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ESTIMATION OF VECTORS SIMILARITY BY THEIR

RANDOMIZED BINARY PROJECTIONS

D. A. Rachkovskij UDC 004.22 + 004.93’11

Abstract. We analyze the estimation of the angle, scalar product, and the Euclidean distance of

real-valued vectors using binary vectors with controlled sparsity. Transformation is carried out

by projection using a binary random matrix with elements { }0 1, and the output threshold

transformation. We also provide a comparative analysis of the error obtained while estimating the

similarity measures of input vectors by some similarity measures of output binary vectors based

on their scalar product.

Keywords: binary random projections, sparse binary representations, estimate of vector similarity.

INTRODUCTION

Vectorial data representation seems to be the most popular in information technologies. Many search methods using

similarity, classification, regression, clustering, as well as methods of estimating quantities based on measurements are

intended for vector data handling. At the same time, the amount of complex-structured data, for example, XML structures or

oriented acyclic graphs of knowledge bases in KIF, CycL languages, including representations of episodes in models

of analogical reasoning [1–11] increase. However, methods of handling complex-structured data are computationally

difficult. To increase handling efficiency, they are transformed into vectors, which allow us to estimate the characteristics

important in the context of the problem being solved (for example, similarity measures) and to use these estimates to solve

the original problem (see [7, 12] and references therein).

The complexity of handling vector data is proportional to the dimension and number of vectors. To deal with large

arrays of large-dimensional vectors, a number of approaches are used. The most obvious is application of the brute force

method, which is a powerful computing resource. For example, efficient implementation of vector operations is supported by

vector (co)processors and, moreover, these operations are naturally parallelized. This allows using parallel computing tools:

multi-core processors, parallel computers, and high-performance computing clusters and distributed computing systems

(see [13–15] and references therein).

Another approach to increasing the efficiency of vector data handling is based on the fact that many applications do

not require exact results of operations over original vectors (for example, calculation of scalar products, distances, etc.),

an approximate but fast estimate is enough. For example, in similarity search problems it is often more important to quickly

determine approximate “nearest neighbors” than to search for exact ones for a long time. To implement this approach,

a number of methods of transformation of vector arrays is developed.

The methods reducing vector dimension [16, 17] can be adjusted for the special features of their basis used as

a training sample. Methods of supervised and unsupervised training (adaptation) are applied.

Methods of unsupervised training detect the most informative (according to the given criteria) new coordinates in the

data and reduce the dimension by eliminating some of them. The similarity measures of the original vectors can be distorted.

For example, principal component analysis (PCA) reveals orthogonal directions in the data, which minimize the distortion of
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the Euclidean distances between vectors. This reduces distance estimate, and the error increases with the number of

eliminated measurements.

In a number of supervised dimension reduction methods, the similarity of resultant vectors reflects the “semantic

similarity” of input data [18]. Obtaining this information involves a lot of labor on estimating the similarity of original

objects, usually done by an expert.

A common disadvantage of many supervised dimension reduction methods is the computing complexity of the solution

of their optimization problems, for example, singular value decomposition or gradient descent procedures (with possible local

minima). Moreover, application of some methods involves difficulties in transformation of new data that were not used in

training. Obtaining their reduced short representations can demand repeated training or estimation of the similarity with a

considerable part of the training sample.

The shortcomings of supervised dimension reduction methods have caused the development of the approach to

transformation of vector data without adaptation, so-called random projection [19–27]. In this method, to transform input

vectors into output ones, multiplication by a random matrix is carried out; elements of the matrix are randomly generated and

then fixed numbers from some distribution. In a number of studies (for example, [19, 20, 26]), the accuracy of estimates of

some similarity–distinction measures is analyzed when random matrices of certain form are used. For example, it is shown

in [26] that transformation by a simple (from the point of view of generation and application) binary random matrix with

elements { }0 1, allows estimating the Euclidean distance, norm, and scalar product of input vectors using output vectors.

Some approaches and methods require specialized algorithms for storage and handling of vector data in a certain

format (representation). Sparse [28, 29] (with a small share of nonzero components) binary vectors are used, for example,

in associative-projective neural networks [30, 31] and in the efficient binary version [32–34] of distributed associative

memory [10, 11, 35–38].

The formation of binary output vectors with controlled sparsity, which can be used to estimate the similarity (angle

value) of real-valued input vectors, is considered in [25] for a ternary random matrix with elements from { }� �1 0 1, , , and

in [27] for a binary matrix. In the present paper, we will analyze the estimates of the angle, Euclidean distance, and scalar

product of input vectors based on a series of similarity characteristics of binary output vectors when a random binary matrix

is used for the transformation.

PROJECTION BY A RANDOM BINARY MATRIX AND ESTIMATE

OF SIMILARITY MEASURES USING BINARY VECTORS

Similarly to [26, 27], we consider projection of vectors by a random binary matrix R with elements rij from the set

{ }0 1, . Random variables (r.v.) whose realization are elements of R (ones and zeros) are independent and have identical

distribution (i.i.d.). Each rij takes the value 1 with probability q and value 0 with probability 1�q. Denote by x yand input

real-valued vectors of dimension D and by u Rx� and v Ry� the results of their projection (intermediate vectors of

dimension d ). Hence, the dimension of R is ( )d D� .

In the projection, each component u i di , , ,�1� , of vector u is originally formed as the scalar product of the row ri

of matrix R by x:

u r xi i ij j

j
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The components ui are i.i.d. r.v. The expectation of ui :
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since E r q q qij{ }� � � �1 0 1( ) . The variance ui :
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The standardization of ui is carried out by subtraction of expectation (2) q x j

j

D

�

�

1

(centering) and dividing by the root

mean square deviation | | | |x q q
2

2

� (square root of (3)). The distribution of the standardized r.v. ui converges to the

Gaussian one with zero mean value and unit variance. The convergence rate of ui is analyzed in [27] (for the review of

the convergence problem for the general case see [39, 40]).

The binary output vector is formed by the binarizing threshold transformation of the intermediate vector u z� :

zi �1 for u ti i� ; zi � 0 otherwise, i d�1, ,� , (4)

where t i is the threshold value for the ith component of the output vector. We will use identical threshold values for

all the components, t ti � . The given probability p of the unit component z of the binary output vector z is determined

by choosing the appropriate threshold t p . For a standardized r.v. u with the Gaussian distribution

p z p u t e d tp

t

p

p

( ) ( ) ( )

/

� � � � � �

�

�

�

1

1

2

1

2

2

�

�
�

� ,

where � is the Gaussian cumulative distribution function. The value of t p to provide the necessary p is defined as the

quantile of the Gaussian distribution, corresponding to 1� p. The vectors for p � 0 5. are sparse.

Estimate of the Angle Between Input Vectors. In [25], for the estimate of the angle � between input vectors x and

y it is proposed to use the estimates of the probability p join of the coincidence of unit components z i1

1

,

� and z i2

1

,

� in the

vectors z
1

and z
2

after the binarization u z�

1

with threshold t
1

and v z�

2

with threshold t
2

. According to

the multidimentional central limit theorem, joint distribution of r.v. ( , )ui i� converges to the two-dimensional Gaussian

distribution. For standardized ( , )ui i� , this probability can be found as a result of evaluation of the integral of the

two-dimensional Gaussian distribution

p p z z t t p u t tjoin i i i i� � � � � �( , | , , ) ( , | )
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1 1 � � �

�

�

�

� �

�

�

�

�

�

�

�

1

2 1

2

2 1

2

1

2

1 2

2

2

2

� �

� � � � �

�( cos )

exp

cos

( cos )

�

�

��

��

tt
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21

1 2

� � . (5)

Thus, the angle � is related by the functional dependence with p join : � � f p join( ), where f is the function inverse

to (5). Therefore, � can be estimated as follows: tabulate (5); transform input vectors into output ones z
1

and z
2

using

(1) and (4); estimate p join as � �z z
1 2

, / d ; in the table, find the value of p join nearest to � �z z
1 2

, / d and use the angle

�
*

corresponding to it as the estimate of �.

Let us find the expectation and variance of the angle estimate by appliying the linearization of function of random

argument [41]. Let there be an r.v. � with known expectation E E{ }�
�

� and varianceV V{ }�
�

� , and let there be another r.v.

� , related to � as � � �� ( ), and in the neighbourhood of E E{ }�
�

� function � be close to a linear one. Therefore, we can

represent the relation between � and � for small deviations from the mean value using a one-step Taylor series expansion as

� � � �
� � �

� �

�

�( ) ( )( )E E E . Then we approximate the expectation and variance � as

E E E E E E{ } { }� � � � �
� � � �

� �

�

� �( ) ( ) ( ) ( ) , (6)

V V E E V E E V{ } { } { }� � � � �
� � � � �

� �

�

� �

�

( ) ( ( )) ( ) ( ( ))

2 2

. (7)

The number k � � �z z
1 2

, of coinciding unit components for the probability of their coincidence p join for different

realizations of binary vectors of dimension d , as well as p djoin

�

� � �z z
1 2

, / and the angle estimate � join joinf p
� �

� ( ) are r.v.

Applying (6) and (7) to � join joinf p
� �

� ( ) , we obtain

E f E pjoin join{ } { }�
� �

� ( ) , V f E p V pjoin join join{ } { } { }�
� � �

�

�

( ( ))

2

.

(8)
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The random variable k � � �z z
1 2

, has binomial distribution [25]: P k k d p join( ) ( , , )� 	 with the expectation

E k dp join{ }� and variance V k dp pjoin join{ }� �( )1 . Therefore,

E p E k d pjoin join{ } { }

�

� �/ ,

V p V k d V k d p p djoin join join{ } { } { }

�

� � � �/ / ( ) /

2

1 . (9)

Taking into account (9), we write (8) as

E f pjoin join join{ }�
�

� ( ) , V f p p p djoin join join join join{ }�
�

�

�

�( ( )) ( ) /

2

1 .

(10)

To estimate the value of the derivative
�

�

�f p pjoin join join( ) ( )� using the known value of probability p join , we can

use the tabulated function (5), having found the nearest value in the table from p join and the angle corresponding to it �, and

having calculated   � / p, where  � and  p is the difference of the values of angles and probabilities between the value in

the found and adjacent cells of the table, respectively. Hence, if � is known, to find the “analytical” expectation and the

variance of its estimate using p join
�

, we will find in the tabulated (5) using � the respective probability p join and

�

�

�f p pjoin join( ) ( )� and use (10).

Along with the estimate of the angle with respect to the empirical probability p join , we will analyze its estimate with

respect to the empirical conditional probability pcond of the coincidence of unit components of output binary vectors, and

also with respect to the empirical probability pequ of the coincidence of values of their components (both unit and zero).

Let us express pcond in terms of p join . For binary vectors with identical probability p of the unit component we have

p p z z p z z p zcond i i i i i� � � � � � � �( | ) ( , ) / ( )

, , , , ,1 2 1 2 2

1 1 1 1 1 p pjoin / . (11)

We will find the dependence of pcond on the angle by dividing (5) by p.

Having found pcond
�

� � �z z z
1 2 2

, / | | , where | |z
2

is the number of unit components of z
2

, we can calculate

E p E k pd pcond cond{ } { }

�

� �/ ( ) ,

V p V k pd V k pd p p pdcond cond cond{ } { } { }

�

� � � �/ ( ) / ( ) ( ) / ( )

2

1 , (12)

since no more than pd unit components can coincide. We will find the values of
�

�

�f p pcond cond( ) ( )� from the

tabulated pcond similarly to p join and obtain

E f pcond cond cond{ }�
�

� ( ) ,

V f p p p pdcond cond cond cond cond{ }�
�

�

�

�( ( )) ( ) / ( )

2

1 . (13)

For pequ we write

p p z z p z z p zequ i i i i i� � � � ! � � �( ) ( ) ( ( )

, , , , ,1 2 1 2 1

1 1 1

� � � � � � � �p z p z z p pi i i join( ) ( , )) ( )

, , ,2 2 2

1 2 1 1 1 2 2 . (14)

We will find the dependence of pequ on the angle using p join (5) and p.

Having found p dequ
�

� � "1

1 2

z z / , where " is the component-wise “exclusive OR” operation, similarly to (9), (10),

(12), and (13) we obtain

E p pequ cond{ }

�

� , V p p p dequ equ equ{ }

�

� �( ) /1 , (15)

E f pequ equ equ{ }�
�

� ( ) , V f p p p dequ equ equ equ equ{ }�
�

�

�

�( ( )) ( ) /

2

1 . (16)

As shown in [25], the probability p join of the coincidence of unit components of the output binary vectors

monotonically decreases as the angle � increases. According to (11) and (14), this is also true for pcond and pequ . Hence, the

estimates of these probabilities p join
�

, pcond
�

, and pequ
�

can be useful as the measures of similarity of input vectors (without

using them to calculate angle estimates).
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Estimate of the Scalar Product and Euclidean Distance. As was mentioned above, the standardization of ui to

obtain binary output vectors requires the Euclidean norms of original vectors | | | |x and | | | |y to be known. The norm

is calculated once for one vector and the obtained number is saved. This information, together with the angle estimate �
�

with respect to binary output vectors considered above can be used to estimate the scalar product � �

�

x y, and the (squared)

Euclidean distance | | | |x y�
�2

:

� � �

� �

x y x y, | | || || | |cos � , (17)

| | | | | | | | | | | | | | || || | | cosx y x y x y� � � �

�

�

2 2 2

2 � . (18)

For the scalar product with the use of linearization (7) we have

V V{ } { }� � �

� �

x y x y, | | | | | | | | cos

2 2

�

�

�

�

�

�

�

�

�

� �

| | | | | | | |

cos

| | | | | | | |x y x y
2 2

2

2 2

V
d

d
V{ } { }�

�

�

� sin

2

�. (19)

Here, V{ }�
�

depends on the method of angle estimation (10), (13), (15), (16).

For the squared Euclidean distance with the use of (7) we obtain

V V{ } { }| | | | | | | | | | | | cosx y x y� �

� �

2 2 2

4 �

� � � �

�
�

4 4

2 2 2

| | | | | | | | sin ,x y x yV V{ } { }� � .

(20)

EXPERIMENTAL ANALYSIS

We analyzed the behavior of the error of estimate of the angle between input vectors, scalar product, and the

Euclidean distance between them. The estimates were found from the output binary vectors of different sparsity. As the error

of angle estimate, we used the variance V ; the error of the estimate of scalar product and distance was measured by the

variation coefficient V E
1 2/

/ . The results of the dependence of the error of angle estimate on the dimension of input and

output vectors are presented in [27], where the dependence of the error on the angle between input vectors was analyzed.

To transform input real-valued vectors x and y into intermediate ones u and v, random matrices with binary { }0 1, and

ternary { , , }� �1 0 1 elements were used; the probability of a nonzero element of matrices is q �{ }0 5 0 1. , . . The threshold value

t for standardized values of components of intermediate vectors ui was selected to maintain the probability of unit

component p �{ }0 5 0 1. , . in output binary vectors, i.e., t p �{ }0 0 1 282. , . .

Input vectors with D �1000 and output binary vectors with d �1000 were used. The similarity was varied by the

concatenation of vectors a, b, and c: x a b� ( ) and y c b� ( ) of different dimensions. For example, if the dimensions of a and c

are zero, we obtain identical vectors b of dimension d, and if the dimension of b is zero, we obtain different vectors a and c of

dimension d. The components of a, b, and c were generated randomly from uniform distribution in [ , ]� �D D . Since the

dimensions of input vectors (D �1000) are big, their norms are close. A typical value of the angle between random vectors is

approximately 90#, i.e., random vectors are almost orthogonal. For random vectors with uniformly distributed positive

components, the angle is usually 40# to 45#. For such vectors, the orthogonality can be attained for nonintersecting parts of

vectors x a� ( )0 and y b� ( )0 .

For the estimates of joint probability p join
�

, the value of � �z z
1 2

, / d can exceed the greatest possible value p pjoin

max

� .

To ensure the correspondence of the experimental results to formulas (9)–(11), “mirror” transformation p p pjoin� �

�

( ) was

used for the case p pjoin join
�

�

max

, and the obtained value of the angle was considered negative.

The results were averaged over 10,000 realizations of a random matrix.

The experiments have shown that values of errors for the analyzed parameters are close for binary and ternary

random matrices. Therefore, we will present the results for binary matrix.
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Figure 1 shows the dependences of error V of the estimate of angle � between the input vectors on its value. The

estimates are found from p join
�

, pcond
�

, and pequ
�

; the notation T corresponds to the values obtained from (10), (13),

and (16), and E to experimental results.

For p � 0 5. , the analytical values of the errors of angle estimates are close to the respective experimental values.

Angle estimates with respect to p join
�

have the greatest error (its value decreases as the angle increases), with respect to pequ
�

the least error, and with respect to pcond
�

the error is intermediate. Zero error for zero angle is obtained for pequ
�

and pcond
�

.

The value of error grows with the angle. (Zero angle was not used in the above-mentioned experiments.)

As one would expect, for p � 0 1. the errors exceed the respective values for p � 0 5. . The analytical values of the

errors of angle estimates are close to the experimental ones corresponding to them for pcond
�

and p join
�

in the whole range of

angles. The error of angle estimate with respect to pcond
�

is still less than the error with respect to p join
�

with the greatest

difference for 0# and with approximately equal values for 90#. The values of the error of angle estimate with respect to pequ
�

strongly differ from the case p � 0 5. : if the angle is greater than 50#, its value exceeds the error with respect to pcond
�

, and if

the angle is greater than 60#, it exceeds the error with respect to p join
�

; moreover, the analytical values of the error become

less than experimental ones, i.e., approximation (7) does not hold. Thus, the angle estimate with respect to pcond
�

is

preferable, and the range of applicability of estimates with respect to pequ
�

is restricted by small angles and decreases as the

share of unit components in output vectors decreases.

Figure 2 shows the dependences of the error V E
1 2/

/ (variation coefficient) of the estimate of the scalar product

of input vectors with respect to (17) on the value of angle � for the angle estimates obtained with respect to p join
�

, pcond
�

,

and pequ
�

. The notation T corresponds to the values of error obtained from (19) and from the angle estimates from (10), (13),

and (16), and E corresponds to the experimental results.
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Fig. 1. Dependences of the error of estimate of the angle � between output

vectors on its value with D �1000, d �1000, and q � 0 1. .
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For all the analyzed combinations of parameters, the values of errors of the estimate of scalar product for p � 0 1.

exceeds the respective values for p � 0 5. ; as the angle between input vectors increases, the error grows especially fast if the

angle is greater than 50#. Similarly to the angle estimate, the estimate with respect to pequ
�

also has the least error for p � 0 5. ,

but for p � 0 1. the error becomes the greatest if the angle is greater than 60#. For greater angle values, a difference between

analytical and experimental values of errors for pequ
�

is noticeable, for other cases these results are close. Thus, the greatest

accuracy of the estimate of the scalar product is attained for small values of angles between input vectors: for p � 0 5. it is

necessary to use the estimate with respect to pequ
�

, and for sparse output binary vectors the best results are attained for the

estimate with respect to pcond
�

.

Figure 3 shows the dependences of the error V E
1 2/

/ (variation coefficient) of the estimate of squared Euclidean

distance between input vectors with respect to (18) on the value of angle �, the analytical values of the error are obtained

from (20); the notation in the description is similar to that in Figs. 1 and 2.

As well as for angle estimates and scalar product, the values of error estimates of the squared distance for p � 0 1.

exceed the respective values for p � 0 5. . However, the error does not grow but decreases as the angle increases. Since the

distance between angles grows with the angle between vectors, the value of the relative error analyzed in the paper

decreases, and this compensates for the growth of the variance of angle as the angle increases for pcond
�

and pequ
�

. As a

result, the error estimate of the squared distance with respect to pcond
�

(and even with respect to pequ
�

) varies insignificantly

in all the analyzed range of angles. The greatest error (and discrepancy between the analytical and experimental results) can

be obtained for p join
�

for small angles since the variance of angle estimate is maximum for this case. The variation

coefficient is unstable in the neighborhood of zero, and hence it cannot be applied for an adequate error estimate for angles

close to zero. As we mentioned above, the error estimate of angle with respect to pequ
�

grows very fast as the angle

approaches to 90# for sparse binary vectors.
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Fig. 2. Dependence of the error of estimate of scalar product on the angle �

between vectors with D �1000, d �1000, and q � 0 1. .
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Thus, for p � 0 5. estimates of the distance with respect to pequ
�

have the least error; for sparse output binary vectors,

the best results are attained for estimates with respect to pcond
�

and with respect to pequ
�

(for pequ
�

if the angle is not too close

to 90#); for small angle the distance error estimate grows fast.

For estimates of the angle between input vectors with respect to output binary vectors and for scalar product and

Euclidean distance between input vectors with respect to the obtained angle estimate and known norms of input vectors in

their application in similarity search problems, it is of interest to analyze a hybrid approach, where the similarity is estimated

based on the angle for small angles and on the distance for large ones.

CONCLUSIONS

We have analyzed the estimates of similarity measures of real-valued vectors with respect to binary ones, obtained by

projection by a random binary matrix with elements { }0 1, � and output threshold transformation, which allows the control

of the sparsity (share of unit components) of binary vectors. The similarity of the latter was estimated using the measures

based on (normed to their dimension d ) scalar product � � � $z z z z
1 2 1 2

, / | | /d d and related � �z z z
1 2 2

, / | | and

1 1 2

1 2 1 2 1 2

� " � � � � $z z z z z z/ (| | | | | | ) /d d, where " and $ are the operations of component-wise XOR and AND,

respectively, and | |z is the number of unit components in the binary vector z . These measures are natural estimates of

the similarity of the original real-valued vectors x and y: their values monotonically decrease as the angle � between

the vectors increases and allow estimating its value. The estimate of angle � for known values of the Euclidean norms

| | | |x and | | | |y has also allowed estimating the scalar product � � �

� �

x y x y, | | || || | |cos � and the Euclidean distance

| | | | (| | | | | | | | | | || || | | cos )

/

x y x y x y� � � �

� �

2 2 1 2

2 � .

We have analyzed, analytically and experimentally, the dependences of error of the estimate of angle, scalar product,

and Euclidean distance between input real-valued vectors on the angle between them. The dependences substantially differ

for the analyzed three similarity measures of binary vectors and for estimates of the scalar product and Euclidean distance.

This allows using the estimates with the least error in different ranges of angles.
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For binary and ternary random matrices, the values of error are close for the analyzed values of parameters. However,

implementing the transformation by means of a binary random matrix is computationally simpler.

A promising subject of the further studies is the analysis of the influence of modifications of the proposed methods on

the accuracy of similarity estimates, for example: instead of the probability of unit element in the matrix, using the actual

share of unit elements in the entire matrix and in its rows and columns; using random matrices with fixed number of

randomly arranged unit elements in the entire matrix and in its rows and columns; taking into account the actual share of unit

components in output binary vectors in the angle estimate based on their scalar product.

Output binary vectors, where not the semantics of separate components is important but their reflection of the

similarity of represented objects, are an example of randomized distributed representations [1–11, 30, 31, 35, 36, 42–45].

Distributed representations can also be formed in inner layers of multilayer networks in the course of training [46–48].

Distributed representations are used to represent semantic similarity [18, 42, 49–51], sequences [29–31, 43, 51–54], complex

hierarchically structured objects [1, 2, 4–11, 30, 31, 35, 36, 42–45, 55–57] required for models and systems of artificial

intelligence [3, 31, 35, 36, 57–59].
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