristics of the criterion with application of statistical hypotheses

and quantization; Sec. 3 describes heuristic recognition criterion on the basis of measurements (of spectral brightness of

signals) and quantization, heuristic recognition method based on this criterion, and modifications of the method in order

to increase the recognition reliability and make the computations more efficient.
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1. PROBLEM STATEMENT

Let there be m classes of objects subject to recognition, which are defined by m training samples containing

N k objects, respectively, where k is current class number. Let n be the number of measured values of attributes, for

example, the quantity of spectral channels (zones) being used and i be current attribute number, for example, the number

of specific spectral channel (zone). Let ( , , , )X X X n1 2

� be averaged result of the measurement of values of attributes of

the class of objects being recognized, for example, averaged result of measurement of spectral brightness (brightness) of

the class of objects being recognized, with respect to the set of spectral channels being used. For class k , vector

L L L Lk k k k n� ( , , , )

, , ,1 2

� is the result of current measurements of brightness of n attributes (for example, with respect to

n spectral channels). We assume that vector components are independent and brightness randomly varies from class

to class, taking values near their average values. The quantity Lk i s, ,

means the result of measurement of object s

belonging to class k with respect to the ith channel. Let us assume that the mean value of random variable Lk i, is equal to

L
N

Lk i

k

k i s

s

N k

, , ,

�

�

�

1

1

,

for values i n�1, ,� and combine them in vector L L L Lk k k k n� ( , , , )

, , ,1 2

� .

The standard deviation is supposed to be equal to

� k i

k

k i s k i

s

N

N
L L

k

, , , ,

/

( )�

�

�

�

�

�

�
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1 2

.

Condition 1. Suppose that vector ( , , , )X X X n1 2

� is random and its coordinates are independent, normally

distributed random variables.

Remark 1. If we do not suppose a priori that the distribution of coordinates of vector ( , , , )X X X n1 2

� is normal,

then to check whether empirical values of coordinates correspond to the normal law, we can use sampled values and

Pierson’s �
2

-criterion or the Smirnov–Kolmogorov criterion [2, 3]. For the Sato–Tate distribution, such research is

presented in [9] in detail.

Assume that Condition 1 of the distribution normality is satisfied. In this case, the probability density of random

variable X k i, is

p x ek i i

k i

x Li k i

k i

,

,

( )

( )

,

,

�

�

1

2

1

2

2

2

� �

�

.

Under the same condition, multivariate density of vector ( , , , )

, , ,

X X Xk k k n1 2

� is defined by the formula

p x x p x p x ek n k k n n

n
xi

( , , ) ( ) ( )

, ,

/
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. (1)

Problem. Let vector X X X X n� ( , , , )

1 2

� be averaged sampled value of random sample with unknown value of

class k . It is required to specify a criterion that allows determining the number k with the maximum confidence. In other

words, for parameter k , the required criterion should find its most probable value P P Xk k� ( ). For example, if the class

being recognized is a field occupied with vegetative culture (culture) with number k , then Pk is the probability that this

field is actually occupied with culture with number k .

It should be unambiguously known that the considered class pertains to one of the classes with numbers1, ,� m.

The main problem is to determine the algorithm of calculating P Pm1

, ,� in terms of respective initial parameters Lk i, ,

� k i, , and Lk . This problem involves certain difficulties caused by continuous distribution of Lk i, .

The heuristics of the problem solution is described in the next section.
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2. CRITERION HEURISTICS

Let us consider the case where all the classes k are different (k m�1, ,� ). Let L Lm1

, ,� be sampled values that

characterize classes 1, ,� m, respectively. Thus, we have m competing hypotheses Hk , out of which it is necessary to

choose the one that corresponds the most to the sampled value X X X X n� ( , , , )

1 2

� .

Remark 2. Hypotheses H Hm1

, ,� are alternative, i.e., from m m
1 2


 it follows that the statement

( )& ( )L X L Xm m
1 2

� � is false.

Remark 3. If L Xk � , then one and only one of the competing hypotheses H Hm1

, ,� is true.

Let us define event A k by the equality L Xk � , i.e., the event is that random variable takes value X . Then events

A k are pairwise incompatible (k m�1, ,� ) and it is certainly known that one of them took place. We consider that event

A A A� � � � ��
1 m has nonzero probability. Justifiability of event A k is defined by the conditional probability P k( | )A A ,

i.e., the probability that event A k took place provided that event A took place. Denote by P P Xk k� ( ) the probability

that sampled value X belongs to class k .

Proposition 1. To solve the formulated problem, i.e., to determine the class of sampled value X , the following is

necessary:

� calculate the values of probabilities Pk ;

� among the calculated values P Pm1

, ,� , choose the maximum Pk
max

; this value k k�
max

is the number of the

required class.

Quantization. Let us quantize continuous distributions with discrete ones, i.e., select discrete references. Thereby

we will locally approximate these distributions by constants. For a point X X X X n� ( , , , )

1 2

� of the Euclidean

n-dimensional space, we will construct full-sphere B
�

of radius � centered at this point:

B X t t Xi i i

i

n

�
�( ) | ( )� � �

�

�

�

�

�

�

�

�

�

��

�

2

1

.

Thus, if L Xk � , then L B Xk �
�
( ) since random vector Lk will certainly fall within the full-sphere B X

�
( ) if it

gets at its center. Denote event L B Xk �
�
( ) as Bk .

Remark 4. Put t t t dt dt dtn n� � � � �( , , ),

1 1

� . Probability P( )Bk of event Bk is P( ) ( )

( )

Bk k
B X

p t dt� � � �

��
�

.

Here, p t p tk k i i

i

n

( ) ( )

,

�

�

�

1

since random variables X k i, are mutually independent.

Remark 5. If event À À À� � � � ��
1 m takes place and events À k , k m�1, ,� , are pairwise incompatible, then

� event B B B� � � � ��
1 m has nonzero probability;

� for sufficiently small �, events B B
1

, ,� m are also pairwise incompatible.

Proposition 2. Under these conditions,

P( | )

( )

( )

B Bk
k

s

s

m

p X

p X

�

�

�

1

.

Proof. Since for sufficiently small � events B B
1

, ,� m are also pairwise incompatible according to Remark 5,

B Bk l � 0 for k l
 is an impossible event and B B Bk k k� . From here, P P( ) ( )B B B B B Bk k k m� � � �
1

� P( )Bk . Thus,

P

P

P

( | )

( )

( )

B B
B

B

k
k

s

s

m
�

�

�

1

. (2)
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Since functions p tk ( ) are continuous, the approximate equality

P( ) ( ) ( ) ( )

( ) ( )

Bk k
B X

k
B X

kp t dt p X dt p X V� � � � � � � � �

�� ��
� �

�

takes place for a sufficiently small �, where V
�
is the volume of a full-sphere of radius � in n-dimensional Euclidean

space. Substituting this result into formula (2) yields

P

P

P

( | )

( )

( )

( )

( )

( )

B B
B

B

k
k

s

s

m

k

s

s

m

kV p X

V p X

p X

p

� � �

� �

� �

1 1

�

� s

s

m

X( )

�

�

1

.

3. HEURISTIC RECOGNITION CRITERION

Standards are classes of objects with known description. The objects being recognized, whose dimensions

approximately coincide with dimensions of standards are located without overlapping on a plane (or nearly plane)

surface. The result of measurements of the object being recognized is compared with descriptions of standards and

a decision is made whether the object belongs to the given class.

Proposition 3. Recognition criterion Ck has the form

C p Xk k� ( ) ,

where pk are defined by formulas (1).

Heuristic Substantiation. Applying formula (2) of Proposition 2 and letting � tend to zero, we obtain

P P( | lim ( | )

( )

( )

A A) B Bk k
k

s

s

m
k

p X

p X

R� � �

�

�

�

� 0

1

. For the given X , the inequality 0 1

1

� �

�

�
p Xs

s

m

( ) holds; the sum p Xs

s

m

( )

�

�

1

is a constant, hence, instead of Rk we can use C p Xk k� ( ), which gives the required criterion. Ñalculate values

C Ck1

, ,� and choose their maximum Ck
max

. This value k k�
max

is the number of the required class.

Remark 6. To make the calculations of � k i, more efficient, it is possible to replace them with root-mean-square

averaging with respect to one of the parameters, for example, averaging with respect to spectral channels (zones), i.e.,

instead of value � k i, use �

� �

k

k k n

n
�

� � � � �

, ,1

2 2

.

The root-mean-square averaging can be carried out with respect to both parameters k and i, which denote the

number of the class and spectral channel, respectively. As a result, instead of � k i, it is possible to use

�

�

�� �

�� �

��

��

��

k i

i

n

k

m

k i

i

n

k

m

mn
mn

,

/

,

( )

2

11
1 2 2

11

.

Let us remind that first-kind error for this class with number k is that the hypothesis Hk about identity of the class

being recognized to the sample with number k was rejected, while this event took place.

Remark 7. An analysis of test calculations of the results of n-channel measurements by the proposed criterion has

shown that the probability of a first-kind error for the classes under study varies within 5–20% (significance level �).

To decrease the probability of making unreliable decisions for each class k, it is possible to choose significance level � k ,

which should take values within the required limits (� �k � ).
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CONCLUSIONS

We have presented a heuristic criterion of recognition of a class of objects in the set of classes of objects on the

basis of the results of measurements of the recognized class of objects and available spectral and statistical characteristics

of standards of this recognition problem. With the use of this criterion, we have proposed a heuristic recognition method

based on the results of multispectral measurements (spectral brightness of signals) and quantization, as well as its

modification in order to increase recognition reliability and make calculations efficient.
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