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Abstract. The model of perishable queueing-inventory system with server vacations is studied. Upon

service completion, server takes vacation if there are no customers in the queue and it starts service

at the end of the vacation if the number of customers in the system exceeds some threshold;

otherwise, it takes new vacation. Exact and approximate methods are proposed to calculate the

characteristics of the system.
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INTRODUCTION

This paper continues the studies started in [1], where we proposed an efficient method to calculate the characteristics

of perishable queueing-inventory system (PQIS) with server vacation and two-bin replenishment policy.

Here, we will analyze PQIS models that have the following features, unlike model [1]. First, server takes

a vacation only if there are no customers in the system at the moment of the end of its operation; second, we will analyze

here both models with a limited queue and models with unlimited queue of customers; and third, upon the end of

vacation time, server returns to operating mode only when the number of customers in the system exceeds some

threshold. Taking these features into account allows us to investigate one more wide class of real perishable

queueing-inventory systems.

The main scientific result of this study is the development of the method of approximate calculation of the

stationary distribution of three-dimensional high-dimensional Markov chain (MC). In this connection, we will specify

some well-known approaches to the solution of this problem.

One of them uses the idea of aggregation of states of the chain. Note that using this idea for calculating the

stationary distribution of an MC has a long history. In the well-known study [2] (see Ch. 6), it is shown that

an aggregated process is Markov only if for the chosen partition of the phase space (PS) of the original chain the sum of

transition probabilities from states of each class into any other class should be identical for all the states of the original

class. In other words, the class of aggregated MC is rather narrow. Despite this, this idea was later used in some other

studies. For example, the papers [3–5] suppose that aggregated states form classes such that transitions (inputs and

outputs) between them are carried out only through one (fixed) state of each class of states. If such partition of the

original PS is possible, then algorithms are proposed for calculation of stationary distribution of the chain.

The second approach is intended for calculation of stationary distribution of almost completely decomposable

Markov chains. It is used, for example, in [6–8]. These studies suppose that original PS of the chain is divided into
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classes that are almost not connected with each other, and with regard for this fact iterative algorithms are proposed to

solve the problem. The third approach is intended for calculation of the stationary distribution of approximately

aggregated Markov chains. It underlies the Takahashi method [9]. Note that the possibility of applying the last two

approaches should be established for each specific chain. Checking whether the MC under study is actually almost

completely decomposable or approximately aggregated is a challenge since it requires finding all of the eigenvalues of

huge-dimensional matrices, which are often ill-conditioned.

It can be easily seen that practical application of the methods proposed in [3–9] demands ingenuity from the

researcher in creating appropriate partition of the PS of the Markov chain under study. The complexity of this problem is

especially aggravated in the analysis of multidimentional chains.

A detailed review of studies that use the above approaches can be found in [10–12].

The method we have used is based on the theory of phase integration of states of MC. The fundamentals of this

theory were developed in the early 1970s in [13], where the idea was proposed (pp. 152–154) that a hierarchical version

of the phase integration algorithm (PIA) should be developed to overcome the “curse of dimensionality” in calculating

stationary distributions of a large-dimensional MC. This idea has not been implemented in practice for a long time, and

only in the 2000s A. Z. Melikov and L. A. Ponomarenko under the guidance of Academician V. S. Koroliuk, the founder

of this theory, started the development of such algorithms for two-dimensional Markov chains, which are successfully

applied in specific models of teletraffic systems [14, 15]. Recently, this approach is applied by other authors as well,

who also emphasize the high accuracy of the obtained results (see, for example, [16–18]).

PHYSICAL PQIS MODEL WITH SERVER VACATION

The system under study has a warehouse of limited size S and contains one server for service of customers.

The input flow of customers is Poisson with intensity � , and irrespective of the state of the server and system stock level,

arriving customers are accepted in the queue and are serviced on FIFO basis. Service times are independent and equally

distributed random variables (r.v.) with common exponential distribution function (d.f.) with mean value �
�1

, �� � .

For simplicity, we will assume that each customer requires a unit stock; in other words, after the end of service,

warehouse inventory level decreases by one. Inventory level also decreases as a result of perishability, i.e., each stock

unit becomes unsuitable irrespective of the other ones after random time, which has exponential d.f. with parameter � ,

� � 0. It is assumed that the stock that is already at distribution stage cannot perish.

Inventory replenishment in the system follows the two-bin policy, i.e., ( , )s S -policy, where threshold s, s S� , is

introduced, and if inventory level in the system is higher than this value, the system does not make replenishment orders.

When the inventory level becomes equal to s, an order of size S s� is made. To exclude repeated orders, it is assumed that

s S� / 2. Inventory is replenished with a time delay, i.e., lead time is a positive r.v. with exponential d.f., and its mean value

depends on server status, i.e., if an order is placed during server vacation, average lead time is �
0

1�

; otherwise it is �
1

1�

.

In the paper, we consider models with finite and infinite queues. In a model with finite queue, we assume that

arrived customer is lost with probability one if there are N , 1� � �N , customers in the system at this instant of time.

At the same time, in the model with infinite queue, any arrived customer is accepted in the queue.

We assume that if there is at least one customer in the system after the end of server operation and stock is

available, the server immediately selects one of the customers for service. At the same time, the server takes a vacation

irrespective of the inventory level if after the end of service and/or as a result of impatience of customers there are no

customers in the system. Server vacation time is an r.v. with exponential d.f. with the mean value �
�1

, �� � . After the

end of vacation, the server turns to the operating mode irrespective of inventory level if there are no less than r customers

in the queue, r � 1. If the stock level is positive at this instant of time, the server immediately begins service of customers;

otherwise, the server takes vacation again, with the same vacation principle (multiple vacation).

Customers are impatient only while in the queue, i.e., a customer in the server does not leave the system without

service. The degree of impatience of customers in the queue generally depends on server’s status, i.e., in case of server

vacation admissible values of queueing time are independent and equally distributed r.v. having exponential d.f. with the mean

value �
0

1�

; if the server is in operating mode, then these r.v. have exponential d.f. as well but with the mean value �
1

1�

.

Generally speaking, � �
0 1

� .
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The problem is to find joint distribution of the inventory level of the system, the number of customers in it, and

server’s status. Its solution will allow calculating averaged characteristics of the system under study: average inventory

level ( )Sa� ; average inventory damage rate ( )�a� ; average order rate ( )RR ; probability of server vacation ( )P ac� ;

probability of customer loss ( )PL ; and average rate of customer loss from the queue because of their impatience ( )RLa� .

Finding these characteristics will allow performing the value analysis for the system.

MATHEMATICAL MODEL OF PQIS WITH SERVER VACATION

Based on the form of distribution of the r.v. used in the model statement, we determine that the stochastic process

being introduced is a three-dimensional Markov chain (3-D MC). Indeed, system operation at an arbitrary instant of time

is described by a stochastic process whose state is specified by three-dimensional vector n 	 ( , , )n n
1 2

	 , where the first

and second components are the current inventory level and number of customers in the system, respectively, and the third

binary component means server’s status, i.e.,

	 	
0

1

in case of server vacation,

in case of server operating mode.




�

�

First, we will consider a model with finite queue, i.e., assume that the maximum number of customers in

the system (including customers in the server) is N , N � � . In this case, we will denote the PS of the respective chain by

E. It is defined as follows:

E E E E E	 	

0 1 0 1

� �, , (1)

where E n S n N
0 1 2

0 1 0 1 0	 	 	 	{ }n : , , , ; , , , ;� � 	 and E n S n
1 1 2

0 1 1 2	 	 	{n : , , , ; , ,� � , ;N 	 	1}.

From formula (1) it follows that geometrically PS of the model is specified by points with integer coordinates that

belong to parallelepipeds of unit height and with bases being rectangles with side length N and S .

To determine this chain, it is necessary to find its generating matrix (Q-matrix). Elements of this matrix are

the intensities of transitions between its states. Denote the intensity of transition from state n into state �n by q( , )n n � ,

n n, � �S .

As is seen from the description of the system under study, transitions between states of the PS E are related to the

following events: (i) arrival of customers; (ii) end of the process of their service; (iii) abandoning the queue due to

customers impatience; (iv) end of inventory lifetime; (v) stock replenishment; (vi) server vacation; and (vii) server’s

return from vacation.

To construct Q -matrix with regard for the mechanism of changes in inventory level and number of customers

in the system, as well as server vacation and return scheme, it is expedient to distinguish the following cases in

determining the initial state n �E : (i) n �E
0

; (ii) n �E
1

.

First, we will consider the case n �E
0

. In this case, outputs from this state because of events of types (ii) and (vi)

are impossible. The intensities of the output from this state under the other events are defined as follows. If some

customer (type (i) events) arrives, it is queued provided that n N
2

� ; in other words, transition from this state into state

n e� �

2 0

E is executed. The intensity of such transition is � . Hereinafter, ei means the ith unit vector of the

three-dimensional Euclidean space, i 	1 2 3, , .

If some customer leaves the queue without service (type (iii) events), then transition from this state into state

n e� �

2 0

E takes place; the intensity of such transition is n
2 0

� . Upon termination of inventory lifetime (type (iv) event)

in the state n �E
0

, n
1

0� , transition into state n e� �

1 0

E is performed; the intensity of such transition is n
1

�. At the

instant of time of an order arrival from a higher-level warehouse (type (v) event) in state n �E
0

, n s
1

� , transition from

this state into state n e� � �( )S s E
1 0

takes place; the intensity of such transition is �
0

. If in state n �E
0

, n
1

0� , n r
2

� ,

server returns from vacation (type (vii) event), then transition from this state into state n e� �

3 1

E takes place. Hence, for

the cases of the initial state n �E
0

, elements of the Q -matrix are defined as follows:
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�
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�
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�

(2)

Now, let us consider the case n �E
1

. In this case, outputs from this state because of type (vii) events are

impossible, and transition intensities for the above type (i), (iii), and (v) events are defined similarly to relations (2).

At the same time, since the inventory at customer distribution stage cannot perish, after the end of inventory lifetime

(type (iv) event) in state n � �E n
1 1

1, , transition into state n e� �

1 1

E is carried out, with intensity ( )n
1

1� � . Since it is

impossible to service customers if n
1

0	 , to determine the next state after the end of service of a customer (type (ii)

event) in states n �E
1

, n
1

0� , it is necessary to distinguish the following cases: (i) n
2

1	 ; (ii) n
2

2� . In case (i),

transition into state n e e e� � � �

1 2 3 0

E is carried out, and in case (ii), the next state will be n e e� � �

1 2 1

E . In both

cases, the transition intensities are � . Note that in type (i) cases server goes on vacation (type (vi) events); the server

takes vacation also from the unique state ( , , )0 1 1

1

�E because of customer’s impatience, i.e., transition into new state

( , , )0 0 0

0

�E is executed with intensity �
1

. Hence, for cases of the initial state n �E
1

, elements of the Q-matrix are

defined as follows:

q

n

n

( , )

,

,

n n

n n e

n n e e

n n e

� 	

� 	 �

� � 	 � �

	 � 	 �

�

�

if

if 1,

or

2

2 1 2

2

1

1 2 3

1 1

2 1 1 2

1

1 0 1

� �

� � 	 �

� � � � 	 �

e e

n n e

n n

,

( ) ,

( ) , ,

n

n n n

�

�

if

if e

n n e

n e e

2

2 1 1 2 2

1 2 2 3

0 1

0 1

,

, ,

, , ' ,

n n n

n n n

�

�

if

or

	 � � 	 �

	 	 	 � �

1 1 1

if n s S s� � 	 � �




�

�

�

�

�

�

�

�

�

�

, ( ) .n n e

(3)

Thus, the mathematical model of the system under study is a three-dimensional Markov chain with PS (1), and

elements of its generating matrix are defined from relations (2) and (3).

CALCULATING THE CHARACTERISTICS OF PQIS MODEL

WITH SERVER VACATION

Let p( )n denote the stationary probability of state n �E (stationary probabilities of states of the constructed

finite-dimensional 3-D MC exist since this chain is irreducible). These quantities satisfy the system of equilibrium

equations (SEE), which is composed from relations (2) and (3). We omit here the explicit form of this SEE because it is

awkward and its composition is evident.

As we have already mentioned, the following quantities are characteristics of the PQIS under study: average

warehouse inventory level; average damage rate; average order intensity, probability of server vacation; probability of

customer loss; and average intensity of customer loss from the queue because of their impatience. These characteristics

are defined in terms of state probabilities of the described 3-D MC with application of the approach proposed in [1].

Average warehouse stock level can be calculated as follows:

S k p n ka

Ek

S

� 
	

�	

��

( ) ( , )n

n

1

1

, (4)

where 
( , )i j are Kronecker deltas.

Since inventory at distribution stage cannot perish, we get:

�a

E Ek

S

k

k p n k k p n k� � 
 
	 � �

� �	

� ��

( ) ( , ) ( ) ( ) ( , )n n

n n

1 1

2

0 1

1

	

�

�

�

�

�

�

�

�

�

1

S

. (5)

34



The probability of server vacation is calculated as follows:

P pac

E

� 	

�

�

( )n

n
0

. (6)

Using the total probability formula, we find that the customer loss probability ( )PL is

PL P PL P PLac ac s	 � �� � �( )1 , (7)

where PL� is the probability of customer loss during server vacation and PLs is the probability of customer loss

when the server is in operating mode. These quantities consist of two terms: probabilities of customer loss during

its arrival because of buffer overflow and probability of customer loss from the queue because of its impatience.

In other words, we have:

PL p n N n N P n n

E

� 
 
	 � �

�

�

( )( ( , ) ( ( , )) ( , ))n

n

2 2 0 1 2

1

0

, (8)

where P n n
0 1 2

( , ) is the probability that in state ( , , )n n
1 2

0 a customer is lost because of impatience;

PL p n N n N P n ns

E

	 � �

�

�

( )( ( , ) ( ( , )) ( , ))n

n


 

2 2 1 1 2

1

1

, (9)

where P n n
1 1 2

( , ) is the probability that in state ( , , )n n
1 2

1 a customer is lost because of impatience.

The quantities P n nk ( , )

1 2

, k 	 0 1, , in formulas (8) and (9) are calculated as follows:

P n n
n

n I n N n
0 1 2

2 0

2 0 2 1

( , )

( )

	

� � �

�

� � �
,

P n n

n

n
n n N

n

n

1 1 2

2 1

2 1

1 2

2 1

2

0 1

1

1

( , )

, ,

( )

( )

	

�

	 � �

�

�

�

� �

�

if

� � � �
1 1 1

1 2

1 1

0 1

� � � � �

� � �




�

�

�

�

�

� ( ) ( )

, ,

n I n
n n Nif

where I A( ) is an indicator function of event A.

Average rate of customer loss from the queue because of impatience is defined as follows:

RL L La s� �� �	 �

0 1

, (10)

where L� and Ls are average number of customers in the queue during server vacation and in operating mode,

respectively, i.e.,

L k p n k

Ek

N

� 
	

�	

��

( ) ( , )n

n

2

1

0

; L k p n ks

Ek

N

	 �

�	

��

( ) ( ) ( , )1

2

2

1

n

n


 .

Unlike [1], we introduce here a new system’s characteristics: average intensity of orders for inventory

replenishment ( )RR . As is described above, orders are formed in the following cases: (i) if the system is in states of type

n �E
0

, n s
1

1	 � , and inventory perishes, and (ii) if the system is in states of types n �E
1

, n s
1

1	 � , and inventory level

decreases as a result of perish or issue on request. Hence, this characteristics is defined as follows:

RR s p n s s p n s

E E

	 � � � � �

� �

�

� 
 � � 
( ) ( ) ( , ) ( ) ( ) ( , )1 1 1

1 1

0

n n

n n
1

�

. (11)

Due to the complicated structure of theQ-matrix, applying well-known numerical methods to solve the SEE of the

model under study for high-dimensional PS (1) involves huge computing difficulties. In this connection, below we will

propose an alternative solution of this problem, based on PIA [1]. Let us briefly remind the special features of application

of this algorithm to our system.
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At the first hierarchy level, the following aggregation function is introduced:

U ( )n 	 � �	 if n �E	 , (12)

where � �	 is a lumped state that includes all the states from class E	 , 	 	 0 1, . Denote � 	 � � 	{ }	 	: ,0 1 . Then

according to PIA the state probabilities of the original model are defined as follows:

p n n( ) ( , ) ( )n � � �� � 		 1 2

, (13)

where � 	 ( , )n n
1 2

is the probability of state ( , )n n
1 2

inside the split model with the state space E	 and � 	( )� � is the

probability of lumped state � � �	 � .

At the second hierarchy level, PIA is applied again to each class Ek , k 	 0 1, . For correct application of the

method, customers’ arrival intensity is assumed to significantly exceed the inventory perish rate, i.e., � ��� . This

assumption corresponds to the operation mode of real PQIS [1].

Under this assumption, the following decomposition is considered in the state space E
0

:

E E
i

i

S

0

0

1

	

	

� , E E
i j

0 0

� 	 if i j� , (14)

where E n n E n i
i

0

1 2 0 1

	 � 	{ }( , ) : , i S	1, ,� , i.e., the class of states E
i

0

includes the states from E
0

at which the

inventory level is equal to i irrespective of the number of customers in the queue.

At this hierarchy level, on the basis of decomposition (14) the following integration function is determined in the

state space E
0

:

U n n n
0 1 2 1

(( , )) 	 � � if ( , )n n E
n

1 2

0

1

� , (15)

where � �n
1

is the lumped state that includes all the states from class E
n

0

1

. Denote �

0 1

0 1	 � � 	{ }n i S: , , ,� .

According to PIA, we have

� � �
0 1 2

0

2 0 1

1

( , ) ( ) ( )n n n n
n

� � � , (16)

where �
0

2

1

n
n( ) is the probability of state ( , )n n

1 2

inside the split model with the state space E
n

0

1

and �
0 1

( )� �n is

the probability of lumped state � � �n
1 0

� .

Since the first component in the class of states E
i

0

is constant (it is equal to i), the microstate ( , )i n E
i

2

0

� is

specified by the second component n n N
2 2

0 1, , , ,	 � . Denote the intensities of transitions between states n
2

and �n
2

of

the split model with PS E
i

0

by q n n
0 2 2

( , )� . These parameters are defined as follows:

q n n

n n

n n n
0 2 2

2 2

2 0 2 2

1

1

0

( , )

,

,� 	

� 	 �

� 	 �

�

�

if

if

otherwise.




�

�

�

�

(17)

From relations (17) it follows that the probabilities of states in all the split models with PS E
i

0

, i S	 0 1, , ,� ,

coincide with the probabilities of states of the Erlang model M M N/ / / 0 with loading � �/
0

erl., i.e.,

�




0

2

0 2

0

0

2

0 1

i

j

N
n

n

j

n N( )

( )

( )

, , , ,	 	

	

�

� . (18)

Hereinafter, the following notation is introduced: 
� �

k
k

j

j
j

( )

( / )

!

	 , k 	 0 1, .

Remark 1. Since the probabilities �
0

2

i
n( ) do not depend on parameter i, in what follows we will omit the

superscript in these quantities.
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From (2) and (18) we obtain that the intensities of transitions q i j
0

( , )� � � � from the lumped state � � �i �

0

into

another lumped state � � �j �

0

are defined as follows:

q i j

i j i

i s j i S s
0 0

1

0

( , )

,

, ,� � � � 	

	 �

� 	 � �

�

�

if

if

otherwise.




�

�

�

�

(19)

Thus, we obtain the following expressions from relations (19) and the results from [1] to calculate the probabilities

of lumped states �
0 1 1 0

( ),� � � � �n n � :

�

�

�
0 1

0 1

0

1

1

0 1 0

0 1( )

( ) ( ) ,

( ) ( )

`

� � 	

� � � � �

� � �n

a s n s

b s

n

n

if

if

if

s n S s

c s S s n Sn

� � � �

� � � � � � �




�

�

�

�

1

0 1 1

1

0 1

1

,

( ) ( ) ,�

(20)

where a
i

i
b

s

n
cn

i n

s

n n
1

1

1 1

0

1

0

1

0

0
1

1

1

( )

( )

; ( ) ; (	

� �

	

�

	 �

�

�

�

� �
and ) ( )	

	 � �

�

�

�

0

1

1

0

n
a

i n S s

s

i .

The probability �
0

1( )� � �s can be calculated from the normalization condition, i.e.,

�
0

0 1 1

1 0 0 0( ) ( ) ( ) ( )� � � 	 � �

	 	 �

�

	 � �

� � �

s a b ci

i

s

i

i s

S s

i S s

S

i

�

�

�

�

�

�

�

�

�1

.

Let us analyze the split model with PS E
1

. Similarly to (14), we consider the decomposition

E E E E i j
i

i

S

i j

1

1

0

1 1

	 	 �

	

� �, , , (21)

where E n n E n
i

1

1 2 0 1

0	 � 	{ }( , ) : , i S	 0 1, , ,� . Similarly to (14), on the basis of decomposition (21) in the state

space E
1

the following integration function is defined here:

U n n n
1 1 2 1

(( , )) 	 � � if ( , )n n E
n

1 2

1

1

� ,

(22)

where � �n
1

is the lumped state that includes all the states from class E
n

1

1

. Denote �

1 1

0 1	 � � 	{ }n i S: , , ,� .

Note that unlike the split model with PS E
0

, the state probabilities in the split model with PS E
1

0

and split models E
i

1

,

i S	1, ,� , do not coincide here. The state probabilities of the split model with PS E
1

0

can be calculated as follows:

�



1

0

2

1 2

2

1

1

2

1

1

1 2( )

( )

( )

, , , ,n
n

n
j

j

n N

j

N
	

�

�

	

	

�

� . (23)

The state probabilities inside all the split models with PS E
i

1

, i S	1, ,� , can be calculated similarly (do not

depend on the subscript i, i S	1, ,� ), i.e.,

�




1

2

1 2

1

0

1

2

1

1 2

i

j

N
n

n

j

n N( )

( )

( )

, , , ,	

�

	

	

�

�

� . (24)

Taking into account (23) and (24), we find that the intensities of transitions q i j
1

( , )� � � � from the lumped state

� � �i �

1

into the lumped state � � �j �

1

can be calculated as follows in this case:

q i j

i j i

i s j i
1

1

1

1

1 1 1 1

( , )

( ) ( ( )) ,

,� � � � 	

� � � 	 �

� 	 �

� � �

�

if

if S s�




�

�

�

�

,

0 otherwise,

(25)
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Then we obtain the following expressions from relations (25) and the results of [1] to calculate the probabilities of

lumped states �
1 1 1 1

( ),� � � � �n n � :

�

�

�
1 1

1 1

1

1

1

1 1 0

1 1( )

( ) ( ) ,

( ) ( )� � 	

� � � � �

� � �n

a s n s

b s

n

n

if

if s n S s

c s S s n Sn

� � � �

� � � � � � �




�

�

�

�

1

1 1 1

1

1 1

1

,

( ) ( ) ,� if

(26)

where

a bn
i

ii n

s

n
s

n
1

1

1

1

1 1

1 1
1
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1

( ) , ( )	
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�

�

�

��
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i
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1

1 1
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� i
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i i S
	

	

� � � � �




�

�

0 0

1 1 1 1

1

1

, ,

( ) ( ( )), .� � �

The probability �
1

1( )� � �s can be calculated from the respective normalization condition, i.e.,

�
1

0 1 1

1 1 1 1( ) ( ) ( ) ( )� � � 	 � �

	 	 �

�

	 � �

� � �

s a b ci
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s
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S s
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i S s
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�

�1

.

Denote the intensities of transitions between classes Ek , k 	 0 1, , by q k k( , )� � � �� . These parameters are defined as

follows:

q k k
i k k

i r

N

( , )

( ) , ,

( )( (

� � � �� 	

	 � 	

� � �

	

�

� �

�� �

0

1

1

1

0 1

1 1 0

if

)) ( ) ( ) , .� � � 	 � 	




�

�

�

�

� � �
1

1

0

1

1 0 1 0if k k

(27)

The required probabilities �( ),� �k � � �k � , can be easily calculated from relations (27), i.e.,

� � �( )

( , )

( , ) ( , )

, ( ) (� � 	

� � � �

� � � � � � � � �

� � 	 �0

1 0

0 1 1 0

1 1

q

q q
� �0 ).

The stationary probabilities of states of the original chain are defined as follows [1]:

p n n n n( , , ) ( ) ( ) ( )

1 2 2 1

	 � � � 		 	� � � � � . (28)

Finally, after certain transformations we obtain the following formulas for approximate calculation of the

characteristics of the PQIS model under study:

S i k ka

i

i

k

S
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� �

( ) ( )
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1

1

; (29)

�a i

k i

S

i

i k i k� � � �� � � � � �

	 �	

��

( ) ( ) ( )

10

1

; (30)

P ac� �� � �( )0 ; (31)

PL N k i P k i

i

N

k

S
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�

	

��
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1
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; (32)

PL N N ks � � � � � � � � � � � �� � � � � � �( ) ( ) ( ) ( )( ( )) ( )1 0 1 0
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(33)
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RR s s s s� � � � � � � � � � � � � �� � � � � � �( ) ( ) ( ) ( ) ( ) ( )1 0 1 1 1

0 1

; (34)

RL L La s� �� �� �

0 1

, (35)

where
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.

Let us consider the model with infinite queue of spending customers, i.e., assume that N 	 � . In this case, PS of

the model E is also specified by means of (1), but the classes of states E
0

and E
1

are infinite-dimensional sets, i.e.,

E n S n
0 1 2

0 1 0 1 0	 	 	 	{ }n : , , , ; , , ...;� 	 and E n S
1 1

0 1	 	{n : , , , ;� n
2

1 2 1	 	, , ...; 	 }.

Elements of theQ -matrix of this model are defined similarly to relations (2). As to model’s characteristics, losses

of customers because of buffer overflow are impossible here; however, losses from the queue because of impatience of

customers are possible. Other characteristics are defined from formulas (4)–(8), (10), and (11), but it is necessary to take

into account that N 	 � .

To calculate the approximate values of stationary probabilities of states of this model, it is also possible to use the

method described above. Since it is presented in detail for a model with finite PS, below we will only present the final

form of the necessary formulas.

In this case, the probabilities of states inside all the split models with PS E
i

0

, i S	 0 1, , ,� , can be calculated as

respective probabilities of states of the model M M/ / � with loading � �/
0

erl., i.e.,

� 
� �

0 0

0

( ) ( )

/

i i e	

�

, i 	 0 1, ,� .

(36)

The probabilities of lumped states �
0 1 1 0

( ),� � � � �n n � , in this case can also be calculated by means of relations (20).

After certain transformations we obtain that the probabilities of states of the split model with PS E
1

0

and E
i

1

,

i S	1, ,� , can be calculated as follows in this case:
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� �1

0
1 1
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, j 	1 2, ,� , (37)
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1 1 2
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� . (38)

Remark 2. When deriving formula (37), we took into account that

x

j

e

x

j x

j

�

	

�

	

�

�

1

1

1

!

.

The probabilities of lumped states �
1 1 1 1

( ),� � � � �n n � , in this case can also be calculated by means of relations (26),

but it is necessary to take into account that �
1

1

1( ) is defined from formula (38).

When calculating the probability of lumped states �( ),� � � � �k k � , it is necessary to take into account that

q( , )� � � �0 1 (see formulas (27)) is defined as follows in this case:

q i

i

r

( , ) ( )� � � � 	 �

�

�

�

�

�

�

�

�

	

�

�

0 1 1

0

0

1

� � .

Average warehouse inventory level, average perishability rate in the system, probability of server vacation, and

average intensity of inventory replenishment orders in this model can be calculated by formulas (29)–(32), respectively.

In this model, the probabilities of customer loss during server vacation and its operating mode are defined as follows:
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After certain transformations we obtain that average number of customers in the queue during server vacation and

its operating mode are calculated from the following formulas:

L L e

e
s�

� �

� �
�

�

�
�

�

�
�� � � � � � � � � �

�

�
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0 1 1 0 1
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10 1

1

1

1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

. (41)

Formulas (35) and (41) are used to calculate average intensity of the loss of customers from the queue because of

their impatience for different server’s states.

NUMERICAL RESULTS

The developed algorithms allow us to analyze the behavior of the characteristics of systems under study with

respect to variations in their loading and structural parameters. Because of the space restriction, we will present

the results for a system with limited queue. To make the presentation more specific, we will analyze the behavior of the

characteristics of the systems under study with respect to variation in the critical inventory level ( )s and threshold value

of the queue length at which the server returning from vacation returns to operating mode ( )r .

First, let us consider the dependences of system’s characteristics on parameter s. We choose system’s input

parameters as follows [19]:

S 	 50, N 	 	200 15, � , � 	 4, �
0

4	 , �
1

6	 , � 	1.3, � 	1, �
0

2	 , �
1

1	 .

Note that input parameters satisfy the above conditions for correct application of the developed asymptotic

method, i.e., � � � ��� max , ,{ }.

Here, we present the results for two different values of parameter r, i.e., in the first series of experiments we accept

that r 	 5 and in the second that r 	 20. The results are presented in Figs. 1–5, where the notation  and � correspond to

the first and second series of experiments, respectively.

As one would expect, function Sa� is nondecreasing with respect to the increase in the critical inventory level

(see Fig. 1). At the same time, the arrangement of graphs of function Sa� for different values of parameter r (see Fig. 1) is

surprising here at first sight, i.e., from these graphs we can see that the less this parameter, the greater the value of

the function. In other words, it was to be expected that the earlier the server returns to operating mode after vacation

(i.e., the server turns into operating mode for small values of the length of customers queue), the more intensively the

customers queue is serviced and hence the less the average inventory level should be. However, the opposite pattern is

observed here. This is because for the selected input data (which underlie all the subsequent reasoning) the probability of

server vacation ( )P ac� for r 	 20 is almost equal to one (see Fig. 2). This is because in this case Ls � 0, i.e., for r 	 20

the server is almost always on vacation, i.e., does not service customers; therefore, average inventory level in the second

series of experiments appears smaller than in the first series of experiments (in this series of experimentsLs �1).

As the critical inventory level increases, function �a� also grows (see Fig. 3) and the values of this function in the

first series of experiments appear a bit larger than in the second series of experiments (sometimes almost coincide with

them) since average inventory level in the first series of experiments appears larger than in the second series of

experiments (see Fig. 1). These facts completely correspond to our expectations.
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Function PL is decreasing with respect to the increase in the critical inventory level, and its values in the first

series of experiments appear substantially smaller than in the second series of experiments (see Fig. 4). This is because

for r 	 20 the relation P ac� �1 takes place (see also formulas (7)).
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Function RR is increasing with respect to the increase in the critical inventory level; and its values in the first series

of experiments appear a bit larger than in the second series of experiments (see Fig. 5). This is because the larger the value

of critical inventory level, the more often system’s inventory level appears equal to s�1, and increase in r reduces the values

of this function (see comments to formula (11)).
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Let us now consider the dependences of system’s characteristics on parameter r. We will also present the results

for two different values of parameter s, i.e., in the first series of experiments it is accepted that s 	 24 and in the second

that s 	12. The results are shown in Figs. 6–10, where the notation  and � correspond to the first and second series of

experiments, respectively.

In the both series of experiments, function Sa� is almost piecewise constant with respect to the increase in parameter r

(see Fig. 6), and in the first series of experiments (for r � 16) we have Sa� � 32 and for r �16 the value of this function is

approximately equal to 30; in the second series of experiments for r � 16 we have Sa� � 24 and for r �16 the value of this

function is approximately equal to 23. Such result can be explained as follows. The values of this function are mainly

influenced by two factors: probability of the server being in operating mode (or on vacation) and inventory perish intensity.

For the selected input data, the probability of server vacation for r �16 is very close to one (see Fig. 7). This means that for

large values of parameter r inventory level almost does not decrease as a result of their distribution to customers, and

inventory perish intensity, as one would expect, almost does not depend on parameter r (see Fig. 8). The fact that the values

of function Sa� in the first series of experiments is greater than in the second series of experiments has quite logical

explanation, i.e., the higher the critical inventory level, the higher the average inventory level.

Here, function PL is nondecreasing with respect to the increase in parameter r and its values in the first series of

experiments appear a bit smaller than in the second series of experiments (see Fig. 9). Function RR is nonincreasing with

respect to the increase in parameter r and its values in the first series of experiments appear almost twice larger than in

the second series of experiments (see Fig. 10). This fact is explained in the comment to Fig. 5.

At the end of this section, we will note that three infinite series (see formulas (39) and (40)) appear in the model

with unlimited queue of customers in the formula for calculating the customer loss probability; therefore, explicit

formulas to calculate their sum cannot be found. These series converge, since the majorizing series  ki
i( )

	

�

�

1

, k 	 0 1, ,

converge. Therefore, we use here the series tail cuttoff method [20], i.e., the upper bounds of each sum are replaced with

sufficiently large (finite) quantities; then they are gradually increased, and this procedure continues until the values of the

respective sums almost stop varying.

CONCLUSIONS

We have analyzed the model of a queueing-inventory system with one server and perishable stock in which

impatient spending customers can generate queues of limited or unlimited length. If there is no queue of customers,

the server goes on multiple vacation with exponential vacation time, i.e., the server returning from vacation takes

vacation again if the number of customers in the queue at this instant of time is less than certain threshold value. We have

analyzed models that use two-bin replenishment policy and the lead time is assumed to be a positive r.v. with exponential

d.f. We have developed an exact and an approximate methods to find the characteristics of the models under study and

used them to carry out numerical experiments.

The proposed approximate method allows investigating PQIS models with other replenishment policies and retrial

customers, with delayed and working vacations of the server, etc., and solving the problems of their optimization. Such

problems can be a subject of further study.
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