
Cybernetics and Systems Analysis, Vol. 51, No. 1, January, 2015

SOFTWARE–HARDWARE SYSTEMS

SOFTWARE TOOLS FOR AUTOMATION

OF PARALLEL PROGRAMMING ON THE BASIS

OF ALGEBRA OF ALGORITHMS

F. I. Andon,
a†

A. E. Doroshenko,
a‡

A. G. Beketov,
a††

V. A. Iovchev,
a†‡

and E. A. Yatsenko
a‡‡

UDC 681.3

Abstract. The development of the algebra-algorithmic methodology and tools for automated design

and generation of programs for graphics processing units is proposed. A particular feature of the

proposed approach is the use of high-level specifications that are close to natural-language

specifications and also the application of a method that ensures the syntactical correctness of

algorithms and programs being designed. The approach was implemented in a toolkit destined for

interactively designing algorithm schemes and generating programs. The use of this toolkit is

illustrated by the development of a parallel program in the field of meteorology.

Keywords: algebra of algorithms, automated program design and generation, graphics processing

unit (GPU), parallel programming, algorithm scheme.

INTRODUCTION

As a result of the widespread use of multi-core processors in modern computer systems, a topical problem is the

creation of special means for the development and reengineering of parallel software that would be used at all stages of the

software life cycle.

The theory, methodology, and software tools for the automated design of parallel programs on the basis of algebra of

algorithmics [1] are developed at the Institute of Software Systems of the National Academy of Sciences of Ukraine for

a long period. The mentioned algebra is a modern direction of computer science going back to fundamental works of

academician V. M. Glushkov on the theory of systems of algorithmic algebras (SAAs). In this theory, the subject of inquiry

consists of high-level models of algorithms represented in the form of schemes. In [1–9], formal means are proposed for

developing efficient parallel programs for multi-core central processors, GPUs, and systems with distributed memory. These

means are based on the use of SAAs [1, 2], ontologies [3], algebraic dynamic models and discrete dynamic systems [4, 5],

the method of parametric controlled generation of algorithm schemes [6], and also the technique of term rewriting [7–9].

Taking into account the developed theory and methodology, an integrated toolkit for designing and synthesizing programs

(IDS) [2, 6–8] and also the system TermWare for symbolic computations [9] are created.

The IDS system is based on the representation of specifications of algorithms in SAAs and generates sequential and

parallel programs in the programming languages Java and C++. The TermWare system based on the paradigm of rule

rewriting supplements the capabilities of the IDS system and is used for the automation of formal transformations of

algorithms with a view to optimizing their performance according to given criteria (memory, speed, equipment loading, etc.).

A new IDS version is also developed, namely, an on-line interactive constructor of syntactically correct programs (OISD).

142 1060-0396/15/5101-0142

©

2015 Springer Science+Business Media New York

a

Institute of Software Systems, National Academy of Sciences of Ukraine, Kiev, Ukraine,

†

andon@isofts.kiev.ua;

‡

anatoliy.doroshenko@gmail.com;

††

beketov.oleksii@gmail.com;

†‡

iovchev.v@gmail.com;

‡‡

oayat@ukr.net. Translated

from Kibernetika i Sistemnyi Analiz, No. 1, pp. 162–170, January–February, 2015. Original article submitted September 12,

2014.

DOI 10.1007/s10559-015-9706-0

This article proposes a further development of the algebra-algorithmic methodology and software tools for

automation of designing parallel programs for graphics processing units (GPUs) that make it possible to considerably

increase the performance of computations in comparison with usual processors. The present article also considers the

problem of automated design and generation of parallel programs for the NVIDIA CUDA platform [10] with the use of SAA

means and the OISD system.

The proposed approach is similar to that described in works on algebraic programming [11] and synthesis of

programs based on specifications [12, 13] and also on the problem of generation of codes for GPUs. The existing approaches

to synthesizing programs for GPUs are based, in particular, on annotations describing properties of data structures and code

domains [14], Kahn process networks [15], compiler directives [16], data flow graphs [17], and high level abstractions of

data structures, problems, and communication operators [18].

A distinctive feature of the approach considered below consists of using specifications of the Glushkov algebra that

are represented in natural-linguistic form facilitating the understanding of algorithms and achievement of the required quality

of programs. An advantage of the developed tools is the application of the method for interactively constructing syntactically

correct programs that excludes the possibility of syntactic errors in the course of designing schemes.

The application of this approach is illustrated by an example of designing a parallel program in the field of

meteorology.

FORMALIZED DESIGN OF PARALLEL PROGRAMS USING ALGEBRA

OF ALGORITHMS AND REWRITING RULES

The proposed approach to the design of parallel programs is based on the apparatus of SAAs and their modifications

[1]. Modified SAAs (SAA-Ms) are destined for the formalization of processes of multiple job processing that arise in

designing software in multiprocessor systems. The described SAA-Ms are underlain by a two-sorted algebra � �U B, ;� ,

where U is a set of operators, B is a set of logical conditions (predicates), and � is the signature of the operations. Operators

are mappings of an information set (IS) into itself, logical conditions are mappings of the IS into the set of values of the

three-valued logic E
3

0 1� { }, , � , where 0, 1, and � mean false, truth, and indefiniteness, respectively. The signature

� � �� �
1 2

consists of a system �
1

of logical operations assuming values in the set B and a system �
2

of operations

assuming values in the set of operators U. Operators and predicates can be basic or compound. The operations belonging to

the signature � are considered below.

The algorithmic language CAA/1 [1] is based on SAA-Ms and is destined for the multilevel structural design and

documentation of sequential and parallel algorithms and programs. Its advantage is the possibility of describing algorithms

in the natural linguistic user-friendly form which facilitates the achievement of the required quality of programs.

Representations of operators in the CAA/1 language are called SAA schemes.

Compound predicates of the CAA/1 language are constructed from basic ones with the help of the following logical

SAA-M operations:

— disjunction predicate predicate1 2OR ;

— conjunction predicate predicate1 2AND ;

— negation NOT predicate.

Compound operators are constructed from elementary operators with the help of the following basic operations:

— sequential execution of operators (composition) operator1; operator2;

— branch operator IF ()THEN ELSE END IF;predicate operator operator1 2

— loop operator WHILE () END OF LOOPpredicate operator .

Specifications of additional SAA-M operations destined for the formalization of multithread computations on

multi-core central processors are given in [2, 7, 8].

New operations oriented to the design of parallel programs for the NVIDIA CUDA platform [10] are also added to

the signature �. Note that the CUDA technology is a hardware-software complex allowing one to develop programs for

GPUs. This complex is a computing device, which is used as a coprocessor of a central processor, has own memory, and

simultaneously processes some number of threads. A kernel is understood to be a GPU function executed by threads. In

CUDA, a programming model presumes the grouping of threads into blocks. Each block is an array of threads interacting

with the help of shared memory and synchronization points. Blocks, in turn, are united into a grid of blocks.

143

New constructions of SAA-Ms for designing programs for GPUs are as follows:

— definition of a kernel function

KERNEL ()fname param list function body_ _� ,

where fname is a function name, param list_ is a list of formal parameters, function body_ is a function

implementation represented in an SAA;

— operation of calling a kernel function

fname N N arg listb th(), , _ ,

where N b is the number of blocks in the grid of blocks, N th is the number of threads in each block, and arg list_ is

the list of actual parameters of the function;

— the following operators that assume values of global (unique) and local (within a block) indices of a thread and

also assign the assumed value to an integer variable i:

Get global index of the thread ()i ,

Get local index of the thread ()i ;

— a synchronizer, i.e., the operation waiting for the completion of computations in all threads

Synchronizer (all threads have completed);

— operations of allocation and deallocation of graphic processor memory for some variable

Allocate GPU memory()var name size_ , ,

Deallocate GPU memory (var name_) ,

where var_ name is a variable name and size is the necessary memory capacity (in bytes);

— operation of copying data from the memory of the central processor to the GPU memory and vice versa

Copy data from CPU to GPU (, ,)dest src count ,

Copy data from GPU to CPU (, ,)dest src count ,

where dest is a copy variable, src is a variable whose value should be copied, and count is the volume of data to be

copied (in bytes).

Example 1. We will illustrate the use of some SAA-M operations described above for the construction of a simple

algorithm to be executed on a GPU. Below, the SAA scheme of an algorithm that parallelly fills a numerical array with

element values is given.

SCHEME Parallel GPU algorithm for assigning values to array elements;

KERNEL Set array values (, ,)A N val �

Get global index of the ()i th thread;

Assign value (,)A i i val[] � ;

main function =

Declare integer array (_ ,)h A N ;

Declare integer array (_)d A ;

Allocate GPU memory (_ , _)d A A size ;

Set array values (, , _ ,N N d A Nb th , 10);

Copy data from GPU to CPU (_ , _ , _)h A d A A size ;

Deallocate GPU memory (_)d A ;

Print array (_ ,)h A N ;

The scheme includes implementations of the kernel function and main function of the scheme. The kernel function

Set array values (, ,)A N val assigns the value of i val� to the ith element A i[] of a one-dimensional integer array A of length N ,

144

where i is the index of the current thread and val is a parameter of the function. The implementation of the main function

includes the operators of determining the array h A_ that should be processed and which is stored in the central processor

memory and also the operators for determining and reserving memory for the corresponding array d A_ in the GPU memory.

Then the kernel function described above is called and, as a result, elements of the array d A_ are simultaneously filled with

values. The values of the parameters N b and N th (the numbers of blocks in the grid and threads in each block) are chosen so that

N N Nb th*
� . Then data from the array d A_ are copied into the array h A_ , and the operator of deallocation of the memory

reserved for the array d A_ is executed. The last operator of the main function displays the resulting array h A_ on a monitor.

In the course of designing schemes of algorithms, rewriting rules are applied together with SAA-Ms to automatedly

transform these schemes using the developed system of symbolic computations TermWare [9]. This transformation is based

on the application of systems of rules f x x g x xn n(,... ,) (,... ,)

1 1

� to an algorithm represented in the form of a term, where

f and g are terms and xi are variables of terms.

Example 2. Let us apply the technique of rewriting rules to transform the kernel function Set array values from

Example 1. We first present this function in the form of the term

set_ array_ values (params (),A N val, ,

get_ global_ thread_ index(),i

assign_ value (arr_ elem(), summ())A i i val, ,

) .

Assume that the operator assign_ value presented in the implementation of this function should be included into the

block of the branch operator IF so that it is executed only under the condition i N� . To this end, we apply the rule

set_ array_ values($ $ assign_ value($ $))x x x x1 2 3 4, , , �

set_ array_ values($ $ IF(LESS(), assign_ valuex x i N1 2, , , ($ $))),x x3 4,

to the term described above, where $ $ $ and $x x x x1 2 3 4, , , are variables. As a result, the initial term will be transformed

into the term

set_ array_ values (params (),A N val, ,

get_ global_ thread_ index(),i

IF (LESS(), assign_ value (arr_ elem(), summ (i N A i i val, , ,)))

) .

The use of SAA-M operations for designing a parallel algorithm that solves a problem from the field of meteorology

is considered below.

SOFTWARE TOOLS FOR AUTOMATED SOFTWARE DESIGN

The developed software tools for automated design and generation of programs are based on the use of SAAs and the

method of interactive construction of syntactically correct programs (ISD method) [1]. In contrast to traditional parsers, the ISD

method is oriented not to the search for and correction of syntactic errors but to the avoidance of the possibility of their

emergence in the course of designing an algorithm. The essence of the method consists of top down level-by-level design of

schemes by superposing SAA-M language constructions. At every design step, the system interacts with the user and invites

him to choose only the constructions whose substitution into the text being formed does not violate the syntactic correctness of

the scheme being designed. The program text is automatically generated from the designed algorithm scheme. The mapping of

SAA-M operations into a text in a programming language is represented in the form of templates and is stored in a database.

The described approach is implemented in the IDS system [2, 6–8]. To automatically transform algorithms, the IDS

system is used together with the system TermWare [9] based on the paradigm of rewriting rules.

Let us consider a new version of the IDS system, namely, the OISD system destined for the interactive design,

generation, and launching of programs. A distinctive feature of the OISD software tools in comparison with the IDS ones is

that it is an Internet-based multiuser system and that it has a distributed architecture. Note that the components of OISD

support tools are autonomous, flexibly connected, and have an agreed data exchange protocol, i.e., the described model is

intrinsically service-oriented.

145

The OISD system consists of the components presented in Fig. 1. The client is a web interface providing the

interaction of the user with the system and its resources. It allows one to design algorithm schemes by choosing necessary

elements from the database, to generate codes in the target programming language Java or C ++, and to start programs in the

execution environment. In the system, the design of algorithms is based on the interactive mode with the use of lists of

constructions and trees of algorithms. Specifications of language constructions are based on an English-language version of

the CAA/1 language. Schemes are designed using the top-down method by detailing algorithmic constructions. In the course

of designing a scheme, the user selects necessary constructions from their list and adds them to the tree of the corresponding

algorithm.

The dispatcher is the core of the software tools and organizes interconnections between the user, generator of

programs, gate, and database. The generator of programs generates the text of the program of an algorithm from its scheme

constructed with the help of the interface (client). The gate provides the start, analysis, and obtaining of the results of

execution of programs in their execution environment. The latter is a software platform installed on the server side of the

OISD system and includes an operating system and a software support required to compile and start programs.

The database of the OISD system stores the developed projects of algorithms, descriptions of SAA-M language

constructions, frameworks of projects in programming languages, and information on settings specific for starting programs.

The description of each SAA-M language construction in the database includes its representation in a natural language,

information on the type of the construction, implementation (template) in the chosen programming language, names of

variables, and a list of formal parameters.

The OISD system was mainly used earlier for developing parallel sort programs for multi-core central processors.

In this work, the database of the system is supplemented with operations oriented towards the design of programs for GPUs.

AN EXAMPLE OF USING ALGEBRA-ALGORITHMIC SOFTWARE TOOLS

FOR DESIGNING AN APPLIED PARALLEL PROGRAM

We will illustrate the use of the SAA-M apparatus and OISD system by an example of development of a CUDA

program for solving the two-dimensional diffusion-convection problem that arises in mathematical modeling of atmospheric

circulation in meteorology. This test problem consists of solving the following collection of convection-diffusion equations:

	

	

�
	

	

�
	

	

�
	

	

	

	

�

�
�

�

�
�

�
	

	

	

	

u

t
v

u

x
v

u

x x

u

x x

u
1

1

2

2 1

1

1 2

2

� �
x

f

2

�

�
�

�

�
�

�

(1)

when (,) , [;],x x t
1 2

0 10� �� and

u x x x x() sin ()0

1 2 1 2

, , � � (2)

when (,) ,x x t
1 2

0� �� , and

146

Fig. 1. Architecture of the OISD system.

Database

Generator

of Programs
Dispatcher Gate

Client Execution

Environment

Algorithm Scheme

u t x x u t x xA() (), , , ,

1 2 1 2

� (3)

when (,) , [;]x x t
1 2

0 10�	 �� ,

where

� � �[] [];0 1 0 1, , v x xk k kk
� � � �sin (); � 0 001 0 1 0

2

. .

*

sin () ;

f t x x v v x x() (((sin (2) sin (2)))), , .

*
*1 2 1 2 1 2

1 0 1� � � � � cos () () sin ().

1 2

x x t x x t
1 2 1 2

� � � � � �� �
*

Here, u u t x x� (), ,

1 2

is a dependent function (for example, windspeed); t is time; x
1

and x
2

are coordinates; � is a

two-dimensional spatial domain of definition of the problem; f f t x x� (), ,

1 2

is the free term of the equation; vk is the

convection coefficient; �k is the diffusion coefficient. In what follows, for the coordinates x
1

and x
2

, the notations x

and y, respectively, are used.

To solve problem (1)–(3), the numerical finite-difference method described in [19] is used in the CUDA-program. In

the course of solution, the domain � is divided into S x and S y uniform steps (equispaced nodes) along the axes x and y,

respectively. Thus, the total number of nodes equals S Sx y� . The parallelization of computations for this problem consists

of the partitioning of the domain of size S Sx y� into subsets and parallel solution of the collection of subproblems defined

on these subsets.

Below, the general SAA scheme of the developed parallel GPU algorithm for solving this diffusion-convection

problem is given. The scheme is constructed in the OISD system according to the interactive design method considered

earlier. In addition to the mentioned variables S x and S y , the algorithm contains the following basic variables: N b is the

number of blocks in the CUDA grid; N th is the number of threads in each block; Time � 0 is the start time; T � 10 is the final

time; dT � 0 001. is the time step; t is time; m is the number of computational steps; h pX_ , d pX_ , h pY_ , and d pY_ are

arrays of arguments; ux and u y are arrays for storing values of the function u.

SCHEME Parallel algorithm for solving the convection-diffusion problem on a GPU;

main function �

Get command line arguments (,)S Sx y ;

Initialize data for the convection-diffusion problem;

Start the timer;

Input initial data (,)N Nb th ;

Fill the arrays of equation coefficients (, ,

*

)N N Time m dTb th � ;

Fill the array for the function u with initial values (,)N Nb th ;

Synchronizer (all threads have completed);

Copy data from GPU to CPU (_ , _ , _ _)h pX d pX d pX size ;

Copy data from GPU to CPU (_ , _ , _ _)h pY d pY d pY size ;

Synchronizer (all threads have completed);

Declare integer variable (,)t 0 ;

WHILE (

* *

)m dT t T�

Fill the arrays of equation coefficients (, ,

*

)N N Time m dTb th � ;

Fill the boundary conditions with zero values (,)N Nb th ;

Fill the boundary conditions (,)N Nb th ;

Fill the arrays of equation coefficients (,N Nb th , Time) ;

Fill the arrays ux and u y with initial values (,)N Nb th ;

Synchronizer (all threads have completed);

Compute ux (,)N Nb th ;

Synchronizer (all threads have completed);

Compute u y (,)N Nb th ;

Synchronizer (all threads have completed);

Compute the average value from ux and u y (,)N Nb th ;

Synchronizer (all threads have completed);

Increment (Time, m dT
*

) ;

Increment (t, 1);

END OF LOOP;

147

Stop the timer and print the execution time;

Copy data from GPU to CPU for the convection-diffusion problem;

Compare the computed function values with the real values and compute the error;

Write the obtained results for the function u into files;

Deallocate the memory occupied by the variables of the convection-diffusion problem;

The implementation of the main function of this SAA scheme begins with the operator reading values of two

parameters of the command line and assigning the corresponding values to the variables S x and S y . Then data are initialized

and time reading begins. Next, the operations with the arguments N b and N th call kernel functions. These functions input

initial data and fill the arrays of coefficients of equations and the array for the function u. A special synchronization operator

(synchronizer) placed after function calls delays computations until all threads have completed. Note that the algorithm

contains WHILE loop whose body contains calls of additional kernel functions filling the arrays of coefficients and

boundary conditions and also computing values of ux and u y and the average value. The algorithms of kernel functions are

represented by individual SAA schemes.

The overall result of execution of the algorithm is the collection of computed values of the function u for coordinates

x and y, (,)x y ��. At the end of the program, the computed values of the function u are compared with its real values and

the corresponding error is computed. Then values of coordinates and the function u are written into files.

Using the OISD system and based on the constructed algorithm scheme, a program text in the CUDA C language is

automatically generated. An experiment was performed that consisted of the execution of the developed parallel program

and the corresponding sequential program on one of nodes of a section of the SCIT-4 cluster at the V. M. Glushkov Institute

of Cybernetics of NAS of Ukraine [20]. This node contains the NVIDIA Tesla M2075 GPU Accelerator with 448 computing

cores and Intel Xeon E5-2670 as the central processor. The numerical experiments were carried out for the problem size

values varying from S Sx y� � �64 64 to S Sx y� � �2048 2048. Values of the multiprocessor speed-up factor T Ts p/ are

obtained, where Ts and Tp are the execution times of the sequential and parallel programs, respectively. The maximum

speed-up factor value for S Sx y� � �2048 2048 amounted to 69.

CONCLUSIONS

The development of the algebra-algorithmic methodology and software tools for the automated design and generation

of programs for GPUs are considered. An advantage of the described approach consists of using language constructions

close to a natural language and also the application of a method that provides syntactic correctness of algorithms and

programs being designed. The approach is implemented in a development support system destined for the interactive

construction of algorithm schemes and generation of programs in the basis of reusable software components, i.e., operations

of algebra of algorithms. The use of the proposed software tools is illustrated by the example of developing a parallel

program for the diffusion-convection problem. An experiment was carried out that consisted of running the developed

program on a GPU and, as a result, a good index of paralleling computations is obtained.

REFERENCES

1. F. I. Andon, A. E. Doroshenko, G. E. Tseytlin, and E. A. Yatsenko, Algebra-Algorithmic Models and Methods of

Parallel Programming [in Russian], Akademperiodika, Kyiv (2007).

2. A. E. Doroshenko, K. A. Zhereb, and E. A. Yatsenko, “Formalized design of efficient multithread programs,”

Problems in Programming, No. 1, 17–30 (2007).

3. A. Doroshenko and O. Yatsenko, “Using ontologies and algebra of algorithms for formalized development of parallel

programs,” Fundamenta Inform., 93, Nos. 1–3, 111–125 (2009).

4. A. Doroshenko, K. Zhereb, and O. Yatsenko, “Formal facilities for designing efficient GPU programs,” in: Proc. Int.

Workshop “Concurrency, Specification, and Programming (CS&P’2010)” (Bernau, 27–29 Sept., 2010), Humboldt

University, Berlin (2010), pp. 142–153.

5. F. I. Andon, A. E. Doroshenko, and K. A. Zhereb, “Programming high-performance parallel computations: Formal

models and graphics processing units,” Cybernetics and Systems Analysis, 47, No. 4, 659–668 (2011).

148

6. O. Yatsenko, “On parameter-driven generation of algorithm schemes,” in: Proc. Intern. Workshop “Concurrency,

Specification, and Programming (CS&P’2012)” (Berlin, 26–28 Sept., 2012), Humboldt University, Berlin (2012),

pp. 428–438.

7. A. Doroshenko, K. Zhereb, and O. Yatsenko, “Developing and optimizing parallel programs with algebra-algorithmic

and term rewriting tools,” in: Proc. Intern. Conf. “Information and Communication Technologies in Education,

Research, and Industrial Applications (ICTERI’ 2013)” (Kherson, 19–22 June, 2013), Revised Selected Papers, 412,

Springer, Berlin (2013), pp. 70–92.

8. E. A. Yatsenko, “Integrating support tools of algebra of algorithms and term writing for developing efficient parallel

programs,” Problems in Programming, No. 2, 62–70 (2013).

9. A. Doroshenko and R. Shevchenko, “A rewriting framework for rule-based programming dynamic applications,”

Fundamenta Inform., 72, Nos. 1–3, 95–108 (2006).

10. N. Wilt, The CUDA Handbook: A Comprehensive Guide to GPU Programming, Addison-Wesley, Boston (2013).

11. D. Sannella and A. Tarlecki, Foundations of Algebraic Specification and Formal Software Development, Springer,

Berlin (2012).

12. P. Flener, “Achievements and prospects of program synthesis,” Lecture Notes in Artificial Intelligence, 2407,

310–346 (2002).

13. S. Gulwani, “Dimensions in program synthesis,” in: Proc. 12th Intern. ACM SIGPLAN Symposium on Principles and

Practice of Declarative Programming (Hagenberg, 26–28 July, 2010), ACM, New York (2010), pp. 13–24.

14. S. Ueng, M. Lathara, S. S. Baghsorkhi, and W. W. Hwu, “CUDA-lite: Reducing GPU programming complexity,” in:

Proc. 21st Intern. Workshop on Languages and Compilers for Parallel Computing (LCPC’ 2008) (Edmonton,

31 July–2 Aug, 2008), Springer, Berlin (2008), pp. 1–15.

15. W. Haid, L. Schor, K. Huang, I. Bacivarov, and L. Thiele, “Efficient execution of Kahn process networks on

multi-processor systems using protothreads and windowed FIFOs,” in: Proc. Workshop on Embedded Systems for

Real-Time Multimedia (ESTImedia’09) (Grenoble, 15–16 Oct., 2009), IEEE Computer Society Press, Los Alamitos

(2009), pp. 35–44.

16. T. D. Han and T. S. Abdelrahman, “hiCUDA: A High-level language for GPU programming,” IEEE Transactions on

Parallel and Distributed Systems, 22, No. 1, 78–90 (2011).

17. H. Jung, Y. Yi, and S. Ha, “Automatic CUDA code synthesis framework for multicore CPU and GPU architectures,”

Lecture Notes in Comp. Sci., 7203, 579–588 (2012).

18. C. Dubach, P. Cheng, R. Rabbah, D. F. Bacon, and S. J. Fink, “Compiling a high-level language for GPUs (via

language support for architectures and compilers),” in: Proc. 33rd ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI’ 12) (Beijing, 11–16 June, 2012), ACM, New York (2012), pp. 1–12.

19. V. A. Prusov, A. E. Doroshenko, and R. I. Chernysh, “A method for numerical solution of a multidimensional

diffusion-convection problem,” Cybernetics and Systems Analysis, 45, No. 1, 89–100 (2009).

20. Supercomputer of the Institute of Cybernetics of NASU, http://icybcluster.org.ua.

149

	Abstract
	INTRODUCTION
	FORMALIZED DESIGN OF PARALLEL PROGRAMS USING ALGEBRA OF ALGORITHMS AND REWRITING RULES
	SOFTWARE TOOLS FOR AUTOMATED SOFTWARE DESIGN
	AN EXAMPLE OF USING ALGEBRA-ALGORITHMIC SOFTWARE TOOLS FOR DESIGNING AN APPLIED PARALLEL PROGRAM
	CONCLUSIONS
	REFERENCES

