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Abstract. We propose a modified extragradient method with dynamic step size adjustment to solve

variational inequalities with monotone operators acting in a Hilbert space. In addition, we consider

a version of the method that finds a solution of a variational inequality that is also a fixed point

of a quasi-nonexpansive operator. We establish the weak convergence of the methods without any

Lipschitzian continuity assumption on operators.
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INTRODUCTION

Many problems in operations research and mathematical physics can be written as variational inequalities [1–4]. The

solution of these inequalities is an intensively developing field of applied nonlinear analysis. By now, many methods [5–34]

have been proposed, in particular, of projection type (which use the operation of metric projection on the feasible set).

As is generally known, in problems of finding a saddle point or Nash equilibrium, for the most simple projection

method (an analog of the gradient projection method) to converge, strengthened monotonicity conditions should be

satisfied [6, 7]. If they are not satisfied, several approaches can be applied. One of them is to regularize the original problem

in order to impart the required property to it [5]. The convergence without problem modification is provided in iterative

extragradient methods first proposed by Korpelevich in [21]. These methods were analyzed in many studies [22–34]. For

variational inequalities and equilibrium programming problems, modifications of the Korpelevich algorithm with one metric

projection onto feasible set were proposed [27, 28]. In these so-called subgradient extragradient algorithms and in the

Korpelevich algorithm, the first stages of the iteration coincide, and then, to obtain the next approximation, projection onto

some half-space being the support for the feasible set is carried out instead of projection onto the feasible set. In [27, 28], the

weak convergence of sequences generated by the subgradient extragradient algorithm to some solution of variational

inequality is proved. An obvious disadvantage of the algorithm, which impedes its wide use, is the assumption that the

Lipschitz constant of the operator is known or admits a simple estimate. Moreover, in many problems, operators may

not satisfy the Lipschitz condition. In the majority of studies, these are the Lipschitz operators that are considered in the

algorithms of solution of variational inequalities.

In the present paper, we propose a modification of the subgradient extragradient algorithm with dynamic step size

adjustment for variational inequalities with monotone non-Lipschitz operator and prove its convergence. The used step

size adjustment is described in [22, 23]. We will also consider the variants of the method for variational inequalities

or operator equations with a priori information about the solution, specified in the form of a set of fixed points of

quasi-nonexpanding operator.
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PROBLEM STATEMENT

In what follows, H is a real Hilbert space with scalar product ( , )� � and generated norm | | | |� . Let C be a nonempty

subset of space H and A be an operator acting in H . Consider the variational inequality

find x C� : ( , )Ax y x� � 0 � �y C (1)

and denote its set of solutions by VI A C( , ).

Assume that the following conditions are satisfied:

� the set C H� is convex and closed;

� the operator A H H: 	 is monotone, uniformly continuous on bounded sets, and maps bounded sets into bounded ones;

� the set VI A C( , ) is nonempty.

Remark 1. If dimH 
 �, then it will suffice to demand from the operator A to be monotone and continuous.

Auxiliary Information. Let PC be an operator of metric projection onto set C , i.e., P xC be a unique element of the

set C with the property | | | | min | | | |P x x z xC

z C

� � �

�

. The following characterizations of the element P xC are useful:

y P x y CC�  � and ( , )y x z y� � � 0 � �z C , (2)

y P x y CC�  � and | | | | | | | | | | | |y z x z y x� � � � �

2 2 2

� �z C . (3)

From inequality (2) it follows that x VI A C� ( , ) if and only if x P x AxC� �( )� , where � � 0 [1].

If the operator A H H: 	 is monotone and continuous and the set C H� is convex and closed, then x VI A C� ( , ) if

and only if x C� and ( , )Ay y x� � 0 for all y C� [1]. In particular, the set VI A C( , ) is convex and closed.

An operator T H H: 	 is called quasi-non-expanding if F T x H Tx x( ) :� � � ��{ } and | | | | | | | |Tx y x y� � � for all

x H� , y F T� ( ) [7, 35]. The set of fixed points F T( ) of a quasi-non-expanding operator is closed and convex [7, 35].

An operator S C H: 	 is called demiclosed in y H� if for a sequence of points x Cn� from x xn 	 weakly and Sx yn 	

strongly it follows that Sx y� [7]. For a non-expanding operator T C H: 	 the operator I T� is demiclosed at zero [7].

To prove the weak convergence of sequences of elements of a Hilbert space, we will use the well-known

Opial lemma.

LEMMA 1 [36]. Let the sequence ( )xn of elements of the Hilbert space H weakly converge to element x H� . Then

for all y H x� \ { } we have lim | | | | lim | | | |

n

n

n

nx x x y

	� 	�

� 
 � .

Consider the function t x P x tAxC� | | ( ) | |� � , t ��, which has the following useful property.

LEMMA 2. For x H� and � �� � 0 the inequalities hold

| | ( ) | | | | ( ) | |x P x Ax x P x AxC C� �

�

� ��

�

�

�
,

| | ( ) | | | | ( ) | |x P x Ax x P x AxC C� � � � �� � .

Proof. Suppose x P x AxC� �� �( ) and x P x AxC� �� �( ). From (2) it follows that

x x Ax
x x

�
� �

�

�

� �

�

�

�

�

�

�

�
�, 0,

x x Ax
x x

�

� �

�

�

� �

�

�

�

�

�

�

�

�

�

�, 0.

Adding the inequalities yields

0 �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � �

x x x x
x x

x x x x
x x x

� �

� �
� �

�
� � � �

, , ( ) ( x� )

�

�

�

�

�

�

�

�

,

whence

0

2 2

� � � � � � � � � �| | | | | | | | | | | | | | | | | |x x x x x x x x x x� � � � �

�

�

�

�
| | | | | |x x� � .
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Hence,

0 � � � �

�

�

�

�

�

�

�

�

� � �| | | | | | | | (| | | | | | | | )x x x x x x x x� � � �

�

�
.

Whence it follows that

| | | | | | | |x x x x� � � �� �

�

�
0,

as was to be shown. �

MODIFIED EXTRAGRADIENT ALGORITHM

To solve inequality (1), we propose the following algorithm.

Algorithm 1

Initialization. Specify the numerical parameters � � 0, �� ( , )0 1 , and �� ( , )0 1 and element x H
0

� .

Iteration Step. For x Hn � calculate y P x Axn C n n n� �( )� , where � n is obtained from the condition

j n j AP x Ax Ax P x
j

C n

j

n n C n( ) min : | | ( ) | | | | (� � � � � �{ 0 �� �� � ��
j

n n

n

j n

Ax x) | |

.

( )

�

�

�

�

�

},

� ��
(4)

If y xn n� , then end; otherwise calculate x P x Ayn T n n nn�

� �

1

( )� , where T z H x Ax y z yn n n n n n� � � � � �{ }: ( , )� 0 .

Remark 2. Algorithm 1 is a modification of the subgradient extragradient algorithms considered in [27, 28]. The

dynamic step size adjustment (4) is described in [22, 23].

It is clear that if y xn n� , then xn belongs to the set C and is a solution of the variational inequality. Indeed, the

equality x P x Axn C n n n� �( )� is equivalent to the inequality

( , )x x Ax y xn n n n n� � � �� 0 � �y C .

Let us show that procedure (4) is always executed in a finite number of steps.

LEMMA 3. The rule (4) of choice of parameter � n is correct, i.e., j n( ) 
 ��.

Proof. Let x VI A Cn � ( , ) . Then x P x Axn C n n� �( )� and j n( ) � 0. Consider the situation x VI A Cn � ( , ) and suppose

that for all j�� the inequality

�� �� � ��
j

C n

j

n n C n

j

n nAP x Ax Ax P x Ax x| | ( ) | | | | ( ) | |� � � � �

holds, whence

lim | | ( ) | |

j
C n

j

n nP x Ax x
	�

� � ��� 0.

From the uniform continuity of the operator A on bounded sets it follows that lim | | ( ) | |

j
C n

j

n nAP x Ax Ax
	�

� � ��� 0.

Thus,

lim

| | ( ) | |

j

C n

j

n n

j

P x Ax x

	�

� �

�

��

��

0. (5)

Assume y P x Axn

j

C n

j

n� �( )�� . We have

y x
x y Ax x y

n

j

n

j
n

j

n n

j�

�

�

�

�

�

�

�

�

�

� � �

��

, ( , ) 0 � �x C . (6)

Passing to the limit in (6) and taking into account (5), we obtain that ( , )Ax x xn n� � 0� �x C , i.e., x VI A Cn � ( , ). We

have arrived at a contradiction. �

Remark 3. In the proof of Lemma 3, we did not use the monotonicity of the operator A .

Let us pass to the proof of the weak convergence of the algorithm.
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WEAK CONVERGENCE OF ALGORITHM 1

First, let us prove an important inequality, which relates the distances from the points generated by the algorithm to

the set VI A C( , ).

LEMMA 4. For the sequences ( )xn and ( )yn generated by the algorithm, the inequality

| | | | | | | | ( ) | | | |x z x z x yn n n n�

� � � � � �

1

2 2 2 2

1 � (7)

holds, where z VI A C� ( , ).

Proof. Following the same line of reasoning as in [28, proof of Lemma 3], we obtain the inequality

| | | | | | | | | | | | | | | |x z x z x y y xn n n n n n� �

� � � � � � �

1

2 2 2

1

2

� � �

�

2

1

� n n n n nAx Ay x y( , ) . (8)

We estimate the term 2

1

� n n n n nAx Ay x y( , )� �

�

in (8) as follows:

2 2

1 1

� �n n n n n n n n n nAx Ay x y Ax Ay x y( , ) | | | | | | | |� � � � �

� �

� � � � � � �

� �

2

1

2 2

1

2

� �| | | | | | | | | | | | | | | |x y x y x y x yn n n n n n n n .

(9)

Considering estimate (9) in (8), we obtain the desired inequality (7). �

Remark 4. Estimating the term 2

1

� n n n n nAx Ay x y( , )� �

�

in (8) in other way, we obtain the useful inequality

| | | | | | | | ( )| | | | ( )| |x z x z x y xn n n n n� �

� � � � � � � � �

1

2 2 2

1

1 1� � yn | |
2

,

(10)

where z VI A C� ( , ).

Let us now formulate one of the main results of the study.

THEOREM 1. The sequences ( )xn and ( )yn , generated by Algorithm 1, weakly converge to some point

z VI A C� ( , ).

Proof. From inequality (7) it follows that the sequence ( )xn is Fejer one with respect to the set VI A C( , ), i.e.,

| | | | | | | |x z x zn n�

� � �

1

� �n �, � �z VI A C( , ).

In particular, the sequence ( )xn is bounded.

Let us fix the number N �� and consider inequalities (7) for all numbers 1 2, , ,� N . Adding them, we obtain

| | | | | | | | ( ) | | | |x z x z x yn n n

n

N

�

�

� � � � � �

�1

2

1

2 2 2

1

1 � . (11)

Inequality (11) yields the convergence of the number series | | | |x yn n

n

�

�

2

. Thus,

lim | | | |

n
n nx y

	�

� � 0. (12)

Consider the subsequence ( )xnk
weakly converging to some point z H� . Then y znk

	 weakly and z C� . Let us

show that z VI A C� ( , ).

Two variants are possible: (i) the sequence ( )� nk
does not tend to zero; (ii) the sequence ( )� nk

tends to zero.

Consider variant (i). We may assume that � �nk
� for all sufficiently large k and some � � 0. We have

( , )y x Ax x yn n n n nk k k k k
� � � �� 0 � �x C. Whence, using the monotonicity of operator A , we deduce the estimate

0 �

� � �

�

� �( , ) ( , )y x Ax x y y x x yn n n n n

n

n n n

n

k k k k k

k

k k k

k

�

� �

� � � �( , ) ( , )Ax x y Ax x xn n n n nk k k k k

�

� �

� � � �

( , )

( , ) ( , )

y x x y
Ax x y Ax x x

n n n

n

n n n n
k k k

k

k k k k�
.
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Passing to the limit and taking into account (12), we obtain ( , )Ax x z� � 0 � �x C. Hence, z VI A C� ( , ).

Consider variant (ii). Let lim

k
nk

	�

�� 0. Assume z P x Axn C n n nk k k k
� �( )� , where � � � ��n n

j n

k k

k
� � �

� �1 1( )

� nk
� 0. Applying Lemma 2 yields | | | |x zn nk k

� �

1

0

�
| | | |x yn nk k

� 	 .

In particular, the sequence ( )znk
is bounded and z znk

	 weakly. From the uniform continuity of the operator A on

bounded sets it follows that | | | |Ax Azn nk k
� 	 0, and the inequality � �n n n n nk k k k k

Az Ax z x| | | | | | | |� � � yields the asymptotics

| | | |x zn n

n

k k

k

�

	

�
0. (13)

Further, we have ( , )z x Ax x zn n n n nk k k k k
� � � �� 0 � �x C, whence we deduce the estimate

0 �

� �

� � � �

( , )

( , ) ( , )

z x x z
Ax x z Ax x x

n n n

n

n n n n
k k k

k

k k k k�
.

Making passage to the limit and taking into account (13), we obtain ( , )Ax x z� � 0 � �x C, whence z VI A C� ( , ).

Let us show that x zn 	 weakly. Then from (12) it follows that y zn 	 weakly. Let us reason by contradiction. Let

there exist a subsequence ( )xmk
such that x zmk

	
�
weakly and z z� �

. It is clear that
�
�z VI A C( , ). Let us apply Lemma 1

twice. We get

lim | | | | lim | | | | lim | | | | li

n
n

k

n

k

nx z x z x z
k k

	�

	� 	�

� � � 
 �
�
� m || | |

n
nx z

	�

�
�

� �
�

 � � �

	� 	�

	�

lim | | | | lim | | | | lim | | | |

k

m

k

m
n

nx z x z x z
k k

,

which is impossible. Thus, z z� �
. �

Remark 5. The weak limit z VI A C� ( , ) of the Fejer sequence ( )xn generated by Algorithm 1 has the property

P x zVI A C n( , )

	 strongly [7]. If the set VI A C( , ) is an affine manifold, then xn 	P xVI A C( , ) 0

strongly [7].

Remark 6. The asymptotics (12) can be specified up to the following:

lim | | | |

n

n nn x y

	�

� � 0.
(14)

Indeed, if (14) does not hold, then | | | |

/

x y nn n� �

�

�
1 2

for some � � 0 and all sufficiently large n. Hence, the series

| | | |x yn n

n

�

�

2

diverges. We have obtained an inconsistency.

VARIANT OF ALGORITHM 1 FOR THE VARIATIONAL INEQUALITY

WITH A PRIORI INFORMATION

Consider a variant of the method for solving the variational inequality (1), which is a fixed point of the given

operator.

Let S H H: 	 be a quasi-non-expanding operator such that I S� is an operator demiclosed at zero and having the set

of fixed points F S( )� � �{ }x H Sx x: . Assume that VI A C F S( , ) ( ) �� .

Remark 7. Let g H: 	� be a convex differentiable function. If the set D x H g x� � � ��{ }: ( ) 0 , then it can be

treated as the set of fixed points of the quasi-non-expanding operator

Sx

x
g x

g x

g x x D

x x D

�

�

�

�
�

�

�

�

!

�

!

( )

| | ( )| |

( ) ,

,

2

if

if

where
�

�g x H( ) is the derivative of g at point x H� [35]. For the operator I S� to be demiclosed at zero, it will

suffice that g is bounded on any bounded set [35].
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To find elements of the set VI A C F S( , ) ( ) , consider the following algorithm.

Algorithm 2

Initialization. Specify the numerical parameters � � 0, �� ( , )0 1 , �� ( , )0 1 , element x H
0

� , and sequence

( ) [ , ] ( , )	n a b� � 0 1 .

Iteration Step. For x Hn � calculate y P x Axn C n n n� �( )� , where � n is obtained from the condition

j n j AP x Ax Ax P x
j

C n

j

n n C n( ) min : | | ( ) | | | | (� � � � � �{ 0 �� �� � ��
j

n n

n

j n

Ax x) | |},

.

( )

�

�

�

�

�

� ��

Calculate x x SP x Ayn n n n T n n nn�

� � � �

1

1	 	 �( ) ( ), where T z H x Ax y z yn n n n n n� � � � � �{ }: ( , )� 0 .

Remark 8. The study [27] proposes a method to find elements of the set VI A C F S( , ) ( ) for non-expanding

operator S and the Lipschitz monotone operator A with constant step � � ( , / )01 L , where L � 0 is the Lipschitz constant of

the operator A . Algorithm 2 is a modification of this method with dynamic step size adjustment.

The following theorem takes place.

THEOREM 2. The sequences ( )xn and ( )yn generated by Algorithm 2 weakly converge to some point

z VI A C F S�  ( , ) ( ).

Proof. Suppose z P x Ayn T n n nn
� �( )� . Since the operator S is quasi-non-expanding, for all z VI A C F S�  ( , ) ( )

we obtain

| | | | | | ( ) ( )( ) | |x z x z Sz zn n n n n�

� � � � � �

1

2 2

1	 	

� � � � � � � �	 	 	 	n n n n n n n nx z Sz z x Sz| | | | ( ) | | | | ( )| | | |

2 2 2

1 1

� � � � � � � �	 	 	 	n n n n n n n nx z z z x Sz| | | | ( )| | | | ( )| | | |

2 2 2

1 1 .

(15)

Using (10) in (15) for the estimate of the term ( )| | | |1

2

� �	n nz z , we obtain the inequality

| | | | | | | | ( )( ) | | | |x z x z x yn n n n n�

� � � � � � �

1

2 2 2

1 1	 �

� � � � � � �( )( )| | | | ( ) | | | |1 1 1

2 2

	 � 	 	n n n n n n nz y x Sz .

(16)

From inequality (16) it follows that the sequence ( )xn is Fejer with respect to the setVI A C F S( , ) ( ) , i.e.,

| | | | | | | |x z x zn n�

� � �

1

� �n �, � �  z VI A C F S( , ) ( ).

In particular, the sequence ( )xn is bounded. Moreover, the inequalities hold

| | | | | | | |

| | | | | | | |

( )(

x y z y
x z x z

n n n n
n n

n

� � � �

� � �

�

�2 2

2

1

2

1 	 1�� )
,

| | | |

| | | | | | | |

( )

x Sz
x z x z

n n
n n

n n

� �

� � �

�

�2

2

1

2

1	 	
,

whence it follows

lim | | | | lim | | | | lim | | | |

n
n n

n
n n

n
n nx y z y x Sz

	� 	� 	�

� � � � � � 0. (17)

Consider the subsequence ( )xnk
weakly converging to some point z H� . Then ( )ynk

and ( )znk
weakly converge to z

and z C� . Following the same line of reasoning as in the proof of Theorem 1, we obtain that z VI A C� ( , ). It remains to show

that z F S� ( ). Since

| | | | | | | | | | | | | | | |z Sz z y y x x Szn n n n n n n n� � � � � � � ,

from (17) it follows that lim | | | |

n
n nz Sz

	�

� � 0.

762



The operator I S� is demiclosed at zero. Hence, from z znk
	 weakly and lim | | | |

k
n nz Sz
k k

	�

� � 0 we obtain that

z F S� ( ).

Similarly to the proof of Theorem 1, we show that x zn 	 weakly. Then from (17) it follows that y zn 	 weakly. �

Let us consider the operator equation with a priori information given as the set of fixed points of the

quasi-non-expanding operator T H H: 	 :

Ax f� , x F T� ( ), (18)

where f H� . Similar problems are considered in [35].

Algorithm 2 for problem (18) takes the following form.

Algorithm 3

Initialization. Specify the numerical parameters � � 0, �� ( , )0 1 , �� ( , )0 1 , element x H
0

� , and sequence

( ) [ , ] ( , )	n a b� � 0 1 .

Iteration Step. For x Hn � calculate y x Ax fn n n n� � �� ( ), where � n is obtained from the condition

j n j A x Ax f Ax Axn

j

n n n

n

( ) min : | | ( ( )) | | | | | | ,� � � � � �{ }0 �� �

� �

�

�

!

�

! ��
j n( )

.

Calculate

z x Ay fn n n n� � �� ( ),

x x Tzn n n n n�

� � �

1

1	 	( ) .

The result below is a special case of Theorem 2.

THEOREM 3. Let operator A H H: 	 be monotone, uniformly continuous on bounded sets, and map bounded sets

into bounded sets. Let operator T H H: 	 be quasi-non-expanding and operator I T� be demiclosed at zero. Suppose that

VI A C F T( , ) ( ) �� for f H� . Then the sequences ( )xn , ( )yn , and ( )zn generated by Algorithm 3 weakly converge to

some point z A f F T�  

�1

( ).

CONCLUSIONS

In the paper, we have proposed a modified extragradient method with dynamic step size adjustment to solve

variational inequalities with monotone operators acting in a Hilbert space. The operators are not supposed to be Lipschitz.

We have also considered a version of the method to solve a variational inequality with a priori information described as

an inclusion of a quasi-non-expanding operator in the set of fixed points. The main theoretical result is theorems about the

weak convergence of the methods. Strongly converging versions of the proposed methods can be obtained by using the

iterated regularization method [5, 16, 29] or the hybrid method from [37].
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