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A VERSION OF THE MIRROR DESCENT METHOD

TO SOLVE VARIATIONAL INEQUALITIES
�

V. V. Semenov UDC 517.988

Abstract. Nemirovski and Yudin proposed the mirror descent algorithm at the late 1970s to solve

convex optimization problems. This method is suitable to solve huge-scale optimization problems.

In the paper, we describe a new version of the mirror descent method to solve variational

inequalities with pseudomonotone operators. The method can be interpreted as a modification of

Popov’s two-step algorithm with the use of Bregman projections on the feasible set. We prove the

convergence of the sequences generated by the proposed method.

Keywords: variational inequality, pseudomonotonicity, Bregman distance, Kullback–Leibler distance,

mirror descent method, convergence.

INTRODUCTION

Many interesting and important problems of operations research and mathematical physics can be written as

variational inequalities. Solving these inequalities is a rapidly developing trend of applied nonlinear analysis [1–16].

By now, plenty of methods have been developed to solve variational inequalities, in particular, those of projection type,

i.e., using metric design on a feasible set [1, 5, 7, 8]. It is well known that in problems of finding a saddle point or Nash

equilibrium, for the most simple projection method to converge, strengthened monotonicity conditions should be

satisfied [1]. If they are not satisfied, several approaches can be used. One of them is to regularize the original problem in

order to provide a required property to it. Convergence without problem modification is ensured in iterative extragradient

methods, proposed for the first time by Korpelevich [5] for inequalities with Lipschitzian operators. Later, the method

with dynamic step adjustment was considered in [6]. It does not need the Lipschitz constant of the inequality operator to

be known, which considerably extends the domain of potential application of the idea outlined in [5]. These methods

were analyzed in many studies [7–13]. In particular, modifications of the Korpelevich algorithm with one metric

projection on feasible set were proposed [8, 9, 12, 13]. In so-called subgradient–extragradient algorithms and

Korpelevich algorithm, the first stages of iteration coincide, and then to obtain the next approximation, projection on

some half-space that is support for the feasible set is carried out instead of projection on the feasible set. In the early

1980s, an interesting modification of the Arrow–Hurwitz algorithm of search for saddle point of convex–concave

functions was proposed [14]. Some modifications of the Popov method for the solution of variational inequalities with

monotone operator are analyzed in recent studies [15, 16]. The paper [17] proposes two-stage proximal algorithm to

solve equilibrium programming problems, which is an adaptation of the method [14] to general Ky Fan inequalities.

In all the above-mentioned methods, Euclidean distance and projection were used, which does not allow taking

into account the structure of feasible sets and solving the problems efficiently. A possible way out is more flexible choice
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of the distance for projecting on feasible set. One of the first successful implementations of such strategy is the study

[18], where a cyclic projection method is proposed to find a common point of convex sets. This publication created a new

trend in mathematical programming and nonlinear analysis.

The mirror descent method proposed in the late 1970s by Soviet mathematicians Nemirovski and Yudin to solve

convex optimization problems [19] became widely popular to solve high-dimensional problems [20–23]. In case of

constrained problems, it can be interpreted as a version of the method of projection of subgradient where projection is

understood in the sense of Bregman distance [21]. The mirror descent method allows taking into account the structure of

admissible set of the optimization problem. For example, for simplex, it is possible to use the Kullback–Leibler distance

(the Bregman distance constructed on the negative entropy) and to obtain explicitly calculated operator of projection on

simplex [21]. The studies [24–28] analyze versions of this method for solution of variational inequalities and saddle

problems, constructed on the basis of extragradient Korpelevich algorithm, including stochastic ones [27, 28].

The present paper analyzes a new version of the mirror descent method for the solution of variation inequalities

with Lipschitzian and pseudomonotone operators constructed on the basis of the two-stage Popov algorithm [14, 15].

PROBLEM STATEMENT AND AUXILIARY INFORMATION

In what follows, we will use finite-dimensional real linear space denoted by E. In this space, consider the norm

| | | |� (not necessarily Euclidean). Denote the dual space by E
*

. For a E�

*

and b E� denote by ( , )a b the value of linear

function a at point b. Define the dual norm | | | |

*

� on E
*

in a standard way: | | | | max ( , ): | | | |

*

a a b b� �{ }1 , which ensures

the Schwarz inequality ( , ) | | | | | | | |

*

a b a b� for all a E�

*

, b E� . The most important case is E E
m

� �

*

� with

( , )a b a bi i

i

m

�

�

�

1

, a, b
m

�� .

Let C be a nonempty subset of space E and A be an operator acting from E into E
*

. Consider the variational

inequality: find

x C� : ( , )Ax y x� � 0 	 �y C, (1)

whose set of solutions denote by S .

Assume that the following conditions are satisfied:


 set C E� is convex and closed;


 operator A E E:

*

� is pseudomonotone and Lipschitz with the constant L  0 on C;


 set S is not empty.

Remark 1. Let us recall that pseudomonotonicity of operator A on setC is that for all x, y C� from ( , )Ax y x� � 0

it follows that ( , )Ay y x� � 0 [1]. In case f :� �� this means that if f x( ) � 0 for some point x��, then f y( ) � 0 for

y x� and f y( ) � 0 for y x� .

Consider so-called dual variational inequality [1]: find

x C� : ( , )Ay y x� � 0 	 �y C. (2)

Denote the set of solutions of (2) by S
d
. Inequality (2) is sometimes called weak or dual statement of (1), and

solutions of (2) weak solutions of (1) [1]. Indeed, in case of pseudomonotonicity of A we get S S
d

� . Under the

considered conditions, S S
d

� . In particular, the set S is convex and closed [1].

Let us introduce the structures necessary to formulate the algorithm. Let function �:E � � � ��� � { } satisfy

the following conditions [27]:


 � is continuous and convex on C; in particular, set C
0

�{ }x C x� � ��: ( )� is not empty;


 � is regular on C
0

, i.e., the subdifferential �� on set C
0

is a continuous selector ��;
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 � is strongly convex with respect to the selected norm | | | |� with the strong convexity constant �  0:

� � �
�

( ) ( ) ( ( ), ) | | | |a b b a b a b� � � � � �

2

2

	 �a C, b C�

0

.

Remark 2. Such functions are called distance generating functions [27].

Problem

( , ) ( ) mina y y y C� �

�

� , a E�

*

,

has a unique solution ya , lying in C
0

, and

( ( ), )a y y ya a�� � �� 0 	 �y C.

The Bregman distance respective to � on set C is specified by the formula

d a b a b b a b( , ) ( ) ( ) ( ( ), )� � � � �� � � 	 �a C, b C�

0

.

Consider two main examples. For �( ) | | | |� � �

1

2

2

2

, where | | | |�

2

is the Euclidean norm, we have

d x y x y( , ) | | | |� �

1

2

2

2

. For standard simplex S x x xm

m

i i

i

m

� � � �

�

�

�

�

�

�

�

�

�

�
�

�

� : ,0 1

1

and negative Boltsman–Shannon entropy

�( ) lnx x xi i

i

m

�

�

�

1

(it is strongly convex with respect to �
1

-norm on Sm ) we obtain the Kullback–Leibler distance

d x y x
x

y
i

i

ii

m

( , ) ln�

�

�

1

, x Sm� , y Sm�ri ( ) .

The useful three-point identity [21] takes place

d a c d a b d b c b c a b( , ) ( , ) ( , ) ( ( ) ( ), )� � � � �� �� � . (3)

From the strong convexity of � the estimate follows

d a b a b( , ) | | | |� �

�

2

2

	 �a C, b C�

0

. (4)

Assume that there exists a possibility to efficiently solve strongly convex minimization problems of the form

� x y Ca a y x d y x( ) min ( , ) ( , )� � � �

�

arg { } 	 �a E
*

, x C�

0

.

Point � x a( ) in the Euclidean case coincides with the Euclidean metric projection

P x a y x aC y C( ) min | | ( )| |� � � �

�

arg

2

.

For the case of simplex Sm and Kullback–Leibler distance, we get [21]

� x

a

j

a

j

m

a

j

a

j

m

m

a

j

a
a

x e

x e

x e

x e

x e

x e
j j

m

j

( ) , , ,�

� �

� �

1

1

2

1

1 2

�

j

m

�

�

�

�

�

�

�

�

 

!

!

!

1

, a
m

�� , x Sm�ri ( ) .

Remark 3. In [22, 23], for � x a( ) the notation Mirrx a( ) is accepted. The operator � x E C:

*

�

0

is called

mirror-prox [27].
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VARIANT OF THE MIRROR DESCENT METHOD

Let us describe a variant of the mirror descent method for problem (1).

Algorithm 1

Beginning with x C
1

0

� and y C
1

� , generate the sequence of elements xn , yn with the help of iterative scheme

x Ayn x nn�

� �

1

� �( ), y Ayn x nn�

� �

�

1

1

� �( ) ,

where �  0.

Below we will formulate the rule to choose the regularization parameter �.

Remark 4. If �( ) | | | |� � �

1

2

2

2

, then Algorithm 1 becomes [14, 15, 17]:

x P x Ay

y P x Ay

n C n n

n C n n

�

� �

� �

� �

�

�

�

1

1 1

( ),

( ).

�

�

If for some n�� the equalities

x x yn n n�

� �

1

(5)

hold, then the inclusion y Sn � takes place as well as the stationarity condition x y yk k n� � for k n� . Indeed, the

equality x Ayn x nn�

� �

1

� �( ) means

( , )

( ( ) ( ), )

Ay y x
x x y x

n n
n n n

� �

� �� �

�

�

� �

1

1 1

0

� �

�
	 �y C.

From (5) it follows that ( , )Ay y yn n� � 0 	 �y C, i.e., y Sn � .

Taking this into account, we can make the practical variant of Algorithm 1 as follows.

Algorithm 2

Step 0. Specify x C
1

0

� , y C
1

� , �  0 and � 0.

Step 1. For xn and yn calculate

x Ay Ay y x d y xn x n y C n n nn� �

� � � � �

1

� � �( ) min ( , ) ( , )arg { }.

Step 2. If max | | | | , | | | |{ }x x x yn n n n�

� � �

1

�, then STOP; otherwise calculate

y Ay Ay y x d y xn x n y C n n nn� � � �

� � � � �

�

1 1 1

1

� � �( ) min ( , ) ( ,arg { )}.

Step 3. Put n n� �1 and go to Step 1.

Remark 5. We can also use the condition max ( , ),{d x xn n�1

d y xn n( , )} � �.

In what follows, we assume that for all numbers n�� condition (5) is not satisfied and pass to substantiating the

convergence of Algorithm 1.

PROOF OF THE CONVERGENCE OF THE METHOD

To prove the convergence of the method, we will use the following lemma.

LEMMA 1. Let ( )an and ( )bn be sequences of nonnegative numbers satisfying the inequality a a bn n n�

� �

1

for

all n��. Then there exists a limit lim

n
na

��

and bn

n�

�

�

" ��

1

.

Let us obtain an important estimate that describes the behavior of the Bregman distance between the point

generated by the algorithm xn and arbitrary element from the set S .
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LEMMA 2. For sequences ( )xn and ( )yn generated by the algorithm, the inequality

d z x d z x
L

d y xn n n n( , ) ( , ) ( ) ( , )

�

� � � �

�

�

�

�

 

!
1

1 1 2

�

�

� �

�

�

�

�

 

!
�

� �

1 2

1 1

�

�

�

�

L
d x y

L
d x yn n n n( , ) ( , ) ,

(6)

holds, where z S� .

Proof. Applying identity (3) twice yields

d z x d z x d x x x x xn n n n n n n( , ) ( , ) ( , ) ( ( ) ( ),

� � � �

� � � � ��

1 1 1 1

� � � z)

� � � � � �� �

� �

d z x d x y d y x y x x yn n n n n n n n( , ) ( , ) ( , ) ( ( ) ( ),

1 1

� � n )

� � �� �

� �

( ( ) ( ), )� �x x x zn n n1 1

. (7)

From the definition of points xn�1 and yn the inequalities follow

� � �( , ) ( ( ) ( ), )Ay z x x x z xn n n n n� � � �� � �

� � �1 1 1

0, (8)

� � �( , ) ( ( ) ( ), )Ay x y y x x yn n n n n n n� � �

� � � �� � �

1 1 1

0. (9)

Using (8) and (9) for the estimate of scalar products in (7), we obtain

d z x d z x d x y d y xn n n n n n( , ) ( , ) ( , ) ( , )

� �

� � �

1 1

� � � �

� � �

�{ }( , ) ( , )Ay x y Ay z xn n n n n1 1 1

� � �

�

d z x d x y d y xn n n n n( , ) ( , ) ( , )

1

� � � � �

� �

�{ }( , ) ( , )Ay Ay x y Ay z yn n n n n n1 1

. (10)

From the pseudomonotonicity of A it follows that ( , )Ay z yn n� � 0. Using this estimate in (10), we obtain

d z x d z x d x y d y x Ay Ayn n n n n n n n( , ) ( , ) ( , ) ( , ) ( ,

� � �

� � � � �

1 1 1

� x yn n�

�

1

). (11)

Let us now estimate the term �( , )Ay Ay x yn n n n� �

� �

1 1

. We have

� �( , ) | | | | | | | |

*

Ay Ay x y Ay Ay x yn n n n n n n n� � � �

� � � � �

1 1 1 1

� � �

� �

�L y y x yn n n n| | || || | |

1 1

� � � �

�

�

�

�

�

�

� �

�L y y x yn n n n

1

2 2

1

2

1

2

1

2

| | | | | | | |

� � � � � � �

� �

� �L
y x x y

L
x yn n n n n n

2 2

2 2 2

2

1

2 2

1

{ }| | | | ( )| | | | | | | |

2

� � �

�

� � �

� �

�
�

�L
y x L x y

L
x yn n n n n n

2

1 2

2

2

1

2 2

1

2

| | | | | | | | | | | | . (12)

In this relation, we have used the elementary inequalities

ab a b� �

�

�

2

2

2

2

2

1

2

, ( ) ( )a b a b� � � �

2 2 2

2 2 2 .
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Estimating the norms in (12) by means of inequality (4), we obtain

�
�

�
( , ) ( , )Ay Ay x y

L
d x yn n n n n n� � �

� � �

1 1 1

� � �

�

�

�

�

�

L
d y x

L
d x yn n n n( ) ( , ) ( , )1 2 2

1

.

(13)

Applying (13) in (11) yields

d z x d z x d x y d y xn n n n n n( , ) ( , ) ( , ) ( , )

� �

� � �

1 1

� � � �

� �

�

�

�

�

�

�

L
d x y

L
d y x

L
d x yn n n n n n( , ) ( ) ( , ) ( , )

1 1

1 2 2

� � �

�

�

�

�

 

!
� � �

�

�

�

�

 

!
�

d z x
L

d x y
L

dn n n( , ) ( , ) ( ) (1 2 1 1 2

1

�

�

�

�
y x

L
d x yn n n n, ) ( , )�

�

�

�
1

,

as was to be shown. �

Let us formulate the main result of the study.

THEOREM 1. Let the set C E� be convex and closed, operator A E E:

*

� be pseudomonotone and Lipschitz

with constant L  0, S �� and �
�

� �

�

�

�

�

 

!
0 2 1, ( )

L
. Then the sequences ( )xn and ( )yn generated by Algorithm 1 converge

to some point z S� .

Proof. Let z S� . Put

a d z x
L
d x yn n n n� �

�

( , ) ( , )

�

�
1

,

b
L

d y x d x yn n n n n� � �

�

�

�

�

 

!
�

�

1 1 2

1

�

�
( ) ( ( , ) ( , )).

Inequality (6) becomes a a bn n n�

� �

1

. Then from Lemma 1 we can conclude that there exists the limit

lim ( ( , ) ( , ))

n
n n nd z x

L
d x y

��

�

�

�

�
1

,

1 1 2

1

1

� �

�

�

�

�

 

!
� " ��

�

�

�

�

�

�

L
d y x d x yn n n n

n

( ) ( ( , ) ( , )) .

From here we obtain

lim ( , ) lim ( , )

n
n n

n
n nd y x d x y

�� ��

�

� �

1

0 (14)

and the convergence of the numerical sequence ( ( , ))d z xn for all z S� . From (14) it follows that

lim | | | | lim | | | |

n
n n

n
n ny x x y

�� ��

�

� � � �

1

0, (15)

and also

lim | | | |

n
n nx x

��

�

� �

1

0. (16)

The inequality d z x z xn n( , ) | | | |� �

�

2

2

and (16) yield the boundedness of sequences ( )xn and ( )yn .
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Consider the subsequence ( )x
nk

converging to some point z C� . Then from (15) it follows that y znk
� and

x znk�
�

1

. Let us show that z S� . We have

( , ) ( ( ) ( ), )Ay y x x x y xn n n n nk k k k k
� � � �� � �

� � �1 1 1

1

0

�
� � 	 �y C.

(17)

Passing to the limit in (17) and taking into account (15) and (16) we obtain ( , )Az y z� � 0 	 �y C, i.e., z C� .

Let us show that x zn � (then from | | | |x yn n� � 0 it follows that y zn � ). It is generally known that there exists

the limit

lim ( , ) lim ( ( ) ( ) ( ( ), ))

n
n

n
n n nd z x z x x z x

�� ��

� � � � �� � � .

Since lim ( , )

n
nd z x
k

��

� 0, we get lim ( , )

n
nd z x

��

� 0. From here | | | |x zn � � 0. �

Remark 6. We can specify asymptotics (14) and (15) to the following relations:

lim ( , ) lim ( , )

n

n n

n

n nnd y x nd x y

�� ��

�

� �

1

0, (18)

lim | | | | lim | | | |

n

n n

n

n nn y x n x y

�� ��

�

� � � �

1

0.
(19)

Indeed, if (18) is not satisfied, then d y x d x y nn n n n( , ) ( , )� �

�

�

1

1

� for some � 0 and all sufficiently large

numbers n. Hence, the series ( ( , ) ( , ))d y x d x yn n n n

n

�

�� 1

diverges. We have obtained a contradiction. Formula (19)

immediately follows from (18).

Remark 7. If � �1, then we can use the scheme

x
L
Ay

y
L
Ay

n x n

n x n

n

n

�

�

� �

�

�

�

�

 

!

� �

�

�

�

�

 

!

�

�

�

�

�

1

1

1

3

1

3

1

�

�

,

.

�

�

�

Let us present some specific versions of Algorithm 1.

Consider variational inequality on a standard simplex: find

x Sm� : ( , )Ax y x� � 0 	 �y Sm .

Choosing the Kullback–Leibler distance, we obtain the following version of the algorithm:

x
x Ay

x Ay

i

n i

n

n i

j

n

n j

j

m

�

�

�

�

�

�

1

1

exp ( ( ) )

exp ( ( ) )

�

�

, i m�1, ,� ,

y
x Ay

x Ay

i

n i

n

n i

j

n

n j

j

m

�

�

�

�

�

�

�

�

1

1

1

1

exp ( ( ) )

exp ( ( ) )

�

�

, i m�1, ,� ,

where ( )Ayn i �� is the ith coordinate of vector Ayn
m

�� , �  0.

Transport applications [29], machine learning, and game theory use variational inequalities on direct products of

scaled simplexes

C r Sk m

k

p
m

k

kk

p

� �

�

�

#

�

1

1� ,
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where r S x x x rk m

m

i i

i

m

kk

k

k

� � � �

�

�

�

�

�

�

�

�

�

�
�

�

� : ,0

1

, rk  0, i.e., the problems: find

x r Sk m

k

p

k
�

�

#

1

: ( , )Ax y x� � 0 	 �

�

#

y r Sk m

k

p

k

1

. (20)

Based on separable function

� �( ) ( ) ln

, ,

x x
x

r

x

r
k k

k

p
k i

k

k i

ki

m

k

p k

� �

� ��

� ��

1 11

,

where x x x x x x xp m

x

p� �

�

�

�( , , ) , , , , ,

, , , ,1 1 1 1 2 1 1

1

1

� �
� ���� ����

� , , ,

, ,

x xp p m

x

m

p

p

kk

p

2

1�

� ���� ����

�

 

!�

�

�� , let us construct the Bregman

distance on r Sk m

k

p

k

�

#

1

:

d x y d x y
x

r

x

y
k k k

k

p
k i

k

k i

k ii

m

k

p k

( , ) ( , ) ln

, ,

,

� �

� ��

� ��

1 11

.

Algorithm 1 for inequality (20) with such distance becomes

x r

x r Ay

x r

k i

n

k

k i

n

k n k i
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Consider the smooth convex minimization problem

f x( ) min� , x C� , g xk ( ) � 0, k p�1, ,� ,

where C E� is a convex closed set and f and gk are convex differentiable functions. Let us introduce the

Lagrange function L x y f x y g xk k

k

p

( , ) ( ) ( )� �

�

�

1

and consider the saddle problem: find
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�

y
p

� : L x y L x y L x y( , ) ( , ) ( , )$ � $ $ � $ 	 �x C, 	 �

�

y
p

� .

(21)

Problem (21) is equivalent to the variational inequality
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�

y
p

� .

(22)

To solve (22), let us write the iterative process:
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where g x g x g x g xp( ) ( ( ), ( ), , ( ))�

1 2

� , [ ]�

�

is the Euclidean projection onto the nonnegative orthant �
�

p
,

� x E C:

*

�

0

is mirror-prox constructed based on some Bregman distance d on C.

CONCLUSIONS

We have proposed a new version of the mirror descent method to solve variational inequalities with

pseudomonotone operators. It can be interpreted as a modification of the two-stage Popov algorithm with the use of

projection on feasible set in the sense of Bregman distance. As well as other mirror descent schemes, the method allows

efficient account for the structure of feasible set of the problem. The main theoretical result is the proved theorem about

the convergence of the method.

An obvious shortcoming of Algorithm 1 is the assumption that the Lipschitz constant of the operator is known or

admits a simple estimate. Moreover, in certain problems, operators may not satisfy the global Lipschitz condition

(in the majority of studies on the algorithms of solution of variational inequalities, Lipschitz operators are considered). It

is important to propose a modification of Algorithm 1 with dynamic adjustment of step for variational inequalities with

non-Lipschitz operator and to analyze its convergence.

We plan to consider a randomized version of Algorithm 1 and carry out the appropriate convergence analysis,

which will expand the application of this version of the mirror descent method to solve huge-dimensional variational

inequalities. Randomized versions of the mirror descent method constructed on the basis of the extragradient Korpelevich

algorithm were studied in [27, 28]. Obtaining similar results for equilibrium programming problems is also of

interest [17].
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