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Abstract. This article considers the synthesis of a neural-like Hamming network with a view to

implementing the problem of classification of an input set of binary vectors. The formation of

a sequence sorted by the Hamming distance as the proximity measure is based on the conversion

of cyclic Hamming codes. The correctness of the synthesis of such an implementation for

an arbitrary Hamming distance and a binary input vector of arbitrary length is proved.
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INTRODUCTION

A Hamming network [1–4] destined for solving problems of recognition of patterns (speech signals, images, etc.) by

means of assigning a binary input vector to one set (or to several sets in the case of the same proximity measure) out of given

sets of patterns is determined by the maximum proximity measure in the capacity of which the Hamming distance is used.

The correctness of a classification or a decision-making process depends on the spread in values of patterns,

however, the pattern with the maximum proximity measure is not always most plausible for an input model. This

drawback is eliminated during implementing a network at the second level of processing of which an ordered group

containing patterns is formed, and their proximity measures do not exceed an allowable (from the viewpoint of the

plausibility of classification) value. The implementation of such a network using a unified element base is very

problematic in view of the large cardinality of a set of patterns in many recognition problems.

This article proposes to synthesize structures of a neural-like Hamming network that are oriented towards FPGA

crystals [5, 6] and carrying out the formation of ordered groups of vectors–patterns whose proximity measures do not

exceed admissible values [3]. The formation of such groups of vectors–patterns is based on cyclic Hamming codes [7, 8]

whose set can be used as close (according to the Hamming distance) to a reference code.

SYNTHESIS OF A CONVERTER FOR A CYCLIC HAMMING CODE

OF ARBITRARY LENGTH AND FOR AN ARBITRARY HAMMING DISTANCE

Let X � { }0 1, be the binary alphabet, and let F Xn ( ) be the set of all words of length n over the alphabet X ; the

latter set is called the exhaustive set of words over this alphabet. It is obvious that | ( ) |F Xn

n
� 2 . Let

� � �( ) ( )x x x F Xn n1 2

� , and let R be the operator of cyclic shift with the step 1, which is defined as follows:

R x x x x x x x x F Xn n n n n� �� � � �
� �

( ) ( ) ( )

1 2 1 1 2 1

� � .
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We call a set V of words from F Xn ( ) closed with respect to the shift operator R a cyclic Hamming code.

The closedness of the setV means that � � �� �V R V( ). A cyclic Hamming code can be considered as a subset of words

close (in terms of the Hamming distance) to a given reference word over the alphabet X .

If a word composed of 1s is chosen as a reference word, then, in the case when the Hamming distance is equal

to 1, all the words from the set V except for the reference one are generated by its arbitrary element by virtue of the

closedness of this set with respect to the cyclic shift operator. In what follows, such a word is called a generating word.

We introduce the following notation:

Hm ( )1 is a cyclic code of length n whose generating word includes an m-component ( , )m n� �1 1 group of

cyclically adjacent 1s and a d -component ( ( ))d n m� � group of 0s;

H ( )1 is a cyclic code of length nwhose generating word includes an n-component group consisting of 1s;

Hm ( )0 is a cyclic code of length n whose generating word includes an m-component ( , )m n� �1 1 group

of cyclically adjacent 0s and a d-component ( ( ))d n m� � group of cyclically adjacent 1s;

H ( )0 is a cyclic code of length nwhose generating word includes an n-component group consisting of 0s.

PROBLEM STATEMENT

Let F Xn ( ) be the exhaustive set of words of length n over the alphabet X � { }0 1, , and let Hm ( )1 (accordingly,

Hm ( )0 ) be a cyclic code of length n. It is necessary to construct a logical structure that implements the mapping �

defined as follows:

� � � �( ( )) , ( ( ) \ ( ))H F X Hm n m1 1 1 0

(accordingly, � � � �( ( )) , ( ( ) \ ( ))H F X Hm n m0 1 0 0).

The problem can be solved as a result of series connection [9–11] of cyclic structures of the types AND and NOR

that have n inputs and n outputs and also an OR structure with n inputs and one output. In the general case, problems of

synthesis of multilevel logical structures with one and many outputs for the classification of binary input vectors are

considered in [12–15]. Structures for the posed problem have an r-level organization whose kth level ( , )k r�1 consists of

n logical elements AND implementing the conversion

�( , ) , , ( )

( ) mod( )

a a i n s ni i s n�

� � � � � �0 1 1 1 ,

where � is a logical function of two variables; ai and a i s( )�

are one-bit components of a binary input vector;

s n� �[ , ]1 1 is a cyclic shift step. At one level, all elements are adjusted to perform the same logical AND or

NOR function.

Proceeding from the truth table of the logical AND function and the structure of connections (� �k s, 1),

the cardinality of a group of cyclic adjacent 1s decreases by one with increasing the number of level k. Thus, to convert

a code word with a given value of m, it is necessary to have m�1 levels.

As multilevel logical structures (Fig. 1), the structures S
1

and S
2

are chosen (n � 4 and the step i �1 in the operator

R ). Proceeding from the truth table of the logical operations AND and NOR and also the structure of connections

( ,� �k s 1), with increasing the number of the kth level, the number of cyclically adjacent 1s decreases by one for the

operation AND, and, for the operation NOR, on the contrary, the number of 0s is increased by one if a word containing d

cyclic adjacent 1s is applied to the input. The structures S
1

and S
2

were synthesized earlier in [7, 8, 11]. If a word

containing a group of d cyclically adjacent 0s is applied to the input of the kth level of the structure S
1

( )1� 	k r with

such connections, then its output will consist of a word containing a group of d �1 cyclically adjacent 0s. As is shown in

[7], it suffices to investigate a structure of the type S
1

since, after the first level, a structure of the type S
2

is transformed

into a structure of the type S
1

with an input word Hn d� �1

1( ).

An implementation of such structures (for n � 4 and s �1) is presented in Fig. 1, and the conversion results are

given in Table 1.
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The substantiation of properties of the presented structures for cyclic Hamming codes is carried out in [7] where

the following theorem is proved.

THEOREM 1. If a word with d cyclically adjacent 1s is applied to the input of the first level of the computational

structure S
2

with the operation NOR, then we have a word with d �1cyclically adjacent 0s at its output. If a word with d

cyclically adjacent 0s is applied to the input of the kth level of the structure S
1

( )1� 	k r , then we have a word with d �1

cyclically adjacent 0s at the output of this level.

The structure S
1

identifies a half-byte (a 4-bit word consisting of 0s and 1s) that contains three or four 1s, and the

structure S
2

identifies a half-byte containing one 1 or only 0s. The half-bytes consisting only of 0s H ( )0 or only of 1s

H ( )1 are called singular points whose identification is described below.
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Fig. 1. Structure of a converter of cyclic codes on the basis

of operations AND, NOR, and OR; (a) the structure

of the type S
1

and (b) the structure of type S
2

.
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TABLE 1. Conversion of Cyclic Codes

Results of Conversion by the Structure S1 Results of Conversion by the Structure S2

Input code

Output f
2

Input code

Output f
1

x
4

x
3

x
2

x
1

x
8

x
7

x
6

x
5

1 1 1 1

1

0 0 0 0

1

0 1 1 1 0 0 0 1

1 0 1 1 0 0 1 0

1 1 0 1 0 1 0 0

1 1 1 0 1 0 0 0

0 0 0 0

0

0 0 1 1

0

0 0 0 1 0 1 0 1

0 0 1 0 0 1 1 0

0 0 1 1 0 1 1 1

0 1 0 0 1 0 0 1

0 1 0 1 1 0 1 0

0 1 1 0 1 0 1 1

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 0

1 1 0 0 1 1 1 1



The considered structures are structures of sequential type, and structures of parallel-sequential type can be

similarly implemented on r n� log

2

levels. Each level of a parallel-serial structure has a regular structure of connections,

i.e., the components with indices i and (i s� ) (the value of i s� is taken modulo n) arrive at the input of any ith logical

element of the kth level.

We now consider the general problem of classification of input half-bytes that can have an acyclic structure. To this

end, we will consider a basic structure consisting of two 4-digit substructures of the same type that are constructed from the

substructures S
2

and S
1

whose outputs are denoted by the symbols f
1

, f
2

and g
1

, g
2

respectively (Fig. 2).

A feature of this structure is substantiated by the following statement.

LEMMA 1. If singular points do not participate in classification, then l 1s in the input byte are identified with the

help of the presented substructures, where 1 6� �l .

Proof. For the substructures, it follows from Theorem 1 and Table 1 that the outputs of both substructures are

mutually exclusive, i.e., if 1 is at the output f
1

( )f
2

, then we have 0 at the outputs f
2

and f f
1 2

( f
1

and f f
1 2

). This is

also true for g
1

(g
2

).

We have 1 at the outputs of the substructures f
2

and g
2

if, at the input of the substructures S
1

and S
2

, the

half-byte includes only one 1 or all 0s. The outputs of the substructures f
1

and g
1

assume 1 if, at the inputs of the

substructures S
1

and S
2

, the half-byte has exactly three 1s or has all 1s. The outputs of the substructures f f
1 2

and ( )g g
1 2

assume 1 if the input half-byte of the substructures S
1

and S
2

contains exactly two 1s.

This implies that the tuning of both substructures to the initialization of three 1s in one byte assumes the form

( & ) ( & ) ( )f g g g f f f g
2 1 2 2 1 2 1 1

� � 
 , where the symbol 
 denotes the XOR operation and the symbol � denotes the

disjunction operation. The tuning to four 1s in the (input) byte (without regard for the singular point H ( )1 ) assumes the form

( & )f g
2 1

� ( & ) ( & )g f g g f f
2 1 1 2 1 2

� . The tuning to five 1s in the byte (without regard for the singular point H ( )1 )

assumes the form ( & )f g g
1 1 2

� ( & )g f f
1 1 2

. The tuning to six 1s in the byte (without regard for the singular point H ( )1 )

is of the form f g
1 1

& . The statement is proved.

In Fig. 3, the network structure for the identification of three 1s in the byte is presented.

Remark 1. In the general case, if a sample consisting not of 2

k
bits but, for example, of 11 bits is applied to the

input of this structure, then it singles out two half-bytes, the remained three bits are supplemented by one bit to

the half-byte, and, thereby, the problem is reduced to the previous case.
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Fig. 2. Basic structure of converters of cyclic codes for the first

half-byte (a) and for the second half-byte (b).
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Fig. 3. Network structure for

the identification of three 1s

in the input byte.
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IDENTIFICATION OF SINGULAR POINTS

It follows from Lemma 1 that the tuning to seven and eight 1s in the input byte requires allowance for singular

points, in particular, H ( )1 points in input half-bytes. Since the structure S
2

(accordingly, S
1

) also identifies four 1s

(four 0s) together with three 1s (three 0s), it should be modified so that singular points can be singled out. This can be

made as a result of a simple modification of the basic structure S
2

(accordingly, S
1

) by replacing the output function OR

with AND in it. The structure for converting codes is given in Fig. 4, namely, the structure T
1

for the singular point H ( )1

and the structure T
2

for the singular point H ( )0 , and the results of conversion are given in Table 2.
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Fig. 4. Structure of the converter of cyclic codes on the basis of the AND

and NOR operations for determining singular points; (a) the structure

of type T
1

and (b) the structure of type T
2

.
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TABLE 2. Conversion of Cyclic Codes for Singular Points

Results of Conversion by the Structure T1 Results of Conversion by the Structure T2

Input code

Output f
3

1

Input code

Output f
3

0

x
4

x
3

x
2

x
1

x
8

x
7

x
6

x
5

1 1 1 1 1 0 0 0 0 1

0 1 1 1

0

0 0 0 1

0

1 0 1 1 0 0 1 0

1 1 0 1 0 1 0 0

1 1 1 0 1 0 0 0

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 1

0 0 1 0 0 1 1 0

0 0 1 1 0 1 1 1

0 1 0 0 1 0 0 1

0 1 0 1 1 0 1 0

0 1 1 0 1 0 1 1

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 0

1 1 0 0 1 1 1 1



We denote the outputs of these substructures by f
3

0

(g
3

0

) and f
3

1

(g
3

1

) to identify four 0s and four 1s, respectively.

Proceeding from the above tables, we have 1 at the output f
3

1

of the modified structure if the value of the input half-byte

is the singular point H ( )1 . Similarly, for the second modified structure, we have 1 at the output f
3

0

if the value of the

input half-byte is the singular point H ( )0 .

Thus, connecting the outputs f
3

1

and f
1

with the help of the AND operation, we obtain 1 at the output only when

there are four 1s (the singular point H ( )1 ) in the half-byte at the input. The semi-structure for the identification of the

singular point H ( )0 on the basis of the semi-structures f
3

0

and f
2

is similarly constructed. The construction described

above is shown in Fig. 5.

The substantiation of the properties of the presented structure is given by the following theorem.

THEOREM 2. The general structure identifies an arbitrary content of the input byte by tuning its outputs to the

number of 1s (0s) in the byte.

Proof. Lemma 1 and the modified substructures presented above imply that, to identify four 1s in the byte, the

identification function is of the form

( & & & ) ( & & & ) ( & )g f g f f g f g g g f f
3

1

2 1

3

0

3

1

2 1

3

0

1 2 1 2

� �

� 
[( & ) ( & )]f f g g
1

3

1

1

3

1

.

In fact, 1s in the input byte can be distributed so that one 1 is in the first (in the second) half-byte of the first

substructure and three 1s are in the second (first) half-byte of the second substructure.

The first two terms in the above-mentioned expression imply that

— if g
3

1

0� , then the input half-byte of the second substructure contains no more than three 1s, and if g
1

1� , then

it contains exactly three 1s;

— if f
3

1

0� , then the input half-byte of the first substructure contains no more than three 0s, and if f
2

1� , then it

contains only one 1.

Then the byte will contain exactly four 1s. The validity of the aforesaid for the second expression follows from the

symmetry of arrangement, and it is obvious for the other two expressions. Five 1s in the input byte are identified with the

help of tuning to the function

( & & & ) ( & & & ) ( & & ) (f f g g g g f f f f g g g g
2

3

0

1

3

1

2

3

0

1

3

1

1 2 1

3

1

1

� � �
2 1

3

1

& & )f f .

The other combinations of 1s in the byte can be similarly obtained.
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Fig. 5. General network structure with allowance made for singular points.
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Eight 1s in the byte are identified with the help of tuning to the function ( & ) ( & )f f g g
1

3

1

1

3

1

� .

The theorem is proved.

Taking into account Remark 1, note that Theorem 2 is true for an arbitrary Hamming distance and an arbitrary

length of the input vector in bits.

STRUCTURAL ORGANIZATION OF HAMMING NETWORKS

Problem statement [5]. A set of vectors–patterns B U� (U an exhaustive set of n-dimensional binary vectors

{ }up , p n
�
1 2,

; B bh� { }, h q q
n

� 	1 2, , , bh

h

�

� �) is given.

For the given set of vectors–patterns B and an arbitrary set U U
1

 (U u j1

� { }, j �1, )� , determine sets

C cj jh� { } and form sets Y y i zj j

i

j� �{ }: ,1 ; at the same time

y bj

i

jh h� � � ,

(1)

where the symbol � denotes concatenation; c jh is a binary vector (nonpositional binary code) determining the

Hamming distance between n-dimensional binary vectors u j and bh ,

c u bjh j h

n

� 


�

�
( )

� �

� 1

; (2)

the symbol 
 denotes the XOR operation; u j� and bh�
are the �th binary components, u j� , bh�

�{ }0 1, , of vectors

u j and bh , respectively; � jh is the binary code of the Hamming distance (determined by the number of

components composed of 1s in the nonpositional binary code c jh ).

According to formulas (1) and (2), a Hamming network includes the following basic functional units (Fig. 6):

RAM for patterns; converter (2) based on the logical element XOR; a converter �( )c jh jh� � , and RAM for results.

A set of vectors C cj jh� { } arrives at the input of converter (2). A setY y i zj jh

i

j� �{ }: ,1 is formed at its output.

Consider now an example of functioning this neural-like Hamming network.

A proximity measure � jh � 2 and the set of patterns

B b b b� � � �{

1 2 3

10101011 11111001 00011101; ; ; b
4

00010111� ; b
5

10100100� }

are given. The binary vector u �10100111 is applied to the input of the neural-like network. It is required to

determine the vectors–patterns bn in which the proximity measure of a binary input vector c jh satisfies the

constraint � jh � 2 . Taking into account Theorems 1 and 2 and the synthesized structures (see Figs. 3 and 5), we

obtain the results of conversion performed by the Hamming network (Table 3).

The constraint is satisfied by the patterns b
1

10101011� and b
5

10100100� , and it is precisely these patterns that

will be written into the corresponding memory area of RAM for results.

The maximum dimension of the Hamming distance � jh is (log

2

1n� ); thus, according to formula (1),

the dimension (length) of a vector y j
i
is determined by the value of ( log )n n� �

2

1 . The vectors of the set y j
i
(1) are

sequentially written into RAM for results. The size of RAM for results is determined by the total cardinality of the sets

Y j that is determined by the following expression:

Card{ } Card{ }Y Y j

j

�
�

,

where

Card{ }

Card{ }

Card{ }

Y

Y n

Y
n

n

j jh

j jh

j

� �

� �

�

1 0

1

( );

( );

!

(

�

�

�

�

�

� �

�

jh jh

jh n
)! !

( ).
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According to the above expressions, for the subset of the input vectors that have the same Hamming distance � jh ,

a fixed memory space is allocated in RAM for results for the corresponding value of � jh , and this memory space strictly

corresponds to the value of Card { }Y j .

CONCLUSIONS

This article substantiates the correctness of the synthesis of a multilevel structure of combinational type with the

help of the basic AND and NOR operations (a converter of cyclic Hamming codes) for recognizing a subset of binary

vectors (of arbitrary length) whose proximity measure (the Hamming distance) belongs to some range.

Based on the considered structures, a neural-like Hamming network is implemented that recognizes a binary input

vector by determining its proximity measure with given vectors–patterns and writes it (together with the Hamming

distance value) into the corresponding memory area for results.

The considered structures can also be used to solve a wide class of pattern recognition problems in which the

Hamming distance is used as the proximity measure.
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