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Abstract. This survey article considers methods and algorithms for fast estimation of data

distance/similarity measures from formed real-valued vectors of small dimension. The methods do not

use learning and mainly use random projection and sampling. Initial data are mainly

high-dimensional vectors with different measures of distance (Euclidean, Manhattan, statistical, etc.)

and similarity (dot product, etc.). Vector representations of non-vector data are also considered.

The resultant vectors can also be used in similarity search algorithms, machine learning, etc.

Keywords: distance, similarity, embedding, sketch, dimensionality reduction, random projection,

sampling, Johnson–Lindenstrauss lemma, kernel similarity, similarity search.

1. BASIC CONCEPTS

Distance and similarity functions (measures) are widely used in similarity search and in many applications of data

analysis, machine learning, and statistics (cluster analysis, classification and approximation by nearest-neighbor methods,

multidimensional scaling, etc.). For complicatedly computable distances and similarities, their fast estimation or

computation of bounds on their values is topical. To obtain such an estimate, initial (vector and non-vector)

representations of data (objects) of different types with different distance/similarity measures are often transformed into

representations (usually vector representations of small dimension) that make it possible to easily compute estimates for

the similarity of initial data. The complexity of estimation of distances/similarities between vectors (for example,

Euclidean distance, dot product, etc.) is linearly dependent on vector dimension and, hence, complexity is small in the

case of small dimensions. For vector representations, there also are many methods for similarity search, statistical pattern

recognition, classification, clusterization, approximation, feature selection, etc.

This article presents a survey of approaches, methods, and algorithms for fast estimation of distances/similarities

between initial data representations from real-valued vector representations. (Binary and integer-valued vector

representations for fast distance/similarity estimation are considered in [1].) Methods without adaptation to data are

mainly presented (but see Sec. 9.4). The majority of the considered methods and algorithms are practically

implementable, though only theoretical bounds on parameter values are given in certain cases. (As a result of a limitation

on the size of this article, publications containing references to previous papers are mainly cited.)

1.1. Distances and similarities. For each type of representation of data (objects), there are different

distance/similarity measures. The number of types of representations is small. Vector representations and also sets,

sequences, trees, and graphs are most widespread.
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For example, if objects are represented in the form of a collection of numerical features (as real-valued vectors x

and y of dimension D), then the dot product sim

dot

( , )x y � � � �

�
�x y, x yi ii

D

1

can be used to estimate similarity. Larger

values of similarities correspond to more similar objects. To estimate similarities of objects, distance is also used, i.e.,

“dissimilarity” (for example, the angle or Euclidean distance between vectors). To large similarity values correspond

small distance values. Many distances are metrics, i.e., satisfy metric axioms such as the triangle inequality, etc.

Properties of similarity measures can be used to accelerate similarity search, for example, the triangle inequality is used

for metrics.

For vectors, Minkowski distances Ls of different order s: | | | | | |

/
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are widely used.

The metric distances L
2

(Euclidean | | | |x y�
2

), L
1

(Manhattan | | | |x y�
1

), and L
�

(the Chebyshev distance or the

maximum of | | | |x y�
�
) are most widespread. When 0 1� �s , fractional distances are obtained that are not metrics. The

complexity of computing the Minkowski distance between two vectors amounts toO D( ). We also denote a vector space

with a distance Ls by Ls (or Ls
D

when its dimension equals D). Many types of distances/similarities for different

representations of objects are considered in [2]. In this survey, definitions of distances are introduced as needed.

1.2. Embeddings. A transformation f ( )x of the set of objects of some initial space into a target (usually

a “simpler”) space preserving the initial distances is called an embedding. Though spaces of various types (for example,

tree metrics [3], etc.) can be target spaces, embeddings into normalized (vector) spaces Ls are mainly used.

The quality of embeddings is estimated [3, 4] by the amount of distance distortions. For small �� 0,

a multiplicative distortion, i.e., a minimal �, is often used for which

( ) ( , ) ( ( ), ( )) ( ) ( , )1 1

1 2 1

� � � �� �dist dist f f distx y x y x y . (1)

We call it 1� �-distortion or 1� � distortion. For large distortions A �1, the expression for the multiplicative

A-distortion is of the form

dist dist f f dist

1 2 1

( , ) / ( ( ), ( )) ( , )x y A x y A x y� � .
(2)

We define an additive distortion � �a , �a � 0, as

dist dist f f dist

1 2 1

( , ) ( ( ), ( )) ( , )x y x y x ya a� � � �� � . (3)

Distortions can also be defined not only for distances dist but also for similarities sim.

When � � 0, �a � 0, and A �1 in expressions (1)–(3), distances/similarities are preserved exactly, i.e., isometry

takes place; for example, the Frechet embedding of N objects of a metric space into L
�
, embedding of the entire space L

1

into L
�

([3] and Sec. 6.1), and embedding of kernel similarities � ( , )x y into a Hilbert space H (Sec. 7).

Drawbacks of isometric embeddings are considered to be as follows: distances are usually preserved only for

a given set of objects, dimensions of embeddings are large, and only a few of such embeddings are known. Therefore,

approximate embeddings into vector spaces (of small dimension) are needed since they allow one to quickly estimate

initial distances with small distortions [3, 4].

For problems such as similarity search, query objects are often unknown in advance, and the composition of

objects of the base in which the search is performed can vary. Therefore, oblivious methods of formation of object

representations that can be applied to new objects [5] (without changing existing representations) are required. In [6],

oblivious embeddings of objects do not depend on other objects (a stronger definition of obliviousness). In this survey,

the majority of transformations being considered are oblivious according to [6].

Since the embedding of any objects with small distortions is a difficult task, oblivious embeddings are usually

randomized (are carried out using pseudo-random numbers and guarantee distortions only with some probability). For

example, dimensionality reduction of vectors (an embedding version in which the form of the distance function is

preserved and the dimension of representations decreases) is randomized for the Euclidean distance according to the JL

lemma with the help of random projections (Sec. 2).
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1.3. Sketches. Compact representations of initial objects that are used to estimate some of their characteristics are

called sketches [7]. As well as embeddings, sketches are used to estimate distances/similarities and usually are vectors.

To estimate distances between initial objects from sketches, not only distance (as in embeddings) but also other

characteristics can be used (for example, median estimators, etc., see Sec. 4). The analytical dependence of the initial

distance/similarity on some quantity determined from sketches turns out to be complicated or unknown, and tabulation

can be used for obtaining estimates.

Compact representations used in streaming processing [7] (when object representations are specified by a

sequence of components or their increments) are often called sketches. Vectors with binary or integer-valued (discrete)

components [1] are also called sketches. Such vectors are easily processed and usually occupy less memory than initial

representations of objects. In this article, we call sketches vector representations of initial objects obtained with a view to

estimating distances/similarities between them (including the results of embeddings).

The time of estimation of the initial distance/similarity from sketches of dimension d usually amounts to O d( )

(linear time complexity of an algorithm). Therefore, for d D� initial vectors, we obtain accelerated estimation. For initial

representations with a complexity lower than the linear complexity of computing distance/similarity, its reduction to

linear complexity for sketches also is a source of acceleration. Note that embeddings and sketches turn out to be useful

without reduction in the dimensionality (the number of elements) of representations, for example, when, for them, there

are efficient algorithms of similarity search, estimation of distance/similarity measures, or other algorithms or methods

requiring the use of representations of the obtained type [4].

1.4. Structure of this survey article. Section 2 considers the dimensionality reduction of vectors of a Euclidean

space by random projection and distortions of estimates for the Euclidean distance (and also for the dot product of and

angle) between initial vectors on the basis of obtained sketches. In Sec. 3, the acceleration of random projections is

discussed. In Sec. 4, embeddings and sketches are given for estimating non-Euclidean Minkowski distances.

Section 5 considers sketches obtained by sampling (selection of a subset of components of initial representations),

Section 6 describes embeddings for estimating distances between non-vector data, and Section 7 examines the

approximation of kernel similarities.

In Sec. 8 other lines of investigation are described including embeddings of statistical distances, equivalence of

sketches and embeddings, and approximate similarity search. In Sec. 9, advantages and drawbacks of the considered

real-valued embeddings and sketches are considered and a comparison with learning-based methods is given.

2. DIMENSIONALITY REDUCTION OF VECTORS OF A EUCLIDEAN SPACE

BY RANDOM PROJECTION

2.1. Johnson–Lindenstrauss lemmas. The possibility of estimation of the Euclidean distance L
2

between initial

vectors with small distortion in terms of the Euclidean distance between their embeddings of small dimension

(i.e., dimensionality reduction) is provided by the Johnson of–Lindenstrauss (JL) lemma.

JL LEMMA [8, 4]. For a set { }x x
1

� �� N of any N vectors in a real space �
D

(irrespective of its dimension D),

there is an embedding f :� �
D d

� , d O N� ( / )log �
2

, with a distortion of each of N N( ) /�1 2 distances L
2

between

these vectors by at most 1� � (i.e., for them, condition (1) is fulfilled for the Euclidean dist

1

and dist

2

).

In proofs of the JL lemma [9–11], linear randomized embeddings are used whose properties are determined

by versions of the so-called distributional JL lemma (DJL), which is also well known as the lemma of random

projections [4]. These DJL lemmas assert that there are classes of distributions of matrices of size d D� such that

a matrix R randomly chosen from a distribution, for any vector z��
D

with probability Pr (over instances of R ),

provides the multiplicative1� � distortion of the Euclidean norm z : Pr {( ) | | | | | | | |1

2 2

� � �� z Rz ( )| | | |1 1

2

� � �� �z } for

any 0� � and �� 1 2/ when d O D�

�

(min , log( / ) ){ }� �
2

1 . (D)JL lemmas are often formulated in terms of squares of

norms and distances.

The proof of DJL lemmas is based on the concentration (for concrete classes of R) of | | | |Rz
2

around | | | |z
2

(or

| | | |Rz
2

2

around | | | |z
2

2

). For the DJL lemma, the value of d �

�

� ( log( / ))� �
2

1 is the dense lower bound [12, 13].
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The truth of the JL lemma is obtained with high probability from the DJL lemma with the use of Boole’s

inequality (union bound) by choosing �� �2 1/ / ( )N N and putting z x y� � for all N N( ) /�1 2 pairs of vectors. Note

that the value of 1� � in the DJL lemma is independent of | | | |z
2

and in the JL lemma is independent of | | | |x y�
2

.

Therefore, in proofs, the norm of these vectors can be considered to be a unit norm.

Random projection provides the obliviousness of a transformation. The dimension d N�

�

� ( log )�
2

in the

JL lemma is the dense lower bound for the linear transformation Rz [14] and in the general case [15].

We call JLTs classes of matrices of a linear transformation for which the JL lemma holds. A large (but not alone)

JLT class consists of matrices with i.i.d. elements, i.e., independently and identically distributed random quantities (r.q.)

from a sub-Gaussian distribution [11, 16–18]. A centered r.q. x is sub-Gaussian if � �c 0 � �� 0 Pr { }| |x � �

� �2

2

exp ( )c� . For example, sub-Gaussian JLTs are matrices with i.i.d. elements from the Gaussian distribution

Norm (0,1) with binary elements from {� �1 1, }with probability 1/2 (the Rademacher distribution), with ternary elements

from { }� �1 0 1

1 2 1 2

/ , , /

/ /

q q with corresponding probabilities { }q q q/ , , /2 1 2� , etc. [11, 16–18]. The dimension d in

(D)JL lemmas depends on c. Note that, for the truth of the DJL lemma, Rzwith such R should be multiplied by1/ d or

R should be obtained a result of the same scaling of (sub-Gaussian) r.q.

Let us consider the connection of JLTs with matrices that have the following restricted isometry property

(RIP) [18–20]: for any k-sparse vector (i.e., a vector with no more than k nonzero components), the multiplication by a RIP

matrix preserves the square of the Euclidean norm with distortion1� �. Such RIP matrices are used in problems of compressed

sensing (see references in [18–20]). For JLT matrices, RIP is satisfied with high probability (with other constants and for

vectors with sparseness k up to some optimal). For example, Gaussian and Rademacher random matrices R satisfy RIP when

d O k D k�

�

( log( / ))�
2

[20] and, vice versa, a matrix RDR (where R is a RIP ( , / )k � 4 -matrix and DR is a diagonal

Rademacher matrix) is a JLT with high probability (with a suboptimal d , d O k D�

�

( log )�
2

when N
k

� 2 ) [21, 22].

Recent results on RIP are given in [20–23].

In addition to RIP, analogues of the JL lemma also exist with some constraints for other infinite (continuous) sets

such as manifolds, linear subspaces, unions of subspaces, etc. (see [18, 24] and references to them). In particular, let

a continuous set S have a Gaussian mean width � that is defined as �( ) sup ,S x S� � �
�

E{ }r x , where r 0 I~ ( , )Norm D

and E is mathematical expectation (m.e.). For a Gaussian i.i.d. R, when d O S� ( ( ) / )� �
2 2

, an analogue of the JL lemma

with additive distortion � � (3) [24–27] holds for S . For matrices with sub-Gaussian i.i.d. elements, a similar result is

obtained in [28] (see also [18]). Note that �( ) ( log | | )

/

S S� 2

1 2

[27].

In multiplying RIP matrices by DR , for different distortion � and sparseness k levels, an additive analogue of the

JL lemma holds with high probability for continuous bounded sets S when d depends on �
2

( )S [27]. The existence of

RIP matrices with fast multiplication (Sec. 3) allows one to accelerate this random projection.

2.2. Derandomization of random projection. The conditions of the JL lemma presume the need for randomized

embeddings for dimensionality reduction since, when d D� , for a deterministic matrix, there are infinitely many x :

Rx � 0 (vectors from the null-space of R). Therefore, the derandomization of JLT consists in searching for JLT matrix

classes that can be generated (or can be chosen from all “ready” matrices of some distribution) with a minimal number of

random bits (see [13, 29, 30] and references in them). It is important for applications with limited memory. In particular,

matrix generation in [30] requires only d O D� (log ( / ) log )1 � random bits (Sec. 3.3). However, there are procedures for

constructing explicit JLT matrices for a given set of N vectors [31, 32].

2.3. Dispersions of estimates. Analogues of the JL lemma for the dot product, angles, and embeddings into L1 .

The JL lemma provides probabilistic guarantees of the worst-case 1� �-distortion of the Euclidean distance. The

dispersion V of an estimate for a distance/similarity measure is the measure of inaccuracy of embedding on the average

(and, in some cases, makes it possible to obtain estimates for the worst case when error distribution is known). The

randomness of estimates in random projection is conditioned by different implementations of R. The dispersion V of the

estimate for | | | |x y�

2

2

on the basis of d-dimensional sketches [33, 34] is calculated as follows:

V{

*

} E{ } E { } 3)| | | | / ( / ( ) | |x y� � � � �

�

�
2

2 4 2 2

1

4

1 2d x y

i

D

i i� � x y�

�

	







�

�







| |

2

4

, (4)
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where � is an r.q. (an element of R). For ternary matrices with i.i.d. elements from { }� �1 0 1

1 2 1 2

/ , , /

/ /

q q with

probabilities { }q q q/ , , /2 1 2� , E{ } E { }

4

� �/ /

2 2

1� q [33], and, for binary matrices with elements from { }0 1, :

1 3

2

/ ( )q q� � [34]. For Gaussian i.i.d. matrices, V gives formula (4) with E{ } E { }

4

� �/

2 2

3� [35, 33].

To estimate the dot product � �x y, [33, 34], we have

V{ } E{ } E { }� � � � � � � �

�

�x y x y,
*

/ ( / ) , | |1 3

4 2 2 2 2

1

2

d x yi i

i

D

� � x y| | | | | |

2

2

2

2

�

	







�

�







. (5)

The accuracy of estimates [33] can be increased by taking into account the values of norms | | | |x
2

and | | | |y
2

.

The equality | | | | | | | | | | | | ,x y x y x y� � � � � �

2

2

2

2

2

2

2 implies the existence of analogues of (D)JL lemmas for

JLT matrices for � �x y, and the cosine of the angle cos( , )x y between the unit x and y . However, in this case, a distortion

��a is additive distortion (3) and, at the same time, � �a � | | | | | | | |x y
2 2

[36, 29, 37]. A lemma with optimal probabilities

� (as in the JL lemma) is presented in [37], where it is also shown that, for a 1� �-distortion, � depends on cos ( , )

2

x y .

Fast estimation of � �x y, can be useful in estimating kernel similarities (Sec. 7).

For transformations preserving Euclidean distances with 1� �-distortion, there is an analogue of JL lemmas for

estimating the angle between unit vectors with ��a -distortion [29, 38]. The preservation of an angle with distortion 1� �

requires the increase in the number of preserved distances, i.e., in dimension d (and/or �) [39].

To embed N vectors from L
2

into L
1

, the conditions (of analogues) of (D)JL lemmas with distortion1� � are fulfilled

with insignificant changes in constants (for a Gaussian random i.i.d. matrix [26, 40]). The use of sparse matrices (with

a small fraction of nonzero elements) requires the “smoothness” of x [41, 11] (for sparse Gaussian matrices [41, 11],

for ternary matrices [11], and for embeddings into L
2

, see Sec. 3.1).

The embedding of continuous bounded sets with �( )S from L
2

into L
1

with the help of a Gaussian matrix is

possible with distortion � �a for d O S a� ( ( ) / )� �
2 2

[26, 42], and the embedding of the entire D-dimensional space L
D

2

into L
d

1

with distortion1� � is possible only for d O D� ( ) [3, 4]. The results testifying to the impossibility of dimensionality

reduction for L ss, � 2, are given in Sec. 4. Advantages and drawbacks of embedding vectors of Euclidean spaces are

considered Sec. 9.1.

3. ACCELERATION OF RANDOM PROJECTION

The drawbacks of JLT random projection include a large computational complexity O Dd( ) of multiplication of

a vector by a matrix in the case of direct implementation (but see [43]). Time decreases up to O d( ( ) )nnz x for a sparse x

with the number of nonzero components nnz ( )x . For arbitrary x, some acceleration of JLT can be achieved by the use

of special sparse or nonsparse matrices making it possible to perform high-speed multiplication.

3.1. Sparse random i.i.d. matrices. The time of multiplying a dense x by traversing along nonzero matrix

elements (with a fraction or probability q of nonzero elements) amounts toO Dqd( ), and that for a k-sparse x amounts to

O kqd( ) (see, for example, [44]). Manipulation with matrices consisting of the elements { , , }� �1 0 1 [33, 45–47] and

{ , }0 1� is especially efficient [34, 48]. Dispersions of an estimate for the Euclidean distance and dot product from [34]

are given by formulas (4) and (5). In [33], the rate of their convergence to the dispersion of Gaussian projections and,

in [33, 48], the rate of convergence of the distribution of elements of the output vector to a Gaussian vector are given.

For sparse matrices and sparse vectors x, the number of nonzero products x ri i (in computing � �x r, in Rx) can be

insufficient for the concentration (necessary in the DJL lemma (see Sec. 2.1)) of | | | |Rx
2

around | | | |x
2

. For example,

a vector with | | | |x
2

1� can contain only one single component. Therefore, the DJL lemma for sparse random i.i.d.

matrices [41,11] requires to constrain the sparseness of vectors (which is implicitly specified as | | | | / | | | |x x
�

�
2

� ,

� �[ / , ]

/

1 1

1 2

D , and is close to 1

1 2

/

/

D ) and matrices (q C D�
0

2

� ��log( / )). In this case, d C�

�

� �
2

4log ( / ) and

the m.e. of the number c of nonzero components in a column E{ }c �

~

( / )� � �
2 2

, where

~

( )� f designates a function of

the form f flog ( )

( )� 1

.
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3.2. Matrix pipelines for fast JL transform. To accelerate JLT (with the possibility of applying it to sparse vectors),

different matrix pipelines are used; a pipeline consists of a sequence of matrices whose multiplication by a vector is rapidly

computable, and, for resultant vectors, the JL lemma holds with parameters close to optimal.

The matrix pipeline from [41] is called the fast Johnson–Lindenstrauss transform (FJLT). To achieve the

necessary � of a vector x, it is preconditioned. In [41], its preconditioning is provided by a random rotation of x by means

of HD xR , where H is an (orthogonal) Hadamard matrix,

H
1

1� ( ), H
H H

H H
D

D D

D D

�

�

�

	






�

�






1

2

2 2

2 2

/ /

/ /

.

A vector is multiplied by H in time O D D( log ). At the same time, � �O d D O N D( / ) ~ ( log / ) is reached with

high probability, which allows one to use a sparse i.i.d. matrix G (in [41], a Gaussian matrix with an optimal d and

with q d D~ /

2

and nnz( ) ( )G �O d
3

). As a result, the FJLT transformation GHD xR is obtained. The execution time

amounts to O D D d( log )�

3

. A further development [49–51] and application of RIP matrices (see Sec. 2.1) made it

possible to decrease and then to eliminate the dependence of time on d owing to increasing d in comparison with

the time optimal in the JL lemma. In particular, in [20], the execution time equal to O D D( log ) is reached for x

with nnz poly( ) / logx � D D when d O N D�

�

( log log )�
2 3

.

Very simple matrices providing the multiplication time of order ofO D D( log ) are Toeplitz and circulant matrices.

Toeplitz matrices have identical elements on their diagonals (specified by D d� �1 numbers). In circulant matrices

(we denote them by C) rows are obtained by a cyclic shift of the first row (i.e., D numbers are required). For random

projection, elements of a row are usually Gaussian or Rademacher i.i.d. r.q. (vec (DG ) or vec ( )DR ). With high

probability, such matrices are RIP matrices [52] if parameters are appropriately chosen, i.e., CDR is a JLT (see Sec. 2.1

and [21]). An improvement in the analysis of the JLT pipeline CDR made it possible to improve the required d from

O N( log )�
�2 3

[53] toO N( log )�
�2 2

[54] and even toO N( log )

( )

�
�� �2 1

(see [55, 56] and references from them).

Similar fast pipelines are also used for fast implementation of RIP transformations (see Sec. 2.1) in obtaining

binary sketches [1] and approximation of kernels (Sec. 7) and linear parts of layers of neural networks [57–60]. Note that

elements of the matrix of the product of matrices of a pipeline are not (Gaussian) i.i.d., which complicates the analysis of

such “structured” random matrices.

3.3. Sparse JL transformation. In all FJLT versions, a possible sparseness of x is not used (and vice versa,

compacting is often performed). As a result, for a vector with one nonzero component (for example, in the mode of

streaming processing (see Sec. 1.3)), the time O D D( log ) of sketch modification is much larger than the “naive” O d( ).

Moreover, in many applications, sparse vectors are used (representations of texts by words, recommendations or

purchases of users, etc.).

To accelerate the multiplication of sparse vectors by sparse matrices and to overcome the constraint on c (see

Sec. 3.1), i.i.d. r.q. are not used as matrix elements. In particular, in [61], the following so-called the hashing trick is

proposed: an unbiased estimate for dot product is found from sketches obtained using hash functions h D d:[ ] [ ]� and

g D:[ ] ,� � �{ }1 1 , where [ ]n denotes { }1 2, , ,� n . A sketch component is formed by adding the components of the

initial vector that are mapped into the component and are multiplied by values from { }� �1 1, that correspond to them.

This is identical to the multiplication by a matrix with exactly one (randomly located) �1or �1 in a column. In this case,

the dispersion of an estimate is the same as for matrices with i.i.d. r.q. taken from { }� �1 1, [61, 62]. To achieve the

necessary �, a simple deterministic compacting of x is used with the help of c-fold “reproduction” of its components and

division of them by c
1 2/

, which provides the preservation of | | | |x
2

and reduction in | | | |x
�

by a factor of c
1 2/

. In this

case, hashing is modified as h cD d:[ ] [ ]� and g cD:[ ] ,� � �{ }1 1 . The resultant transformation of x can be

implemented by multiplying by a pseudo-random matrix of size d D� ; the number of nonzero elements in columns of

this matrix varies from one to c (owing to possible collisions between c hashes of the same component x).

As a result of analysis of the considered scheme as a JLT [63], c O d�

�

( log( / ) log ( / ))� � �
1 2

1 is obtained for

d O�

�

( log( / ))� �
2

1 . As is shown in [64], it suffices that c O d�

�

( log( / ) log( / ))� � �
1

1 ; some improvement in this
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parameter is attained in [65]. To further reduce c, it is proposed [30] to use exactly c nonzero elements from { }� �1 1, in

a column of the matrix R. In one of versions, a column of the matrix R is divided into c continuous blocks of dimension

d c/ and one element �1 or �1 is randomly placed in each of them. This makes it possible to improve sparseness up to

c �

�

�( log ( / ))� �
1

1 ~ log| |�
�1

S with optimal d O�

�

( log ( / ))� �
2

1 . Thus, the fraction of nonzero matrix elements and

computational speedup of this sparse JL transformation (SJLT) are equal to �. This c is close to the optimal

c �

�

� ( log ( / ) / log ( / ))� � �
1

1 1 [66].

In [24], the truth of analogues of the JL lemma is investigated with distortion 1� � of the Euclidean distance for

SJLT and different sets of unit vectors under some constraints on geometry by means of a “complexity parameter.”

Thus, structured (i.e., not Gaussian i.i.d.) matrices make it possible to accelerate multiplication, to reduce memory

expenditures for storing matrices and the number of required random numbers, and to simplify algorithmic

implementations. A comparative experimental investigation of dimensionality reduction algorithms on the basis of the JL

lemma for different matrix pipelines is given in [67].

4. EMBEDDINGS AND SKETCHES FOR ESTIMATING NON-EUCLIDEAN

MINKOWSKI DISTANCES

For other distances L ss, � 2, a dimensionality reduction L Ls

D

s

d
� by a linear transformation with a distortion

(constant for vectors of length d and independent of D) is impossible in the general (worst) case (for L
1

, see [68, 69]).

Proofs are based on the demonstration of collections of N vectors in a space whose dimension is D N� and whose

embedding with a given distortion requires a high dimension.

In particular, for a linear embedding of N vectors from Ls into Ls
d
when1� � �s , the multiplicative distortion A

(2) is no less than A N d
s

�� (( / ) )

| / – / |1 1 2

[70]. For L
1

, this means that d CN A� /

2

. This is also true for the embedding

of L
1

into any Ls [70]. A stronger result for L
1

asserts that d N
A

�

�( / )1

2

[69, 68]. For small distortions 1� �, the lower

bound d N
O

�

�1 1 1( / log( / ))�
[71] and the upper bound d O N� ( / )�

2

[72].

However, a transformation of a metric without dimensionality reduction can also be useful (see Sec. 1.3). Note

that, for 1 2� � �t s , the entire space Ls
D

can be embedded into Lt
CD

with distortion 1� � and, in this case,C C s t� ( , , )�

�

�

O( log( / ))� �
2

1 is not too large [73, 74, 3, 4] (and see also Sec. 3.1 and [4] for L L
2 1

� ). When C �1, an explicit

embedding can be constructed. However, characteristics of such embeddings are much worse than those of randomized

ones [4].

Thus, for L ss, � 2, it is impossible to linearly reduce the dimensionality of an arbitrary set of N vectors with

constant distortion in the worst case. To overcome this restriction, constraints on sets of vectors (Sec. 4.1) and sketches

with estimation of Ls (0 2� �s ) not in terms of distance in the target space (Sec. 4.2) are used. Note that, for operating

with distances Ls when s� 2, efficient sketches [75] (of constant dimension and with constant distortion independent of

D) are impossible in principle, and the required dimension d D
s

�� ( )

– /1 2

[76].

4.1. Embeddings of subsets of L1 . For k-sparse vectors from L
1

, 1� �-embedding with d Ck D k� log( / ) / �
2

is

possible (with high probability) with the help of L
1

-RIP matrices (in particular, scaled binary matrices containing

C D k�
�1

log ( / ) 1s in each column) (see [77] and Prop. 1 in [78]). Similar results for1� � �s are obtained in [79].

The approach to the embedding of s-block norms [78] into L
1

uses the element-wise multiplication of matrices one of

which is binary with a fixed number of 1s randomly located in each column and the other is Gaussian. By varying s, it is

possible to reproduce well-known results for embeddings L L
2 1

� and L L
1 1

� for subsets of vectors with certain properties.

Nonlinear embeddings from Ls into Lt , 1 2� � �t s , with distortion 1� � in a bounded range of distances with

target dimension d O N� (log ) that also depends on values of the range and on �, ,t and s, are proposed in [80].

A one-dimensional embedding of x it is performed as sin ( , / )2 � � �x r a 	 with scaling, where r is a random vector from

an s-stable distribution (Sec. 4.2), a is a value connected with the range size, and 	 
~ Unif [0, 2 ]. Such embeddings (with

a bounded range) are useful in similarity search, clusterization, etc.
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4.2. Sketches for distances Ls (0 2� �s ) on the basis of stable random projections. One more approach to

the fast estimation of Minkowski distances Ls (0 2� �s ) with small distortion consists of creating sketches of small

dimension d O N� (log ) with which, as opposed to embeddings, other estimates of initial distances [81] are used instead

of Ls. For them, there are analogues of the JL lemma with distortion 1� � for estimates for distances computed

from sketches.

Sketches for Ls ( )0 2� �s are formed on the basis of stable random projections as Rx (R is a random matrix with

i.i.d. elements from an s-stable distribution [81]). For example, the 1-stable Cauchy distribution is used for L
1

. Note that

the Gaussian distribution is 2-stable.

To estimate Ls from sketches, versions of median estimators for absolute values of the difference between

components of sketches are used [81]. To increase accuracy, median estimators, geometric mean estimators, harmonic

mean estimators, fractional power estimators, optimal quantile estimators, and maximum likelihood estimators (with bias

correction) are used (see [82, 83] and references in them). Advantages and drawbacks of sketches obtained by a stable

random projection are described in Sec. 9.2.

5. ESTIMATION OF LINEAR SUMMARY STATISTICS FROM SKETCHES

OBTAINED BY SAMPLING

The selection of a subset of elements from the initial representation of an object is called sampling. The objective

of sampling usually is the obtaining of a representation of the object that makes is possible to estimate some of its

characteristics. To rapidly estimate distance/similarity measures with the use of sampling, representations of initial

objects that can be considered as vectors are mainly used. Sketches obtained by sampling can also be represented by

vectors. (The representation in the form of pairs (ID, value) with value � 0 is often used in which components with an

identical ID correspond to one another. Such representations can be easily converted into usual vectors.)

We now consider methods of random sampling (see [84, 85] and references in them). In simple random sampling

with replacement, each component is selected for a sketch with equal probability (and it can be selected several times).

The number of sample components selected for a sketch is fixed. In PPS (probability proportional to size) sampling with

replacement, the probability of selection is proportional to the weight of a component (for example, its size). For data

with heavy tails (where the main part of weight is concentrated in a small number of components with large values),

as a result of such sampling, a sketch can consist of the same heavy components, and the others will be poorly presented.

In sampling without replacement, a component is selected no more than once, which allows one to obtain more

exact estimates. It is possible to distinguish between (Bernoullian) sampling with equal probability and with different

probability that is, for example, proportional to component sizes (Poisson sampling). Both types of sampling select an

unfixed number of components. If this number is fixed, then Bernoullian sampling becomes simple random sampling

without replacement and Poisson sampling becomes conditional sampling.

Bernoullian sampling is analyzed more easily, but estimates have a lower accuracy for data with heavy tails. Poisson

sampling allows one to find more exact estimates, but their obtainment from sketches is a nontrivial task; constraints on data

are also used, for example, the nonnegativity of vector components, which corresponds to weighted sets.

A random sampling of the representation of an object does not take into account information on other objects

(i.e., it is oblivious). However, in sampling different objects, both different collections of random numbers (independent

sampling) and identical ones (coordinated sampling) can be used. To estimate similarity, coordinated sampling is mainly

used. Dispersions of estimates of some quantity or other that are obtained from sketches by sampling decrease with

increasing the sketch dimension d.

5.1. Sketches obtained by simple random sampling without replacement. In simple random sampling without

replacement, sketches of dimension d are obtained by a random permutation of initial vectors (to eliminate a structure

potentially existing in them) and selection of their first d components. Note that the same sketch is obtained as a result of

multiplying an input vector by the corresponding binary matrix with one 1 in each row.

974



Let the distance/similarity measure sim of initial vectors be defined as sim sim( , ) ( , )x y �

�

� i i i

i

D

x y

1

, i.e., is linear

summary statistics, for example, the dot product, squared Euclidean distance, �
2

distance (Sec. 8.1), etc. Then an

unbiased estimate sim * ( , )x y is obtained from the value of sim (
�
,
�
)x y computed from sketches

�
,
�x y of dimension d and its

dispersion V is obtained [86] as follows:

sim
*

sim( , ) (
�
,
�
) /x y x y� D d , (6)

V{sim
*

} sim sim( , ) ( / )( ) / ( ) ( , )x y � � � �

�

�D d D d D x yi i i

i

D

1

2

1

2

( , ) /x y D
�

�

 

!

"

#
. (7)

For D d�� and also for sim simi i i

i

D

x y D
2

1

2

( , ) ( , ) /

�

� �� x y (i.e., for vectors with heavy tails), the value of V is large.

5.2. Sketches obtained by conditional random sampling for sparse vectors. For strongly sparse vectors,

specialized sampling methods yield more exact estimates of initial distance/similarity measures with the same memory

capacity per sketch. Conditional random sampling (CRS) [86] forms a sketch by selecting a given number of first

nonzero components of a vector after a random permutation (zero components are not used in the sketch). In computing

estimate (6), d � � �min {max ID( max ID( }
�
) ,

�
)x y1 1 is used [86], where max ID(

�
)x is the maximal ID component in

a sketch
�x . If d

�x is the number of components in the sketch
�x , then the dispersion

V{sim
*

} {nnz nnz( , ) / ( ) (max ( ) / ( ), ( ) / (

� �

x y x yx$ � �D D d d1 1 y � �1 1) )}

� �

�

�

 

!

"

#

�

�sim simi i i

i

D

x y D
2

1

2

( , ) ( , ) /x y .

Comparing this dispersion with dispersion (7), we see that, as opposed to the use of conventional sampling, this

dispersion is approximately D / ( )nnz x times less than the latter. For data with heavy tails, dispersion remains large

due to the possibility of skipping “heavy” components.

5.3. Sketches obtained by weighted sampling. For data with heavy tails, sampling (without replacement) must

give priority vector components of with large values. In (sequential Poisson) priority sampling [84], a sketch of fixed

dimension d for vectors with positive components (denoted below by x � 0) is formed as follows. A priority

� i i ix r i D� �/ , [ ], is assigned to each of its component, where ri ~ ( , ]Unif 0 1 (in the algorithm, they are obtained

by hashing the number of the component [87]), and � i are ordered according to their magnitudes. Then a threshold

� ��
�d 1

is determined. The sketch is formed as
�

max ,x xi i� { }� if � �i � and 0 otherwise. Note that the priority

sampling is suitable for streaming processing and was initially used to estimate sums of components of a vector. In [87],

with the help of a special version of such coordinated sketches, the estimate sim

JG

( , )x y (the generalized Jaccard

coefficient for x y, � 0) [88, 89] is considered,

sim min max

JG

( , ) ( , ) / ( , )x y �

� �

� �x y x yi i

i

D

i i

i

D

1 1

.

It is shown that, for large d, the use of only 2-independent hash functions allows one to reach a small bias

(and dispersion) of the estimate sim

JG

( , )x y . Note that sim

JG

( , )x y is connected with | | | |x y�
1

[89] through

sim

JG

( , ) (| | | | | | | | | | | | ) / (| | | | | | | |x y x y x y x y� � � � �
1 1 1 1 1

� �| | | | )x y
1

and the generalization of sim

JG

( , )x y to real vectors [90] by replacing x� 0 by the pair of components [ ]0 � x and

x � 0 by the pair [ ]x 0 .

Sketches obtained by sampling with a view to estimating distances Ls (in particular, L
1

and L
2

) between

nonnegative vectors are considered in [85]. In addition to priority sampling, Poisson PPS sampling is used for the
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formation of sketches in which a component is included into a sketch if x ri i� �. The value of � is specified or selected

using E{ } mind r
i

D

i�

�
�

1

1( , / )� . Two types of sampling are considered, namely, independent (ri are different for

different sketches) and coordinated (ri are the same for different sketches). To estimate ( )Ls
s
, in addition to the selected

components { }i xi, with � �i � , i D�[ ], their ri and � �d d�1
, are used. An estimate is obtained from the corresponding

components of sketches, depends on s in ( )Ls
s
and on the type of sampling, and is nontrivial [85]. A general approach to

the estimation of other distance/similarity measures from sketches obtained from the results of weighted sampling

is presented in [91].

Advantages and drawbacks of sketches obtained by sampling are described in Sec. 9.3.

6. ESTIMATION OF DISTANCES BETWEEN NON-VECTOR DATA

In Sec. 6.1, universal embedding methods for estimating any initial distances are considered, and, in Sec. 6.2,

specialized embedding methods for some non-vector distances are described.

6.1. Formation of vector representations on the basis of distances. Methods for formation of vector

representations of objects on the basis of their distances to some singled out (“reference”) objects (ROs) are universal

since they do not require access to initial representations of objects and are applicable to different initial distances.

Therefore, spaces of initial representations of objects can be vector, metric, and nonmetric.

In the classical multidimensional scaling (MDS) method [3], an (initial) N N� matrix dist of distances between

a (sub)set of ROs of the base are subjected to “double centering” and are transformed into a similarity matrix K,

K x xij i� �dist

2

0

( , ) dist dist

2

0

2

( , ) ( , )x x x xj i j� , i j N, [ ]� . If distances in the initial matrix are Euclidean, then K is

PSD and can be considered as a kernel matrix (Sec. 7). Then vector representations of objects are formed from Kwith the

help of PCA. This embedding is isometry for N initial objects. This MDS is (weakly) oblivious since approximate

embedding of a new object x is also possible by the Nystrom method [92] as � � �*
( )

/

x x�

�1 2

U
T

, where U is the matrix

of eigenvectors (in columns) obtained as a result of PCA (eigenvalue decomposition of the kernel matrix K for N

objects), �
� � �

�

1 2

1

1 2

2

1 2/ / /

( , , ... )diag � � , and � x Nx x x x� ( ( , ), ..., ( , ))
 

1

T

are values of kernel similarities of the new

object with ROs that can be obtained from the vector of corresponding distances.

Examples of techniques for obtaining approximate oblivious embeddings based on distances are FastMap,

MetricMap, and SparseMap (see [93] and references in it). In [94], the FastMap and MetricMap embedding techniques

are considered as belonging to the class MDS and using versions or generalizations of the Nystrom method with a loss

of accuracy.

In the Frechet isometric embedding [3] from a finite metric space with N objects and dist into L
�
, the ith

coordinate of the target vector N -dimensional space is defined as the distance of an object y (one of ROs) to the ith RO:

f disti iy y x( ) ( , )� , i N�[ ]. A Frechet isometric embedding is not oblivious.

Contractive embeddings that do not increase initial distances are important for similarity search since they make it

possible to obtain exact search results [93]. For example, a distance Ls is contractive for Lt when s t� � 0 (without

changing vector representations), and also the Frechet embedding is contractive for a new object and L
�
(or with another

distance in Ls in the case of appropriate normalization [93]).

The use of distance-based vector representations for classification and other pattern recognition problems is

described in [95]. In [96], for similarity search, vector representations of an object are used whose components are

numbers of ROs ordered according to the values of similarities/distances to the object.

Drawbacks of these methods frequently are the heuristic character of selecting ROs, complexity of computation of

complicated initial distances (for example, edit distances for graphs [97]), and lack of analytical estimates for distortions.

6.2. Embeddings of objects with special metrics. The design of fast and oblivious algorithms for forming

vectors to estimate distances between non-vector initial objects with a specified and minimal distortion is a complicated

problem. Therefore, such algorithms are usually specialized for concrete initial representations and types of distances.
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Despite the distortion, dimension, and time of obtaining that increase with increasing dimensions of initial

representations, embeddings of specialized metrics (distances between non-vector initial objects) into L
1

and also in ( )L
2

2

,

L
�
, etc. are needed [75, 98]. This is determined by the existence of efficient sketches for Ls (see Sec. 4 and, for L

1

, see

Sec. 4.2). Thus, specialized distances between initial non-vector objects are embedded, for example, into L
1

that can be

estimated from a sketch of small dimension with a small additional distortion (see Sec. 4.2). Moreover, algorithms for

fast similarity search are developed for vectors (Sec. 8.3).

For character sequences (strings), the Levenstein edit distance (dist

edit

) [99, 100] is often used; this distance

is equal to the minimal number of elementary operations of editing symbols of a string that are necessary for

transforming one string into another. Elementary operations are the insertion, elimination, and replacement of a symbol at

a certain position. The complexity of computation with the use of dynamic programming is quadratically dependent on

the length n of a string.

Embeddings dist

edit

into L
1

mainly operate with strings {0,1}

n
and use some (continuous) substrings of initial

strings as components of sketches , i.e., are nonlinear. Note that, for an alphabet of size 4 [101] and even 2 [102], it is

impossible to exactly compute dist

edit

in time O n( )

2��
if the strong exponential time hypothesis [101] holds.

The multiplicative distortion A (2) was analyzed. For the version of dist

edit

with an additional possibility of

moving blocks, embeddings are obtained [103] in almost linear time with distortion

~

(log )O n . However, for the classical

dist

edit

, similar results have not been obtained for a long time.

In [104], the embedding of the classical dist

edit

is obtained with distortion� ( )

/

n
1 2

and computation timeO n( )

/3 2

,

and, in [6], it is obtained with distortion n
o1 3 1/ ( )�

in linear time or with distortion n
o�/ ( )3 1�

in time O n( )

2��
(however,

not into L
1

but into a space of strings of smaller length).

The distortion equal to 2

~

( log )O n
for an embedding into L

1

(which is less than n
�
for any �� 0) is given in [105],

but it is not known whether it is possible to compute this embedding into subquadratic time. In [106], the same

approximation but in time n
o1 1� ( )

is obtained, and, in this case, not only embeddings into L
1

but also other non-oblivious

embeddings are used. In [107], the distortion equal to (log )

( / )

n
O 1 �

is achieved with the use of sampling of one of strings

but in time n
1� �

, which is worse than in [106].

The lower bound � (log )n on the multiplicative distortion of the edit distance between strings {0,1}

n

in embedding into L
1

is given in [108], and the lower bound � ( )n on sketches obtained by a random linear projection is

given in [109].

Embeddings of other distances are described in [3, 98] (see also references in them and to them), but not all

of them are oblivious even according to a weakened definition (see Sec. 1.2).

7. KERNEL SIMILARITIES AND THEIR APPROXIMATION

A special form of a similarity function is a kernel function (kernel) � ( , )x y [110]. It is a continuous, real-valued,

symmetric, and positive semidefinite (PSD) function. One of definitions of the � ( , )x y is connected with the existence of

a (possibly, implicit) transformation � : X H� of initial objects x and y into vectors �( )x and �( )y in a (possibly infinite

dimensional) “secondary” or “feature” Hilbert space H and this transformation is such that � ( , )x y � � �� �( ), ( )x y .

Kernel similarity is computed from initial representations of objects of some type (vectors, sequences, graphs, etc.)

with the help of a kernel function. The complexity of computation of kernels depends on the concrete type of a kernel and

usually is polynomial. Examples of kernels for vectors x y, are � ( , )x y = � �x y, , i.e., the linear kernel, polynomial kernel

� ( , ) ( , )x y x y� � � � c
s
, c � 0, (8)

and Gaussian RBF

� ( , )x y � � �exp( / | | | | / )1 2

2

2 2

x y � . (9)

Other examples are kernels for objects (graphs, etc.) structured on the basis of their partition into substructures with

their local kernel similarities [111–114].
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Kernel-based algorithms depend only on � ( , )x y , but usually require the computation (and use of) N
2

kernel

similarities between N objects (i.e., the kernel matrix K). For large N , this is often impossible.

For fast estimation of elements of K, a low-rank approximation of K by the product of matrices of small rank is

used; these matrices are obtained using a random projection or a sampling of K and also pseudo-inverse (versions of the

Nystrom method, see Sec. 6.1 and [115–118]). Moreover, for kernels that are functions of distance/similarity values of

high-dimensional vectors, the fast estimation of these distances/similarities from sketches/embeddings (see Secs. 2–5)

destined for this purpose accelerates kernel estimation. One more approach is the obtaining of vector representations of

initial (possibly, non-vector) objects x and y whose dot product makes it possible to exactly or approximately accelerate

the computation of � ( , )x y . In this approach, algorithms can be used that directly operate with vectors, which often turns

out to be more efficient than the application of kernel-based algorithms.

The explicit formation of vectors � ( )x allows one to directly use them. Examples are polynomial kernel (8) and

explicit vector representations for graph kernels [97, 112, 114, 119–121]. The dimensionality reduction of � ( )x can

be performed by the methods described in Secs. 2–5. Drawbacks include a very high dimension of H in many cases

(for example, D
s
for polynomial vector kernels (8)) or infinite (for example, for RBF kernels (9)), the complexity

(impossibility) of transformation of � ( )x , and also expenditures for dimensionality reduction.

Let us consider methods of direct formation of vector representations for fast estimation of kernel similarities from

representations or similarities of initial objects.

The Nystrom method (see Sec. 6.1) requires ROs (adaptation to data) and forms vector representations preserving

similarity but uses a computationally intensive eigenvalue or singular value decomposition.

After the publication of [122], the approach was gaining ground that consisted of the oblivious formation of vector

representations for approximating kernels whose representation is known in the form [123]

� ( , ) ( , ) ( , )x y x y� E { }w w w% % , (10)

where w is a random vector of parameters from some distribution dependent on � but not on x and y; % ( , )x w is

a random feature map (RFM) for the kernel � .

To approximate � ( , )x y , w i , i d�[ ], are selected from the distribution and � i ix�% ( , )w , i d�[ ], are computed

that are assigned to components of the vector � . The estimate for the kernel is obtained by the formula

�* x y x y d( , ) ( ), ( ) /� � �� � . An increase in d decreases the dispersion of the estimate.

For shift-invariant kernels � �( , ) ( )x y x y� � (Gaussian, Laplace, Cauchy, etc. RBFs), according to the Bochner

theorem [122], there is a representation of the form (10). A component � i is formed by a nonlinear transformation of the

value of � �x w, , where w w~ ( )p and p( )w is the inverse Fourier transform of the kernel � . For example, for RBF (9),

% ( , , ) cos ( , )x U Uw x w� � � �2 , where w is taken from the Gaussian distribution Norm /( , )0 I �
2

,U ~ Unif [0, 2 ]
 .

Note that though the use of vector representations of RFMs shows good results for learning problems concerning

linear models, but if there is a difference in the spectrum of kernel eigenvalues, then the vector representations obtained

by the Nystrom method yield better results than RFMs [124].

Versions of the mentioned transformation are given in [125]. Additive distortions of approximations of

shift-invariant kernels are investigated in [122, 125, 126] (but see [127]). To decrease d with the same distortion, w is

generated using a quasi-Monte Carlo method and also learning [128].

To accelerate random projections in forming RFMs, collections of d D/ matrix pipelines D HD PHDS G R with the

following matrices are used and analyzed [129]: P (a random permutation), DG (a diagonal Gaussian i.i.d. matrix), and

DS (a diagonal scaling matrix). The matrixCDR is used in [130]. The formation of vectors wwith the use of learning for

a more exact approximation of a given kernel and improvement in the quality of classification with a minimal d is

investigated in [131, 132].

The Bochner theorem is also applicable to a family of additive homogeneous kernels [133] that are functions of

the scalar signature of a kernel and include kernels of intersection min{ , }x y , Hellinger, �
2

, and Jensen–Shannon (JS)

(Sec. 8.1). As distinguished from [122], it is proposed to compute components of a feature vector without random

sampling and with the use of explicit analytical expressions.
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For kernels � �( , ) ( )x y x y� � with x y, � 0, an extension of the Bochner theorem is used and p( )w is obtained by

the inverse Laplace transform, � i i( ) exp ( , )x x w� � � � [134].

A function � ( , ) ( , )x y x y� � �f (for example, kernel (8)) is a PSD kernel if � ( , ) )x y � f (z is decomposable into

a Maclaurin series f ( )z a z
i i

i
�

�

�

�
1

with ai � 0. In [135], a sketch � i N

N

j

N

ja( ) ( ) ,

/

x x w� � �

�

�
&2

1 1 2

1

is proposed,

where w Dj R� diag ( ) , N is a random number, and Pr [ ] /N n
n

� �

�

1 2

1

. In [136], the fact is used that the tensor

product of a vector with itself that is repeated s times yields an embedding into H that corresponds to the kernel � �x y,
s
.

For each vector, s different sketches of dimension d are created using the hashing trick [61]. The final sketch of

dimension d is obtained by the computation (of a d-dimensional vector) of the FFT of each sketch and by the

component-wise multiplication of them and execution of FFT

�1

. The time of obtaining of a sketch amounts to

O sD sd d( log )� and usually equals d O D� ( ).

In [137], for more compact vectors with a better kernel approximation, high-dimensional vectors are first obtained

with the help of transformations from [135] or [136], and then the (F)JLT is applied (see Sec. 3.2). The Bochner

theorem is not directly applicable to a polynomial kernel [138], however, for unit vectors [138], it was possible to

approximate p( )w . This gives a more exact approximation of kernels for large s.

Methods for formation of binary vectors for approximation of kernels are given in [1].

8. OTHER LINES OF INVESTIGATION

8.1. Embeddings of distances between distributions. Statistical (and also probabilistic and information)

distances are introduced for vectors with xi � 0 and

i

D

ix
�

� �

1

1. Such vectors can be considered as distributions or points

on a D-dimensional simplex, i.e., a multidimensional generalization of a triangle. Many statistical distances are not

metrics and even are asymmetrical. Some of them are called (statistical) divergences.

It is noted in [139] that, for metric distances such as the statistical Hellinger distance dist

Hell

2 1 2 1 2

2

2

1 2� �/ | | | |

/ /

x y

and Mahalanobis distance dist

Maha

T2

� � � �( ) ( )x y A x y | | ( ) | |L x y�

2

2

dimensionality reduction with distortion 1� � is

possible according to the JL lemma since they use the squared Euclidean distance between transformed vectors x yand .

It is shown that, for embeddings of nonmetric distances (divergences) of Bhattacharya dist

Bhat

� � � �ln ( , )

/

x y
1 2

and

Kullback–Leybler dist

KL

�

�
� i

D

i i ix x y
1

ln / into metric spaces, there are configurations of vectors with an arbitrarily

large multiplicative distortion A. For dist
Bhat

, the additive analogue of the JL lemma with distortion � � �a ( ) holds when

x y Di i, /� � , i D�[ ]. The analysis is based on the investigation of the distortion in estimating some distance from

another for which dimensionality reduction is known according the JL lemma (dist dist

Bhat Hell

� and dist

KL

� ( )L
2

2

)

without a change in vector representations. Note that, in the considered embeddings, vectors in the target space are not

located on a simplex.

In [133], explicit representations of � ( )x in H are given whose dot product yields values of JS, Hellinger, and �
2

kernels and also finite-dimensional vector representations for their approximation. This allows one to compute the

corresponding divergences of dist

f

2 2

� �| | ( ) ( ) | |� �x y and their approximations, but this question is not investigated in

[133].

In [140], for dist

Hell

, the embedding from a D-dimensional simplex into a d-dimensional one with distortion 1� �

is shown with the help of conventional random projection, but vectors must be located in certain region of the D-simplex

and this region decreases with increasing D . In [141], for the JS, Hellinger, and �
2

(dist

�
2

�

i

D

i i i ix y x y
�

� � �

1

2

( ) / ( ))

distances and other f-divergences of the class defined in [141], the existence of an analogue of the JL lemma with

distortion 1� � is shown for any N points of a simplex. A nonlinear randomized embedding into ( )L
2

2

with distortion

1� � is first performed by analogy with the RFM technique (see Sec. 7) [122]. Then the JL lemma is used for
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dimensionality reduction to d O N�

�

( log )�
2

. The obtained vectors are isometrically mapped into an internal region of

the simplex and then final points are obtained on the simplex by scaling and centering relative to the simplex centroid.

The latter transformation is possible for f-divergences of a certain class [141]. Other results on embeddings of

information distances are also given.

Results on the estimation of information distances in streaming models are given in [141, 142].

8.2. On the equivalence of sketches and embeddings. As has been noted in Sec. 4, for L
1

(and for Ls, 0 2� �s ),

there are efficient sketches (but not embeddings). Such sketches can be used for initial objects with different

representations and distance/similarity measures embedded into Ls (with an insignificant increase in distortion).

However, for embeddings of many specialized metrics into Ls (see Sec. 6.2) with a fixed dimension d of output

vectors, distortion increases with increasing the efficient dimension of representations of input objects with specialized

metrics. Since sketches do not require similarity estimation from a metric (see Sec. 1.3), question arises whether it is

possible to directly create sketches with a constant distortion for such initial representations without intermediate

embedding into Ls. As is shown in [75], this is impossible for initial representations from normed vector spaces (they

should not necessarily be Ls) in the following distance threshold estimation problem: determine from sketches whether

objects are similar or dissimilar. Of interest is the obtaining of similar results for a wider class of metrics (from

nonnormalized spaces such as dist

edit

).

8.3. Fast similarity search. Linear similarity search with the use of fast estimation of distance/similarity between

a query object and all the objects of a base allows one to decrease the time of linear search based on initial similarity

measures but does not rigorously guarantee the quality of the obtained results.

For similarity search, the exact estimate for distances in their entire range and between all objects is redundant.

It suffices to correctly estimate the relationship between distances (large or small). Moreover, high precision is necessary

only for small distances. This potentially allows one to use not only oblivious embeddings and sketches developed for

fast and exact estimation of similarities and distances (for example, with satisfying versions of JL lemmas) but also other

ones as well as those of smaller dimensions. A formalization of oblivious embeddings for searching for the approximate

nearest neighbor and an example of such embeddings for the distance L
2

and data with a small intrinsic dimension are

presented in [5].

As has been noted in Sec. 4, for L
1

, there is no embeddings satisfying the JL lemma. However, for linear

embeddings with the use of a random Cauchy i.i.d. matrix, there is a “one-sided” analogue of the JL lemma, which

provides the search for approximate nearest neighbors for L
1

on the basis of such embeddings with d D�� [81].

Nonlinear embeddings into L
1

for small distances are given in [80] and in Sec. 4.1.

Fast estimation of distances also accelerates similarity search with the use of existing algorithms (index structures)

operating on the basis of computation of distances [143–145]. Though similarity search is approximate in the general

case as a result of inaccuracy of estimates, exact search results can be obtained for contractive estimates (see Sec. 6.1).

Moreover, an acceleration of similarity search is possible owing to the use of algorithms and structures specialized for

obtained real vectors (of small and moderate dimension) with their distance/similarity measures, for example, based

on trees [145, 146] or locality-sensitive hashing (LSH) [9, 98, 147].

9. DISCUSSION

We now sum up advantages and drawbacks of the considered methods of formation of real-valued vector

representations for estimating distance/similarity measures and compare them with methods that use learning.

9.1. Advantages and drawbacks of embeddings of vectors of Euclidean space with the help of random

projection. Advantages of embeddings of vectors of a Euclidean space (see Secs. 2 and 3), i.e., real-valued vectors, for

which the Euclidean distance, dot product, and angle are defined and can be estimated, by a random projection are as

follows: a small distortion of estimates with a small dimension of final vectors; linearity of obtaining; allowing for all

components of an input vector and suitability for any initial vectors (nonsparse and sparse, real-valued and binary, and

with “heavy tails”); the possibility of streaming processing with a linear model; a developed apparatus of analysis in

terms of average error and for the worst case (versions of the JL lemma).
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In some cases, the obtained real-valued vectors (of small dimension) can be used directly in some index structures

of fast similarity search, in linear and nonlinear vector methods of classification, approximation, and others and also for

the subsequent quantization of components [1, 147, 148].

Drawbacks are as follows: the need for the formation of random matrices; complexity of multiplication by

a matrix (but see the acceleration of projection in Sec. 3); inapplicability to streaming processing models with arbitrary

weighting; impossibility of estimation of distances between a subset of components of initial vectors; nonsparseness (for

any initial vectors including sparse ones).

9.2. Advantages and drawbacks of sketches obtained by stable random projections. Advantages of sketches

for estimating Ls distances (0 2� �s ) obtained by a stable random i.i.d. projection (see Sec. 4) are similar to those

mentioned in Sec. 9.1. Note that, for a number of non-vector object representations, there is an embedding into L
1

and,

therefore, for L
1

, distances between initial representations can be estimated from sketches (see Sec. 6.2.).

In addition to the drawbacks considered in Sec. 9.1, the following drawbacks can be mentioned: the need for the

formation of different random matrices for each value of s and complexity of generation of random numbers from stable

distributions; nonlinearity of estimates; insufficient investigation of the acceleration of random projection (but see sparse

random matrices in [149] from an s-Pareto distribution); impossibility of “automatic” application in a number of methods

directly operating with vectors.

9.3. Advantages and drawbacks of sketches obtained by sampling. The advantages of sketches obtained by a

uniform random sampling without replacement (see Secs. 5.1 and 5.2) are as follows: suitability of the same sketch for

estimating any linear summary statistics; simplicity of obtaining a sketch; possibility of more exact estimates for sparse

vectors; applicability to any streaming processing models including models with arbitrary weighting of components

(initial vectors); possibility of operating with singled out subsets of components.

Drawbacks are as follows: low accuracy of estimates for nonsparse data and data with heavy tails; in the majority

of cases, the complexity of analysis of the error of an estimate and lack of worst case guarantees.

There are problems with direct application of CRS sketches (see Sec. 5.2) in vector algorithms and LSH.

Components of different sketches with the same number in a sketch do not correspond to one another, and, hence, for

example, when linear models are learned, they should be unfolded into vectors of the initial dimension. In [62], problems

with the construction of a kernel similarity matrix from them are also mentioned.

For vectors with heavy tails, weighted sampling methods allow one to increase the accuracy of estimates, but they

operate with nonnegative input vectors, require the development of estimates for different similarities and distances, and

estimation and computation of their errors are nontrivial. If heavy tails are absent, then the results of simple sampling can

be better [84].

9.4. Learning-based methods for similarity estimation. The majority of methods of formation of vector

representations for fast distance/similarity estimation that are considered in this survey do not take into account

distinctive features of data of a concrete base. Adaptation to data opens possibilities of improvement in the results of

applying fast distance/similarity estimation. For example, in similarity search, acceleration can be obtained owing to the

formation of more compact representations, and also search quality can be increased owing to fine tuning to the base of

representations and distance/similarity measures being used.

The dimensionality reduction of vector representations with the use of unsupervised and supervised learning is

performed using linear and nonlinear methods [150, 151]. An example of a linear (contractive) transformation formed

using unsupervised learning is the principal component analysis (PCA) method. Projection directions are determined by

means of singular value decomposition (SVD) of a data matrix. With dimensionality reduction, PCA provides the

smallest (for linear methods) mean-square error of estimates of Euclidean distances between vectors of a training set.

However, the distance between a concrete pair of vectors can have an arbitrary distortion (worst-case guarantees are

absent). Moreover, the dimension of the embedding providing a given distortion is not computed theoretically. Learning

methods are also applied to the formation of compact binary vector representations reflecting the similarity of input

objects [147, 148].

To improve the quality of similarity search, metric learning is used [152, 153]. Information on distinctive features

of similar and dissimilar objects is specified by a teacher and is used for tuning parameters of distance/similarity

measures. For example, the matrix of parameters A of the Makhalonobis distance (see Sec. 8.1) is adjusted based on

a training set.
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A common drawback of learning methods is their high computational complexity. For some methods, the

formation of vector representations of new objects that are not used in learning is nontrivial (but see the Nystrom method,

Sec. 6.1). Learning methods for dimensionality reduction do not always solve the problem of preservation of initial

distances/similarities and, therefore, they are subject to large distortions without guarantees of preservation or reduction

of distances. Moreover, adaptation to data presumes that the data of a training set and new data will have the same

distribution, which does not always take place in practice.

The author is grateful to A. M. Sokolov for discussions.
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