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NUMERICAL METHOD TO SOLVE THE CAUCHY

PROBLEM WITH PREVIOUS HISTORY
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Abstract. The paper analyzes the theoretical aspects of constructing a family of single-stage

multi-step methods for solving the Cauchy problem with prehistory for ordinary differential equations.

The authors consider general issues related to discretization, approximation, convergence, and

stability. The problem of improving the accuracy of numerical solutions is analyzed in detail.

The results presented in the paper are also applicable for the numerical solution of partial differential

equations.

Keywords: ordinary differential equations, single-stage multi-step method, discretization,

approximation, convergence, strong stability.

INTRODUCTION

The authors investigated hydrodynamic modeling of atmospheric processes and have concluded that the advection

operator appearing in all the equations of atmospheric models caused the greatest amount of problems in application of

the numerical methods of solution of these equations [1–6]. Estimates [2] show that approximations of horizontal terms

of advection are the main source of errors (almost 40% of the total error) in short-term numerical forecasting of the state

of the atmosphere.

The spatial finite-difference approximation of the advection equation generates errors of false representation,

description of phase velocity and computing variance, as well as effects of nonlinear instability [7]. When symmetric

difference scheme of the second order of accuracy is used, it appears that, first, advection velocity is less than the exact

advection velocity (a consequence of this error is total deceleration of advection process), and second, advection velocity

varies depending on the wave number. Such parasitic variance, in particular, is rather considerable for short waves. If

a system being a superposition of waves is transferred, then parasitic variance will cause strain of this system. This

concerns first of all mesoscale systems such as originating fronts and cyclones, orographic and thermal perturbations, and

other sets of waves representing superposition. For this reason, in numerical forecasting of the state of the atmosphere,

these systems (if they are available in the original fields) start to be deformed very fast, becoming more smooth. Since

these special features of fields are very important in mesoscale processes, the effect of computing variance is of interest.

It is obvious that schemes with noncentral space differences, which hinder the propagation of perturbations in the

direction opposite to physical advection, are more preferable than schemes in which space derivative is approximated by

means of central differences [8, 9]. However, rather strong smoothing effect and only first order of accuracy of

noncentral difference operators considerably reduce these advantages as compared with difference operators of second

order of accuracy.
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The analysis concerned space approximation of the linear equation of advection. However, in atmosphere models,

one has to solve nonlinear hydrodynamic equations, and their nonlinearity is caused by the presence of terms that

describe advection. The nonlinearity of hydrodynamic equations causes nonlinear instability and “explosion” of the

numerical solution if these unfavorable constraints cannot be prevented.

It is possible to overcome the main difficulties (in particular, errors of false representation, description of phase

velocity, and computing variance) by representing the equations of model of the atmosphere in conservative form and by

applying difference schemes of higher order of accuracy to approximate advective terms.

The studies [1, 3] propose an efficient method of the fourth order of accuracy to approximate partial derivatives of

the first and second orders containing in the system of equations of the model of circulation of the atmosphere. We

present the results that allow coordinating approximation orders on space and time networks. This can be attained by

constructing a set of efficient, of enhanced order of accuracy, finite-difference multistep single-stage schemes of the

solution of the Cauchy problem.

PROBLEM STATEMENT. AUXILIARY DEFINITIONS AND RESULTS

In practice of numerical solution of the Cauchy problem for a first-order differential equation, one-step methods

are usually used [10–22]; their construction implies involving the information on the problem being solved only on

a one-step interval � � �
�

t tl l 1

, l N�1, . Along with computationally convenient special features, such methods have one

significant shortcoming: a low accuracy. In the methods whose accuracy O
p

( )� corresponds to cases p�1, such

information at each process stage should be obtained over again, which makes respective computing rules much

labor-consuming. Having discarded the single-step requirement, computing methods can be constructed so as to

repeatedly use a part of the obtained information at several adjacent steps of the computing process. Such methods, which

possess information about the problem under solution on an interval longer than one step, are the main target of research

of the present study.

The paper is devoted to the theoretical and practical aspects of the numerical solution of the problem for

an ordinary differential equation of first order
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f y t( , ), (1)
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�
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0

0
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where y
0

�� , f C� �( )� � , and function f satisfies the Lipschitz constraint.

The exact solution of the original problem formulated in such a way exists and is unique.

The purpose of the present study is to construct and analyze the fundamental structural properties of the efficient

finite-difference l-step single-stage scheme of the solution of problem (1), (2). Let us define difference time mesh on

which we will solve problem (1), (2) numerically. For simplicity, in what follows we will assume that t
0

0� , which does

not restrict the generality.

Definition 1. A mesh on [ , ]0 T is a given finite set of nodes t Tn � [ , ]0 , n N� 0, , such that

t
0

0� , t tn n�
�1

, n N� 0, .
(3)

The quantities �n n nt t� � �
�1

0, n N�1, , are called steps of mesh �
�
�{ }�n n N, ,�1 , and � �

�

t tn n1

/ , n N�1, ,

is the ratio of mesh steps. Thus, it is possible to define mesh t Tn �[ , ]0 , n N� 0, , as well as the set of its steps

� �
�
� �{ }n n N, ,1 , where �n n nt t� � �

�1

0, n N�1, .

Definition 2. A mesh � �
�
� �{ }T N/ is called uniform if

t nn � �, n N�1, , � �1. (4)
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The structure of the available general l-step methods is rather difficult [10]; therefore, we will use only a special

class of single-stage l-step methods, whose step procedure composes a linear combination of values of y
i
and f i ,

i n n l� �, . No repeated substitutions of values of f (which are the essence of multi-step methods) are admitted.

The most popular in l-step single-stage scheme of solution of problem (1), (2) is step procedure in the form

a y b fi n i

i

l

l i n i

i

l

�

�

�

�

	 	
� �

0 0

0� , n N� 0, . (5)

The term � l before the second sum is separated to make coefficients bi , as well as ai , dimensionless. The

2 1
 �( )N matrix

M �

�

�





�

�

�

�

a a

b b

N

N

0

0

�

�

is the generating matrix of scheme (5). If bl � 0, then computing methods (5) are usually called explicit, if bl � 0,

they are implicit.

The formula for evaluation of (5) should be exact if y t( ) is a constant ( / )� � � �y t f 0 . Then it will give the

equalities

al � 0, ai

i

l

�

	
�

0

0. (6)

Let us make the replacement q y
i

i� and r f
i

i� , i l� 0, , and associate the linear l-step procedure (5) and its

generating matrix with the “characteristic” polynomials

�a

i

i

l

q cq( ) �

�

	

0

, �b i

i

i

l

r b r( ) �

�

	

0

. (7)

If c is some number, then the number �a i

i

i

l

c a c( ) �

�

	

0

, obtained by replacing in expression �a q( ) the unknown q

with the number c followed by performing all the specified operations is called the value of the polynomial �a q( ) for

q c� . If �a c( ) � 0, i.e., polynomial �a q( ) becomes zero after the number c is substituted in it for the unknown, then c is

called the root of the polynomial �a q( ) (or of the equation �a q( ) � 0).

Definition 3. Number c is a root of the polynomial �a q( ) if and only if polynomial �a is equal to zero for q c� .

Since one is a zero of the characteristic polynomial �a , it cannot be a zero of the characteristic polynomial �b .

Therefore, in each class of procedures there is a unique linear l-step scheme and a unique generating matrix

corresponding to it, satisfying the condition

bi

i

l

�

	
�

0

1. (8)

In what follows, we will call the finite-difference scheme (5) sutisfying conditions (6) and (8) normalized.

Coefficients ai and bi can be chosen in different ways so that (5) would approximate � � � �y t f/ 0. The studies

[11, 13, 23] present the techniques to construct and analyze the error, approximation, stability, and convergence of some

special classes of efficient linear l-step schemes. Systematization of the theoretical results obtained therein shows that the

basic stability conditions of single-stage multistep schemes mainly concern the coefficients ai of the characteristic

polynomial �a and can be formulated by the following Definitions.

Definition 4. Characteristic polynomial �a satisfies the rooted criterion if its roots lie in a unit closed circle, and it

has no multiple zero on a unit circle.

Definition 5. A homogeneous linear l-step scheme is called strongly stable if its characteristic polynomial �a

satisfies the root criterion.
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Elementary and at the same time most used schemes (5) can be obtained on the basis of quadrature formulas and

the method of undetermined coefficients. However, not all schemes constructed in such a way are stable. For example,

the explicit scheme

y y y f fn l n l n l n l n l� � � � � � � � �

� � � � �4 5

6

4 2 0

1 2 1 2

�
( )

satisfying the normalization conditions (6), (8) is not stable and cannot converge since its characteristic polynomial

�a q( ) � q q q q
2

4 5 1 5� � � � �( )( ) has a root outside the limits of one.

In what follows, as the basis for the method of constructing a family of multistep single-stage higher-order

schemes, we will use the special relation between coefficients of the characteristic polynomial �a , according to which

real coefficients of a linear l-step scheme a priori satisfy the root criterion in narrow sense, i.e., characteristic polynomial

�a has only real roots, which are inside a unit interval of real axis, and there are no multiple zeroes in one.

Beforehand, let us consider some main properties of divisibility of polynomials, which we will use below.

Generally, when dividing a polynomial with real coefficients

�( )q a q a q a q a a ql

l

l

l

i

i

i

l

� � � � � �
�

�

�

	1

1

1 0

0

� (9)

by a linear polynomial

�( )q q c� � , (10)

the obtained remainder is some number � (zero or a polynomial of zero degree). The theorem below allows finding

this remainder without executing the division.

THEOREM 1. The remainder of division of polynomial �( )q by linear polynomial �( )q is equal to the value �( )c

of polynomial �( )q for q c� .

Proof. As is known from elementary algebra, for two polynomials with real coefficients �( )q and �( )q q c� � , it

is possible to find polynomials �( )q and � such that

� � �( ) ( ) ( )q q c q� � � . (11)

Then it is proved that polynomials �( )q and � satisfying this condition are defined uniquely.

Selecting the values of both parts of Eq. (11) for q c� , we obtain �( )c � ( ) ( )c c c� � �� � �, which proves the

theorem.

COROLLARY. If c �1 and condition (6) is satisfied, the remainder � is equal to zero.

Indeed, substituting q �1 into (9), we obtain

�( )q a a a a al l i

i

l

� � � � � � �
�

�

	1 1 0

0

0� .

The theorem below follows herefrom.

THEOREM 2. Polynomial �( )q is a divider of polynomial �( )q if and only if there exists a polynomial �( )q

satisfying the equality

� � �( ) ( ) ( )q q q� . (12)

Polynomial �( )q satisfying this condition is defined uniquely.

Proof. Let there also exist a polynomial �( )q satisfying the equality

� � �( ) ( ) ( )q q q� . (13)

Equating the right-hand sides of equalities (12) and (13), we find � � �( ) ( ) ( )q q q{ }� � 0. Since in the obtained

expression �( )q � 0, the expression � �( ) ( )q q� � 0 should hold, i.e., � �( ) ( )q q� , as was to be shown. Then it is

obvious that the degree of �( )q is no greater than the degree of �( )q .
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THEOREM 3. The number c d a� / , a � 0, is a root of the polynomial �( )q if and only if �( )q is divisible by the

linear polynomial aq d� .

Proof. Indeed, let � � �( ) ( ) ( ) ( ) ( )q aq d q a q c q� � � � . Selecting the values of both parts of this equality for

q c� , we obtain � �( ) ( ) ( )c a c c c� � � 0, which proves the theorem. Hence, finding the roots of polynomial �( )q is

equivalent to finding its linear dividers.

The Fundamental Theorem of Algebra. Any polynomial with real coefficients of lth degree

�( )q a q a q a q a a ql

l

l

l

i

i

i

l

� � � � � �
�

�

�

	1

1

1 0

0

� (14)

has exactly l�1 real roots (provided that each root is considered the number of times equal to its multiplicity) is

representable as follows:

�( ) ( )( ) ( )q a q a q a ql� � � �
0 1

1 1 1� . (15)

Expansion (15) is unique for polynomial (14) to within the order of multiplicands.

Proof. The theorems proved earlier allow us to state that for �( )q the root q a
0

0

1

�

�

exists. Therefore, polynomial

�( )q has the expansion � �( ) ( ) ( )q q q q� �
0

. The coefficients of the polynomial �( )q are real again; therefore, �( )q has

a root q a
1

1

1

�

�

, whence �( )q � ( )( ) ( )q q q q q� �
0 1

	 .

Following the same line of reasoning, we obtain expansion (15) in a finite number of steps.

To prove the uniqueness of expansion (15), we assume that there also exists an expansion

� 
 
 
( ) ( )( ) ( )q q q q l� � � �
0 1

� . (16)

From (15) and (16) the equality follows

( )( ) ( ) ( )( ) ( )q q q q q q q q ql l� � � � � � �
0 1 0 1

� �
 
 
 . (17)

If a root ql of multiplicity s �1would differ from all 
 i , i l� 0 1, , ,� , then having substituted ql into (17) instead

of the unknown q , we would obtain zero on the left and some nonzero number on the right, i.e., obtain a contradiction.

Thus, any root qi of multiplicity s �1 is equal to some root 
 i and vice versa.

Then let the expansion contain s�1roots q
0

and among roots 
 i , i l� 0 1, , ,� , there be m equal to the root q
0

. It is

required to prove that s m� . If we suppose, for example, that s m� , then reducing both parts of Eq. (17) by the factor

( )q q
m

�
0

, we arrive at the equality whose left-hand side still contains factor q q�
0

, and the right-hand side does not.

We have mentioned above that this leads to a contradiction. Thus, we have proved the uniqueness of expansion (15) for

polynomial (17).

Though the fundamental theorem of algebra [23] and the majority of previous results are true for complex

coefficients ai ( , , , )i l� 0 1 � , in what follows we will consider them real.

In numerical computer implementation of hydrodynamic models of circulation of atmosphere, rather stringent

requirements are imposed on the efficiency of computing methods according to which the method should:

— be identical to the explicit one and ensure fast computations to find the values of the problem at each time step;

— have favorable properties of strong stability in order to eliminate excessive propagation of error for the problem

with decreasing solution components;

— make it possible to control the value of time step on the whole interval of integration of the equations of the

problem, and step variation should not complicate the algorithm of the method implementation.

Despite the mutual contradiction of these requirements, it appears possible to construct a family of very simple

linear l-step single-stage methods satisfying all the above requirements.

Based on the methodical necessity, we will start constructing the family of multistep single-stage methods on

a uniform mesh �
�
. Then we will propagate the obtained result to mesh �

�
with a variable step.
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FAMILY OF STRONGLY STABLE LINEAR l-STEP FINITE-DIFFERENCE

SCHEMES ON UNIFORM MESH �
�

Let us obtain some corollaries from the theory of algebra of complex numbers, concerning polynomials with real

coefficients. In essence, it is due to these corollaries the main theorem considered below is so important.

Let a polynomial with real coefficients �( )q a ql
l

� � a q a q al

l

�

�

� � �
1

1

1 0

� have a complex root � , i.e.,

a al

l

l

l
� �� �

�

�

1

1

� � � �a a
1 0

0� .

The last equality will not be violated if we replace all numbers in it with conjugate ones. However, all the

coefficients ai , i l� 0 1, , ,� , as well as the number 0, which are on the right in the polynomial �( )q , being real, remain

the same after the replacement. Therefore, we will arrive at the equality � � � �( ) � � �
�

�

a al

l

l

l

1

1

� � � �a a
1 0

0� .

Thus, we can formulate the following definition.

Definition 6. If a complex number � is a root of polynomial �( )q with real coefficients, then the conjugate number

� will also be a root for �( )q .

Hence, polynomial �( )q is multiple of the square trinomial � � � � � ��( ) ( )( ) ( )q q q q q� � � � � � �

2

, whose

coefficients (as is known from the theory of algebra of complex numbers) are real.

Let us prove that the roots � and � are of identical multiplicities in the polynomial �( )q .

By contradiction, let the roots in the polynomial �( )q have the multiplicities k
1

and k
2

, respectively, and let, for

example, k k
1 2

� . Then �( )q is multiple of the k
2

th degree of the polynomial �( )q , � � 	( ) ( ) ( )q q q
k

�
2

.

Polynomial 	( )q , as a quotient of two polynomials with real coefficients, also has real coefficients; however, on

the contrary to that proved above, the number � is its ( )k k
1 2

� -multiple root, while the number � is not a root for it.

Herefrom, it follows that k k
1 2

� . Thus, we arrive at the fact (well-known from the course of algebra) that complex roots

of any polynomial with real coefficients are pairwise conjugate. From here and from the proved uniqueness of expansions

of the form (15), the final result follows.

Corollary of the Fundamental Theorem of Algebra. Any polynomial �a q( ) with real coefficients is uniquely

(to within the order of factors) representable as the product of its higher coefficient al and several linear polynomials

with real coefficients q �� , corresponding to its real roots, and quadratic polynomials (18), corresponding to the pairs of

complex conjugate roots.

The obtained result allows us to state the following.

THEOREM 4. For strongly stable homogeneous linear l-step finite-difference scheme (5) with real coefficients ai

and bi ( , )i l� 0 , which satisfy the normalization conditions (6) and (8), characteristic polynomial �a q( ) has only real

roots, which satisfy strong root criterion (except for one simple root q
0

1� , its other roots qi ( , )i l�1 are within an open

unit interval) and is defined uniquely:

�a

i

i

l

q q q( ) ( ) ( )� � � �

�

�
1 2 1 0

1

. (18)

Proof. First, we will consider polynomial (18) with the coefficients ai ( , )i l�1 such that all the roots qi of the

polynomial

�a i

i

i

l

q a q( ) � �

�

	

1

0

are inside an open unit interval. Then we will consider polynomial (15), which has only a simple root q
0

in unity,

and will specify the relation between coefficients ai and ai ( , )i l�1 by the equality

� �a aq q q q( ) ( ) ( )� �
0

. (19)
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We will express coefficients of the polynomial �a q( ) in terms of its roots by means of the Vieta formulas:

a
i

0

1

1� �

�

( ) ,

a
i

l1

2

1 2

1� � � � �

�

( ) ( )� � �� ,

��������������� (20)

al l l l l� �

� � � �
1 1 2 1 2 2 2 3

� � � � � � � � � �� � � � ,

al l� � � �
1 2

� .

Then with regard for Eq. (19), coefficients of the polynomial �a q( ) become

a
l

0

1� �( ) ,

a
l

l1

1

1 2

1 1� � � � � �

�

( ) ( )� � �� ,

a
l

l l l2

2

1 2 1 2 1 3 1

1� � � � � � � � �

�

�

( ) ( )� � � � � � � � �� � ,

(21)

��������������������������

al l l l l l� � �

� � � � � �
1 1 2 1 2 1 1 2 2 2 3

( )� � � � � � � � � � � � �� � � � � ,

al l� � � �
1 2

� .

Let us expand function y t( ) into the Taylor series at points l l, , ,�2 0� based on its value at point l�1

y y f
f

t k
n l n l n l

n l

k k

� � � � �

� �

� � �

�

�

�

�



�

�

� � �

�

1 1

2

1

1 2

� � �

! ! !

�

�

�

� �

�

�

�





�

�

�

�

1

1

1

f

t
k

n l

,

y y f
f

t
n l n l n l

n l

� � � � � �

� �

� � �

�

�

�

�



�

�

� �
2 1 1

2

1

1 2

� �

! !

�� �

�

�

�

�





�

�

�

�

�

�

� �

( )

!

1

1

1

1

k
k k

k

n l
k

f

t

�
,

y y f
f

t
n l n l n l

n l

� � � � � �

� �

� � �

�

�

�

�



�

�

� � � �
3 1 1

2

1

2

1

4

2

� �

! !

(� 1 2

1

1

1

)

!

k k
k k

k

n l
k

f

t

� �

�

�

�





�

�

�

�

�

�

� �

,

(22)

…......................………………………………………………………………

y y l f l
f

t
n n l n l

n l

� � � � �

�

�

�

�



�

�

�
� � � �

� �

1 1

2

2

1

1

1

1

2

( )

!

( )

!

� �
�� � � �

�

�

�

�





�

�

�

�

�

�

� �

( ) ( )

!

1 1

1

1

1

k k
k k

k

n l

l
k

f

t

�
.

Multiplying sequentially the left- and right-hand sides of the first equality in (22) by the coefficient al defined by

system (21), those of the second equality by coefficient al�2 , and those of the third equality by al�3 , etc., and adding

termwise the obtained expressions, we obtain the equality

a y
c

i

f

t
i n i

i

l
i

i

k i

i

n l

�

� �

�

� �

	 	
�

�

�

�

�

�





�

�

�

�

0 1

1

1

1

�

( )!

, (23)

where

c a a a al l l l1 2 3 4

2 3� � � � �
� � �

� ,
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c a a a al l l l2 2 3 4

4 9� � � � �
� � �

� ,

c a a a al l l l3 2 3 4

8 27� � � � �
� � �

� ,

c a a a al l l l4 2 3 4

16 81� � � � �
� � �

� ,

…………………………………………

c a a a al l

l

l

l

l

l

l� � � � � �
� � �

( ) ( )1 2 3

2 3 4

� .

If the right-hand side of the partial differential equation is continuous and is bounded together with the nth order

derivatives, then approximation (23) will ensure high accuracy due to small coefficient in the remainder term also in case

of decreasing step �. If the right-hand side has no such derivatives, then the limiting order of accuracy of this scheme

cannot be implemented. Then schemes of a smaller order of accuracy, equal to the order of existing derivatives, are

usually used.

We will omit from consideration elementary two-step schemes of first and second orders (as they are investigated

theoretically quite well), will construct a family of schemes of the third (in case of explicit scheme) and fourth (in case of

implicit scheme) orders of accuracy and will use it as an example to analyze the main ideas of the method. As the initial

expression for the characteristic polynomial �a q( ) we will take the quadratic trinomial

�a q q a q a q a q( ) ( )( ) ( )� � � � � � �1 1 1 1

1 1

2

1

,

(24)

whose one of the roots is the real root q
0

1� . According to the corollary of the fundamental theorem of algebra, the

second root (24) will also be real.

We will specify coefficient a
1

so that the characteristic polynomial (24) corresponds to the linear procedure (5)

approximating the equation � � � �y t f t y/ ( , ) 0. As the initial expression, we will use Eq. (23) for l � 2
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and will supplement it with the Taylor series for function f in the following form:
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Let us multiply (26) by ( ) /a
1

1 2� and add the obtained expression to (25). The first two terms on the right-hand

side of series (26) contain coefficients with the opposite signs and equal absolute values �. Therefore, their algebraic sum

multiplied by the same factor ( ) /a
1

1 2� is equal to zero. Hence, for constraint (8) to hold, it is necessary to equate

coefficient a
1

1� of f n l� �1

to one, i.e., to suppose that a
1

2� . The obtained value of a
1

leads to the following formula for

the explicit difference scheme:
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�
1 1 2 1 2
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5 3

�
( )

�

�

�

�O( )�
3

. (27)

For a
1

2� , the roots of the characteristic equation for scheme (27) are real and different and satisfy the

dependencies q
0

1� and 0 1

1

� �q . Hence, according to Definition 5, the homogeneous scheme (27) is strongly stable.

41



To construct an implicit scheme, we will supplement system (25) and (26) with the Taylor series
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Let us multiply (26) by some factor A and (28) by some factor B and add the obtained expressions to (25). We will

find the values of factors A and B so that the coefficients of ( / )� �
� �

f t n l 1

and ( / )� �
� �

2 2

1

f t n l vanish. From here we

will obtain the system of algebraic equations

2 2 1

1

A B a� � � �( ),

3 3 1

1

A B a� � � �( ). (29)

Since, like in (26), the first two terms on the right-hand side of (28) with equal coefficients have opposite signs,

for condition (8) to be satisfied, the coefficient a
1

1� of f n l� �1

on the right-hand side of (25) should be equal to one. As

before, the equality a
1

2� satisfies this condition. Then from the solution of system (29) we obtain A � �11 12/ , B � 7 12/

and the following formula for the implicit difference scheme:
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Let us construct another family of finite-difference schemes for l � 3. Let us represent the characteristic

polynomial �a q( ) as a cubic quadronimal

�a q q a q a q( ) ( )( )( )� � � �1 1 1

1 2
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1 1( ) ( ) ,

(31)

whose given roots are real different roots q
0

1� and q a
1 1

1 1 2� �/ / . According to the corollary of the fundamental

theorem of algebra, the third root in (31) will also be real.

Let us represent equality (23) for l � 3 and additional Taylor series for function f in the following form:
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Let us add (32) and Eqs. (33) and (34), multiplied beforehand by some coefficients A and B, respectively. Let us

find the values of factors A and B so that the coefficients of ( / )� �
� �

f t n l 1

and ( / )� �
� �

2 2

1

f t n l vanish. As a result, we

will obtain the system of equations
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2 4 3

1 2 1 2

A B a a a a� � � � � �( ),

3 12 7

1 2 1 2

A B a a a a� � � � � �( ). (35)

The first two terms on the right-hand sides of both (33) and (34) are equal as before and have opposite

signs. Therefore, for condition (8) to be satisfied, the coefficient of f n l� �1

on the right-hand side of (32) should be

equal to one, i.e.,

( )a a a a
1 2 1 2

1 1� � � � . (36)

Equality (36) is true if and only if a a
1 2

2� � , as was to be shown. From the solution of system (35) we obtain

A � 88 12/ , B � �29 12/ , and the following formula for the explicit difference scheme:
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The roots of the characteristic equation for scheme (37) are real and different and obey the dependences q
0

1� ,

0 1

1

� �q , and 0 1

2

� �q . Hence, according to Definition 5, the homogeneous scheme (37) is strongly stable.

To construct the implicit scheme, we will supplement system (32) with the Taylor series
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Let us multiply (38) by some factor A and add the obtained result to Eqs. (32) and (35) multiplied beforehand by

B and C, respectively. We will find the values of factors A, B , and C so that the coefficients of ( / )� �
� �

f t n l 1

,

( / )� �
� �

2 2

1

f t n l , and ( / )� �
� �

3 3

1

f t n l vanish. It will give the system of equations

2 2 4 3

1 2 1 2

A B C a a a a� � � � � � �( ),

3 3 12 7

1 2 1 2

A B C a a a a� � � � � � �( ), (39)

4 4 32 15

1 2 1 2

A B C a a a a� � � � � � �( ).

The first two terms on the right-hand sides of series (32)–(34) have opposite signs; therefore, the algebraic sum of

the coefficients with equal absolute values multiplied by the same number is equal to zero in each of these series. Hence,

for condition (8) to be satisfied, the unique nonzero coefficient ( )a a a a
1 2 1 2

1� � � of f n l� �1

on the right-hand side

of (31) should be equal to one, i.e., we again obtain (36) and the equality a a
1 2

2� � . The solution of system (39) yields

A � � 41 24/ , B � 53 24/ , and C � �17 24/ and the following formula for the implicit difference scheme:
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Thus, we have proved that the family of strongly stable linear l-step schemes (37) and (40) for l � 3 irrespective of

the order of local accuracy p stipulates the characteristic polynomial �a q( ) with the same values a
1

and a
2

defined by

equality (36). It remains to prove that these values a
1

and a
2

will be zeroes of the polynomial �a q( ) of strongly stable

l-step scheme for another value of l.
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To this end, we will construct a fourth-degree characteristic polynomial �a q( )
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(41)

whose given roots are real different roots q
0

1� , q a
1 1

1 1 2� �/ / , and q a
2 2

1 1 2� �/ / . According to the corollary

of the fundamental theorem of algebra, the fourth root of (41) is also real.

We select coefficient a
3

so that the characteristic polynomial (41) would correspond to the linear procedure (23)

approximating the equation � � � �y t f t y/ ( , ) 0. To this end, we will multiply both parts of the first row of system (22) by

the coefficient of q
4

in the characteristic polynomial (41), both parts of the second row by the coefficient of q
2

in the

same polynomial, both parts of the third row by the coefficient of q in (41), and add these three series to the fourth row of

system (22). As a result, we obtain
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To satisfy condition (8), it is necessary to equate the coefficient of �f n l� �1

on the right-hand side of (42) to one,

i.e., to suppose a a a a a a a a a
1 2 3 1 2 1 3 2 3

� � � �a a a
1 2 3

1 1� � � � . This equality is true if and only if

a a a
1 2 3

2� � � , (43)

which is the proof of the considered theorem, and the homogeneous scheme (42) is strongly stable.

Let us increase the order of scheme (42) by eliminating the derivatives ( / )� �
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f t n l , which appear in its right-hand side, by means of the series
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As a result, we will obtain the explicit scheme in the form

y y y y y yn l n l n l n l n l n l� � � � � � � � � � �
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and the implicit scheme in the form
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(45)

Following the same line of reasoning, increasing the value of l in the normalized scheme (23), we can show that

the characteristic polynomial with the real coefficients �a q( ) has the form (18), as was to be shown.

FAMILY OF STRONGLY STABLE LINEAR l-STEP FINITE-DIFFERENCE

SCHEMES ON NON-UNIFORM MESH �
�

Without loss of generality, assume that the solution of problem (5) can be implemented numerically at the initial

rated step of the difference mesh �
�
, i.e., for n � 0, since technical details of many proofs appear much simpler in this

case because the dependence of functions in (5) on n disappears and the dependence on l becomes trivial

a y b fi i

i

l

l i i

i

l

� �

	 	
� �

0 0

0� . (46)

THEOREM 5. For each strongly stable homogeneous linear multistep single-stage finite-difference scheme (5)

with real coefficients ai and bi ( , )i l� 0 satisfying the normalization condition (6) and (8), the characteristic polynomial

�a q( ) has only real roots satisfying the strong root criterion, is unique, and is defined as
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q q q s q( ) ( ) ( )� � �

�

�0

1

1 , (47)

where the sequence of real numbers si ( , )i l�1 has the following properties:

— is mutual for linear ( )l k� - and ( )l k� �1 -step procedures (5) on the given mesh �
�

for i k� 0, ;

— the values of its components on the non-uniform mesh �
�
only depend on the relation of mesh steps and are

within the interval 1 2� �si ( , )i l�1 .

Proof. Let us replace Taylor series (22) of the expansion of function y t( ) on the uniform mesh �
�
at points

l l, , ,�2 0� based on its value at point l�1 with the Taylor series on the non-uniform mesh �
�
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Multiplying sequentially the left- and right-hand sides of the first equality in (48) by the coefficient al , defined by

system (21), those of the second equality by the coefficient al�2 , of the third equality by al�3 , etc., and then adding the

obtained expressions termwise, we arrive at the equality
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Neglecting on the right-hand side of (49) all the terms containing derivatives of function f t( ), we obtain the

scheme of order p �1
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is the maximum step of mesh �
�
.

To satisfy condition (8), it is necessary to equate coefficient c
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of f l�1 to one, i.e., to suppose
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(52)

It is possible to increase the order of local accuracy of the explicit l-step scheme (51) by supplementing (49) with

the Taylor series with respect to the function f l�1
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and eliminating from the system of equations (49) and (53) derivatives of function f of order k p� ( , )1 .

The first two terms on the right-hand sides of each series (53) have coefficients with opposite signs and absolute

values equal to one. Therefore, during the elimination of derivatives of function f of kth order from the system of
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equations (49), (53), the algebraic sum of coefficients of function f in (53) multiplied by an arbitrary and the same factor

will be equal to zero; hence, equality (52) will ensure condition (8).

Equality (52) contains l�1unknowns ai ( , )i l� 0 . At first sight, the problem has no solution since there is only one

equation to find l�1 unknowns. However, it is not so. We can prove the existence of a unique solution by the induction

method. Let us begin the proof with the l-step scheme for l � 2. As the initial expression for the characteristic polynomial

�a q( ) (7), we will take the quadratic trinomial

�a q q a q a q a q( ) ( )( ) ( )� � � � � � �1 1 1 1

1 1

2

1

,

(54)

one of whose roots is the real root q
0

1� . According to the corollary of the fundamental theorem of algebra, the

second root of (54) is also real.

Let us specify coefficient a
1

so that the characteristic polynomial (54) would correspond to the linear procedure (46)

approximating the equation � � � �y t f t y/ ( , ) 0. To this end, let us multiply both parts of the first row in (48) by a
1

and

add to the second row in (48). As a result, we obtain

a y a y y a f al l l
l

l

l
l1 1 1 2 1

1

1 1

1

1

� � � � �

�

�





�

�

�

�

� �
� �

�

�

( )

!

�

�

� �

�

�
l

l

l

l

f

t

�

�

�

�





�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�



�

�

�

1

2 2

1

2!

� �

�

�





�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�





�

�

�

�

�

�

�

a
f

t

l

l

l

l

1

1

3 3

2

2

1

3

�

�

�

!

a
f

t

l

l

l

l

1

1

4 4

3

3

1

4

�

�

�





�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�





�

�

�

�

�

�

�

�

�

�

!

� (55)

Neglecting on the right-hand side of (55) all the terms that contain derivatives of function f t( ), we obtain scheme

of order p �1
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To satisfy condition (8), it is necessary to equate the coefficient of � l lf �1

to one, i.e., to suppose a l l1 1

1� �
�

� �/ .

Whence a l l1 1

1 1� � � �
�

� � �/ .

For � l� �
1

0, � l � 0, and all � we obtain 1 2

1

� �a ; hence, the characteristic equation of the family of three-point

schemes (55) has two different real roots: q
0

1� and 0 1

1

� �q . According to Definition 5, the family of homogeneous

schemes (55) is strongly stable.

It is possible to increase the order of local accuracy of explicit l-step scheme for l � 2 by supplementing Eq. (55)

with the second Taylor series from (53) and eliminating the first derivative ( / )� �
�

f t l 1

from these equations. Multiplying

the left- and right-hand sides of the second Taylor series from (53) by
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Since in the first term of the right-hand side of the obtained equation functions f l�1 and f l�2 in round brackets

have opposite signs, the algebraic sum of their factors

48



� �

�

�





�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

l l

l

a
2

1

1

2

and � �

�

�





�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

l l

l

a
2

1

1

2

is equal to zero. Hence, for condition (18) to hold, the coefficient a l l1 1

�
�

� �/ of f l�1 in the second term on the

right-hand side of (57) should be identically equal to one. Equality (55) satisfies this condition, which is stated in

the theorem. Substituting the value of a
1

(55) into (57), we obtain the final formula for the explicit difference

scheme of order p � 2.

To construct the l-step implicit scheme for l � 2 of the third order, we will supplement Eq. (55) with the first and

second Taylor series for the function f from (53). Let us multiply the first series by the factor A, indefinite yet, the

second series by indefinite factor B, and add the obtained expressions to (55). Let us find the values of factors A and B so

that the sums of the coefficients for ( / )� �
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and ( / )� �
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2 2
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f t l would vanish. From here we obtain the system of the
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Before showing the result of the addition of Eq. (55) and two first series in (53) multiplied beforehand by the

obtained values of A and B, respectively, let us mention that the first two terms on the right-hand sides of these series

with equal coefficients have opposite signs; therefore, the algebraic sum of the coefficients with equal absolute values

multiplied by the same number is equal to zero in each of these series. Hence, to satisfy condition (8), the unique nonzero

coefficient a l l1 1

�
�

� �/ of f l�1 on the right-hand side of (55) should be identically equal to one, which agrees well

with (55) and is stated in the theorem.

Combining the system of equations that consists of Eq. (55) and two first series in (53) with regard for the

found values of unknowns A and B, we obtain the following formula for strongly stable implicit difference scheme of

order p � 3:
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(59)

Thus, we have proved that the family of strongly stable linear l-step schemes (55) for l � 2 , irrespectively of the

order of local accuracy p, ensures the characteristic polynomial (54) with the same value a
1

defined by Eq. (55). It

remains to prove that the roots of the polynomial �a q( ) (47) of the strongly stable homogeneous l-step scheme remain

real for another value of l as well.

To this end, let us consider the family of finite-difference schemes for l � 3. We will construct the characteristic

polynomial (47) with preset values of real and different roots q
0

1� and q a l l1 1 1

1 1� � �
�

/ /� �
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(60)

where the notation is introduced: �
1 1 2

� a a , �
2 1 2 1 2

� � �a a a a , and �
3 1 2

1� � �a a .

According to the corollary of the fundamental theorem of algebra, the third root of (60) will also be real. We will

select the coefficient a
2

so that the characteristic polynomial (60) would corresponded to the linear procedure (15)

approximating the equation � � � �y t f t y/ ( , ) 0. To this end, we multiply both parts of the first series of system (48) by

the coefficient of q
3

in the characteristic polynomial (60), both parts of the second series by the coefficient of q in the

same polynomial, and add these two series to the third series of system (48). As a result, we obtain
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where
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From this set of schemes we will first consider the explicit schemes. Neglecting on the right-hand side of (61) all

the terms that contain derivatives of function f t( ), we obtain the scheme of order p �1
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To satisfy condition (8), it is necessary to equate the coefficient of � l lf �1

to one, i.e., to put
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For a l l1 1
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� �/ , from (63) it follows that
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Using the notation for steps ratio, we obtain herefrom
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i.e., for all � we obtain 1 2

2

� �a . Thus, the roots of the characteristic equation for the family of schemes (61) are

real and different and obey the dependences q
0

1� , 0 1

1

� �q , and 0 1

2

� �q . Hence, according to Definition 5, the

family of four-point homogeneous schemes (61) is strongly stable.

It is possible to increase the order of local accuracy of the explicit l-step scheme for l � 3 by supplementing (61) by

the second Taylor series for the function f from (53). Eliminating the first derivative ( / )� �
�

f t l 1

in these equations,

multiplying the left- and right-hand sides of the second series in (53) by the factor
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and adding the obtained expression to (61) yields the following formula for the explicit difference scheme of

order p � 2:
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. (65)

Let us construct explicit strongly stable homogeneous l-step scheme for l � 3 of the third local order of accuracy

by supplementing Eq. (61) with the second and third Taylor series for function f from (53). Multiply the second series

from (53) by the yet indefinite factor A, the third series by the indefinite factor B , and add the obtained expressions

to Eq. (61). Determine the values of factors A and B so that the sum of the coefficients of ( / )� �
�

f t l 1

and ( / )� �
�

2 2

1

f t l

would become zero. From here we obtain the system of algebraic equations

� � � � � �s A s B s s
1 1 2 1
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,
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s A s B s s
1

2

1 2

2

1

1

3

3

1 2

3

1

3

0� � � � �

, ,

( )� � ,

whose solution has the form
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(66)

The system of equations that consists of Eq. (61), the second and third series from (53) with regard for the found

values of the unknowns A and B, and Eqs. (60) and (47) allows us to obtain the following formula for the homogeneous

strongly stable explicit difference scheme of order p � 3:

� � �
1 2 1 3 2 3

y y y yl l l l� � �
� � �

� � � � � � � �
� � �

[ ( )] ( )

,

A B s s f Af Bf Ol l l l� � � �
1 3 1 1 2 1 2 3

4

.

(67)

To construct the l-step implicit scheme for l � 3 of fourth order, let us supplement Eq. (61) with the first,

second, and third Taylor series for the function f from (53). Let us multiply the first series from (53) by the yet

indefinite factor A, the second series by the indefinite factor B, the third series by the indefinite factor C and add the

obtained expressions to Eq. (61). Let us determine the values of factors A, B, andC so that the sums of the coefficients of

( / )� �
�

f t l 1

, ( / )� �
�

2 2

1

f t l , and ( / )� �
�

3 3

1

f t l would become zero. From here we obtain the system of algebraic

equations
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whose solution has the form
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.

The system of equations that consists of Eq. (61), the first, second, and third series from (53) with regard for

the found values of the unknowns A, B, and C, and Eqs. (60) and (47), allows us to obtain the following formula for the

homogeneous strongly stable implicit difference scheme of order p � 4:

� � �
1 2 1 3 2 3

y y y yl l l l� � �
� � �

� � � � � � � � � � �
� � �

Af A B C s s f Bf Cf Ol l l l l( ) ( )

,

� � � �
1 3 1 1 2 1 2 3

5

.

(69)

This process of the construction of strongly stable linear l-step schemes within the framework of the proof of

Theorem 5 has shown that inside each family of homogeneous schemes, i.e., for a specific value of l, coefficients of

the characteristic polynomial �a are only the functions of steps of the difference mesh and remain real irrespective of the

local order of the scheme.

To complete the proof of Theorem 5, it is necessary to show that the roots of the characteristic polynomial �a

remain real for the multistep scheme for l � 4. To this end, let us construct characteristic polynomial �a with the preset

values of real roots q
0

1� , q a
1 1

1� / , and q a
2 2

1� / :

�a q q a q a q a q( ) ( )( )( )( )� � � � �1 1 1 1

1 2 3

� � � � �a a a q a a a a a a a a a q
1 2 3

4

1 2 1 3 2 3 1 2 3

3

( ) � � � � � �( )a a a a a a a a a q
1 2 3 1 2 1 3 2 3
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� � � � � � � � � �( )a a a q q q q q
1 2 3 1
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1 1 1� � � � , (70)

where a l l1 1

1� �
�

� �/ , a a l l l l2 1 1 2

1� � �
� �

� � � �/ / and the notation is introduced �
1

� a a a
1 2 3

, �
2 1 2 1 3

� �a a a a

� �a a a a a
2 3 1 2 3

, �
3 1 2 3 1 2 1 3

� � � � � �a a a a a a a a a
2 3

, and �
4 1 2 3

1� � � �a a a .

We will select the coefficient a
3

so that the characteristic polynomial (70) would correspond to the linear

procedure (15) approximating the equation � � � �y t f t y/ ( , ) 0. To this end, let us multiply both parts of the first series of

system (48) by the coefficient of q
4

in the characteristic polynomial (70), both parts of the second series by the

coefficient of q
2

in the same polynomial, both parts of the third series by the coefficient of q in (70), and add these three

series to the fourth series of system (48). As a result we obtain
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where

s
l l l

l

1 3

1 2 3

,

�

� �
� � �

� � �

�

.

To satisfy condition (8), it is necessary to equate the coefficient of � l lf �1

to one, i.e., to put
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From (72) it follows that
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From here, using the notation for steps ratio
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,

i.e., for all � we obtain 1 2

3

� �a . Thus, the roots of the characteristic equation for the family of schemes (71) are

real and different and obey the dependences q
0

1� , 0 1

1

� �q , 0 1

2

� �q , and 0 1

3

� �q . Hence, according to

Definition 5, the family of homogeneous four-point schemes (61) is strongly stable.

In [3], in the problem of modeling the circulation of atmosphere to obtain the difference representation $ of

derivatives of the first and second orders appearing in the differential operator D of hydrodynamic and heat and mass

transfer equations, approximation was carried out by difference operators of fourth order. Therefore, obviously, it

is necessary to construct, for ordinary differential equation � � � �y t f t y/ ( , ) 0 , a strongly stable explicit difference
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scheme of order p � 4, corresponding to the order of approximation of the differential operator D in the equations of the

problem of circulation of atmosphere. Of course, it will be useful to write the scheme for an arbitrary nth point of the

difference mesh.

Let us supplement Eq. (71) with the second, third, and fourth Taylor series for function f from (53). Multiply the

second series from (53) by the yet indefinite factor A, the third series by the indefinite factor B, the fourth row by the

indefinite factor C, and add the obtained expressions to Eq. (71). Let us find the values of factors A, B, and C so that the

sum of the coefficients for ( / )� �
� �

f t n l 1

, ( / )� �
� �

2 2

1

f t n l , and ( / )� �
� �

3 3

1

f t n l would become zero. From here we

obtain the system of algebraic equations
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where the following notation is introduced:
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If in addition we introduce the notation

s
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then the solution of the system of equations (74) becomes

A
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, ,
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The system of equations consisting of Eq. (71), the second, third, and fourth series from (53) with regard for the

found values of unknowns A, B , and C , and equalities (70) and (73), allows us to obtain the following formula for

strongly stable explicit difference scheme of order p � 4:

� � � �
1 2 1 3 2 4 3 4

y y y y yn l n l n l n l n l� � � � � � � � �

� � � �

� � � � � � �
� � �

[ ( )]

, ,

A B C s s s fn l n l� � � �
1 1 3 1 2 4 1 3 1

� � � �
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Af Bf Cf On l n l n l2 3 4

5

( )� .
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Thus, the proved Theorem 5 allows constructing the family of single-stage l-step explicit and implicit

numerical methods for the solution of problem (1), (2). However, the question arises: should we specify the value of l

arbitrarily large if the right-hand side of the differential equation (1), (2) is continuous and bounded together with the

derivatives of lth order? Naturally, an increase in l increases the cost of the solution, especially as applied to the

numerical solution of systems of partial differential equations. Hence, the choice of one value of l or another depends on

the specific problem being solved. It is hardly expedient to use large values of l when methods with bounded values of l

are applicable and substantial improvement of the results is not expected.

CONCLUSIONS

The implicit schemes (30), (40), and (45) we have constructed, including additional approximate value of

f t yn l n l( , )

� �

, do not provide explicit expressions to find yn l� , but are only the equations with respect to this

unknown. In this case, one can use the two-stage algorithm: first, find yn l� by the explicit scheme whose order of

accuracy is O
l

( )�
�1

, then, having calculated f t yn l n l( , )

� �

, find yn l� by the implicit scheme of order O
l

( )� . The value

of yn l� can also be found by the implicit scheme, using any method of successive approximations. Iterations

substantially complicate the process of evaluation of yn l� and are an essential shortcoming of implicit methods. It is

especially true for the cases where f t yn l n l( , )

� �

is the value of difference expressions for convective and diffusion terms

of nonlinear differential equations of hydrodynamics [3] since the nonlinearity of the equations does not allow ensuring

a priori the convergence of the respective iterative process.
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