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AFFINE-INVARIANT CLASSIFIER

OF EXTRAPOLATION DEPTH ON THE BASIS

OF A MULTILEVEL SMOOTHING STRUCTURE

O. A. Galkin UDC 519.7

Abstract. A nonparametric affine-invariant extrapolation depth-based classifier resistant to spikes

and extreme values is proposed and investigated. A multilevel smoothing structure is proposed that

makes it possible to obtain global properties of density functions and class boundaries under

appropriate regularity conditions. The extrapolation depth-based classifier uses kernel density

estimates to efficiently classify multidimensional data at different smoothing levels.
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INTRODUCTION

The use of classifiers of maximum extrapolation depth allows one to obtain relatively low coefficients of

erroneous classification in the case when a priori probabilities of data sets are equal and their distributions differ only

in arrangement parameters. However, in practice, distributions of data sets often have different matrices of dispersion and

form and also different a priori probabilities. The described features stipulate the topicality of the problem of developing

advanced versions of maximum depth classifiers. The existing versions of extrapolation depth-based classifiers allow one

to solve applied problems in the case of a monotone relation between depth functions and density functions and also

under the condition that data sets have different dispersion matrices [1].

EXTRAPOLATION DEPTH-BASED CLASSIFIER BASED ON ELLIPTIC

SYMMETRY OF DISTRIBUTIONS

Let us consider the case when distributions of data sets are elliptic. If E z Hl( , ) is the depth of z with respect to Hl ,

then the Bayesian classifier is specified as follows:

J
B

arg { }( ) max ( , )z p o E z H
l L

l l l�

� �1

,

where ol is a transformation function that monotonically decreases and is the same for all groups of data sets if

functions hl are unimodal and distributions of data sets differ only in arrangement parameters [2]. Moreover,

the Bayesian classifier is equivalent to the maximum depth classifier if pl are equal. However, if at least one of the

mentioned conditions is not fulfilled, then a demand arises for the obtainment of information on functional forms ol .
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LEMMA 1. If � l ( )� is the density function of F z He l( , ) and functions h h hL1 2

, , ,� are elliptically symmetric,

then the Bayesian classifier is specified as follows:

J
B

{ }

arg { }{ } {( ) max ( , ) ( , ) /

, ,

z F z H F z H
l L

l l e l e l

r
�

�

�

1

3

�

� � 1

1

�

�

F z He l

r
( , )} ,

where � l is a constant.

Proof. Taking into account that a function hl is elliptically symmetric, we have

h z r p c C z H C z Hl

r

l l l l

r
( ) ( / )( ) | | ( ( , )) / ( , )

/ /

�

� � �

I 2 2

2 1 2 1

� ,

where cl is the probability density function of C z H z zl l l l( , ) ( ) ( )

/

� � � �

�

{ }� ��

1 1 2

and � l and � l are, respectively,

arrangement and scale parameters for hl .

Hence, it is arguable that

J
B

arg arg {I }( ) max ( ) max ( , ) /z p h z z H
l L

l l
l L

l l l� �

� � � �1 1

� � {I }( , )z Hl

r�1
,

where the constant � l depends on Hl and pl and � l is the density function of I ( , )z Hl . Since F z He l( , )

� 	

�

{ I }1

1

( , )z Hl , the proof follows from the properties of selective distribution.

The lemma is proved.

Note that, until constants � l change depending on the choice of one-dimensional measures of scale and

arrangement, Lemma 1 is true for any definition of extrapolation depth functions.

KERNEL DENSITY ESTIMATES

To construct an advanced version of the extrapolation depth-based classifier, the method of kernel density

estimates is used to estimate � l , and also the selective form F z He lml
( , ) is applied to estimate F z He l( , ). In this case, the

one-dimensional density is estimated irrespective of the dimension of the space of measurements, which makes it

possible to avoid the problem of the so-called “curse of dimensionality” that often takes place when multidimensional

nonparametric densities are estimated [3].

Note that the choice of a bandwidth al is obligatory to estimate � l , 1� �l L. This density estimate is specified

as follows:

� � � �la l l l m

l

li

i

m

l
l

l

m a a z( ) ( ) ( ( ))}

( )

� �

� �

�




1 1

1

�{ ,

where � is a kernel function and �
m

l

e lm
l

l
z F z H

( )

( ) ( , )� .

LEMMA 2. Let the following assumptions take place:

(a) the function h zl ( ) � 0 
 �z
r

R and l �1 2, ;

(b) for l �1 2, , the function H z P Z z
l�

�
,

( ) ( ( ) )� � is uniformly continuous at z , where �( ) ( ) / ( )

( ) ( )

z d z d z�

2 1

,

d z z z
l

l

l l r( ) ( ) ( )

( ) ( ( ))( ( )) /�

�� � � 3

( ( ))

( )

1

1

�

�� l r
z , � ( )

( ) ( , )

l

ïð lz F z H� , and Z belongs to the lth class;

(c) for l �1 2, , the value of al � 0 and value of m al l

4

�� as ml �� .

We also assume that h
1

and h
2

are elliptically symmetric functions. If the sought-for estimate � is chosen as

a result of minimization of the estimate for the crosscheck of the frequency of errors, then the coefficient of erroneous

classification of the extrapolation depth-based classifier J
2

( )� is converged to Bayes risk as min ,{ }m m
1 2

�� .

Proof. It is obvious that
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It is arguable that | ( ) |� �r V2

� converges in probability to zero by the Lebesgue theorem on majorized

convergence in which indicators are bounded by corresponding functions. The result can be obtained using selective

expectation and repeatedly applying the Lebesgue majorized convergence theorem.

The lemma is proved.

In this investigation, we use the Gaussian kernel assuming that the kernel � has a bounded first derivative.

In considering a two-class problem in which d z z z
m a

l

la m

l

m

l r

ml l
l

l l l,

( ) ( ) ( ) (

( ) ( ( ))( ( )) / (� �

�� � � �3

1

l r
z

)

( ))

�1

for l �1 2, and

� � log ( / )� �
2 1

, it is arguable that the resulting classifier J
2

1( )z � if log log[ ( )] [ ( )]

,

( )

,

( )

d z d z
m a m a

1 1 2 2

1 2

� � � and

J
2

2( )z � otherwise. It is obvious that the choice of a
1

, a
2

, and � exerts influence on the performance of the classifier J
2

( )� .

Therefore, with increasing the sample size and also according to assumptions (a) and (b), the frequency of errors of

the advanced version of the extrapolation depth-based classifier J
2

( )� converges to Bayes risk under the condition that a
1

and

a
2

satisfy assumption (c) and � is chosen by minimizing the estimate of the crosscheck of the frequency of errors [4].

THEOREM 1. Let �m m a m a
z d z d z( ) ( ) / ( )

,

( )

,
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2 2 1 1
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, and let �( ) ( ) / ( )

( ) ( )

z d z d z�

2 1

. Then �G� such that

P G( )� �� �1 and sup z W m

P

z z
�

�

�
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1 2

�� , where i �1 2, , and Z belongs to the ith class.
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� for i �1 2, . Note also that
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Using assumption (c) of Lemma 2 and assuming that N
�

�� � ��sup� �| ( )| , we have

sup supz ia m

i

ia

i

z m

i

i
i

i
i

z z N| ( ( )) ( ( ))| | (

( ) ( ) ( )� � � � �� �
�

z z a
i P

) ( ) | /

( )
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1

2

0

(1)

as mi �� . Note that inequality (1) is based on the fact that sup z m

i

i

z| ( )

( )� � � ( ) /

( ) | ( )

i

P iz O m�

�1 2

and that

a function hi is elliptically symmetric. Thus, from this we have

sup z ia

i

ia

i
P

i i
z z| ( ( )) ( ( )) |

( ) * ( )� � � �� �0

(2)

as mi �� .

As a result, using the properties of the uniform continuity of the extrapolation depth function that follow from the

elliptical symmetry of hi , we obtain

sup z ia

i

i

i P

i
z z| ( ( )) ( ( )) |

* ( ) ( )� � � �� �0

(3)

as mi �� . Note that convergence (3) takes place if assumption (c) of Lemma 2 is fulfilled and the properties of

kernel density estimates are used [5].

In fine, uniting convergences (2) and (3), we obtain sup z ia m

i

i
i

z| ( ( ))

( )� � � � �i

i P

z( ( )) |

( )
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For all �� 0, some 
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( ) ( )
 � � 
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for i �1 2, . This implies that

sup

z G
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i i P
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0 for i �1 2, , we obtain the sought-for result.

The theorem is proved.

THEOREM 2. Let vm m
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where Z belongs to ith class.

Next, we determine the quantities

G
m
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where Z belongs to the lth class. It can be proved that sup

�

�

1

1

0| ( ) |Gm

ac

� by using the Glivenko–Cantelli lemma.

For all �� 0, we obtain some � � � 0 such that

sup

�

� �

1

1 1 1 1

2 2| ( / ) ( / ) |
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according to assumption (b) of Lemma 2. Moreover, using Theorem 1, we obtain some G� such that P G( )� �� �1

for l �1 2, , and Z belongs to the lth class.
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Then we define the set W z z z z G� � �� �� � � ! �{ } { }:| ( ) | / :�
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2 using � � and G�.
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According to assumption (b) of Lemma 2 and Theorem 1, we have the asymptotic convergence
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,

which implies that Vm ( )�
1

2� �.

As a result, this theorem can be proved using a reasoning similar to that used in the case when i � 2 .

The theorem is proved.

Note that a similar half-space depth-based classifier is complicated and insufficiently efficient in handling zero

depths. The experimental modification of the half-space depth function assumes only discrete values, which leads to the loss

of information for continuous distributions. As a result, we obtain inexact density estimates with peaks in the neighborhood

of these discrete values. Moreover, an essential problem is connected with inequalities at the tail end of the initial estimate

of the density hl , which is caused by the presence of objects with zero depths. Note that such problems are absent in the

case of the experimental modification of the extrapolation depth function, and it is continuous at z. Therefore, the advanced

version of the extrapolation depth-based classifier often surpasses the half-space depth-based classifier.

In practice, on a data set, it is necessary to estimate al whose optimal asymptotic order is substantiated in

Lemma 2 in which the throughput crosschecking method is used for the choice of a a
1 2

, , and � . To decrease

computational expenses, a w w a
1 1 2 2

� ( / ) has been chosen since bandwidths must be proportional to dispersions of sets,
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corresponds to the throughput kernel density estimate for

l i l i� �( ). The constant � that depends on a
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is found based on order statistics log log[ ( )] [ ( )]
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� ,

l �1 2, , j ml�1 2, , ,� , for the minimization of the frequency of crosscheck errors. Note that the choice of a
2

in the

range of values is conditioned by the obtainment of a low coefficient of crosscheck errors. Moreover, the maximum

optimizer is chosen from the set of minimizers obtained as a result of the stepped nature of the frequency of

crosscheck errors [6].
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These results can also be obtained for deep classification using the Mahalanobis depth. Since vH is a constant that

depends on the initial distribution of H , the estimate for the minimum covariance determinant of the dispersion matrix

� �H H Hv� . However, irrespective of the value of vH , the form of the Bayesian classifier is similar to that of

Lemma 1. This classification method can be adapted to the development of the advanced classifier version based on the

Mahalanobis depth, and its asymptotic optimality can be proved based on Lemma 2.

In the case of multiclass classification, a a aL1 2

, , ,� and � � �
1 2

, , ,� L are similarly chosen, but, in practice,

the minimization of the frequency of crosscheck errors with respect to several parameters is a computationally

complicated task. Thus, we perform

L

2

#

$

%

%

&

'

(

(

binary classifications considering a pair of classes where the results of all

pairwise classifications are united with the help of the majority voting method. Note that, under corresponding regularity

conditions, the consistency of the Bayes risk of the advanced version of the extrapolation depth-based classifier can be

proved for multiclass problems on the basis of Lemma 2.

MULTILEVEL SMOOTHING FOR THE CLASSIFICATION

OF MULTIDIMENSIONAL DATA

The estimation of the smoothing parameter in kernel density estimates was carried out with the help of the

crosscheck method for the advanced version of the depth-based classifier. However, in solving practical classification

problems, the model is quite often uncertain in using one pair of bandwidths ( , )a a
1 2

. Along with the problem of

selective dependence, the choice of a smoothing parameter that depends on the characteristic object of classification is

essential. In this case, a definite smoothing level can determine different behaviors in different regions of the

measurement space. Therefore, the problem of investigation of the results of classification for different smoothing scales

instead of the use of a fixed pair ( , )a a
1 2

in certain range is topical. Data indexed according to bandwidths can be pooled

by taking the weighed mean value of estimated posterior probabilities [7].
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However, irrespective of the choice of the weight function, the frequency of errors of J
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( )� asymptotically converges to
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g
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1 , and � ( )

( ) ( , )

l

np lz F z H� and Z belongs to the lth class. We also

assume that, for a
l

g
and a

l

j
, the following convergences take place: al � 0 and m al l

4

�� as ml �� . Then the

coefficient of erroneous classification for the multilevel classifier of extrapolation depth J
3

( )� converges to the Bayes

risk as min ,{ }m m
1 2

�� .
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Proof. The result follows from the Lebesgue majorized convergence theorem under the condition that, for a fixed z,

the convergence � �m z z
*

( | ) ( | )1 1� takes place as min ,{ }m m
1 2

�� .

Assume that the convergence � �m

P
z z

*

( | ) ( | )1 1� is not takes place. Thus, � � �{ }m m m
� � �

�( , ) :

1 2

1 and �
0

0�

such that, 
 �� 1, | ( | ) ( | )|

*� � �m z z
�

1 1

0

� � . Let { }Am
�

, � � 1, be the corresponding sequence in the bandwidth range.

Taking into account the fact that �m z
�

*

( | )1 is the weighted mean value of �m a a z
�

, ,

( | )

1 2

1 , a subsequence

{ }( , ) ,a a A
m m

m
1 2

1

� �

�

�� � can be obtained such that | ( | ) ( | ) |

, ,

� � �
m a a

m m z z
�

� �

1 2

1 1

0

� � 
 �� 1. This implies that the

convergence � �
m a a

P

m m z z
�

� �

, ,

( | ) ( | )

1 2

1 1� does not take place. We obtain a contradiction since the sequence of

bandwidths satisfies the regularity condition under which, for l �1 2, , the convergences al � 0 and m al l

4

�� take

place as ml ��.

The theorem is proved.

Based on the proof of Theorem 3, it is arguable that the choice of the weight function q does not exert any

considerable influence on the selective performance of the classifier J
3

( )� . However, the choice of A and q is necessary

in using an infinite sample. Note that weight must gradually decrease with increasing the frequency of errors with the use

of larger scales for classifiers that have smaller frequencies of errors [9].

The frequency of errors �a a
1 2

,

is estimated by the throughput cross-checking method with the help of the weight

function

q

m m
a a

a a

1 2

1 2

1

2
1

0

2

0 0 1 2

,

,

exp

( )

( ) / ( )

� �

�

� 	

*

+

,

,

-

.

/

/

� �

� �

�[ min , ]

,

�a a p p
1 2

1 2

� { } ,

where � �

0

� min

,

,

a a
a a

1 2

1 2

.

In the case when the advanced version of the one-level extrapolation depth-based classifier is used for the

classification of ( )m m
1 2

	 objects, �
0

and � �
0 0 1 2

1( ) / ( )� 	m m can be considered as estimates for the mean value

and dispersion of the experimental frequency of errors. Moreover, the frequency of errors of the classifier that assigns all

objects to the class with the greatest a priori probability is min ,{ }p p
1 2

. Note that the weighting scheme of the classifier

being investigated demonstrates the zero weight if the classifier with a pair of bandwidths ( , )a a
1 2

is less efficient than

a trivial classifier.

The method based on quantiles of paired distances was used for the choice of A, and also 500 equidistant values

of ( , )a a
1 2

were determined in this interval that satisfies the condition a w w a
1 1 2 2

� ( / ) , where w
1

and w
2

are identical.

Note that, as a result of the performed experiments, good results are obtained owing to an appropriate choice of the

bandwidth range and weight function.

CONCLUSIONS

In this work, a nonparametric affine-invariant extrapolation depth-based classifier resistant to spikes and extreme

values is proposed and investigated. Owing to the connection of the proposed classifier with the Mahalanobis distance and

also to the continuity of its experimental form, the extrapolation depth-based classifier exceeds half-space and ordinal depth

classifiers in solving a broad spectrum of practical classification problems. Since the extrapolation depth-based classifier is

easily modified, it can be applied to the global class of parametric models, whereas linear and quadratic methods of statistics

and machine learning are efficiently executed only under the condition of distribution normality. Moreover, the proposed

classifier allows one to get rid of the “curse of dimensionality” as to the exponential growth of necessary experimental data

depending on space dimension in solving problems of probabilistic-statistical pattern recognition and classification. Hence,

in processing small samples in a high-dimensional space, the extrapolation depth-based classifier exceeds usual
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nonparametric methods when data sets are almost elliptical. Note that a multilevel smoothing structure allows one to

investigate global properties of density functions and class boundaries. As a result, in practice, the proposed multilevel

method is rather flexible owing to the aggregation of results for different smoothing scales.
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