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NEW MEANS OF CYBERNETICS, INFORMATICS,

COMPUTER ENGINEERING, AND SYSTEMS ANALYSIS

VECTOR DATA TRANSFORMATION USING

RANDOM BINARY MATRICES

D. A. Rachkovskij UDC 004.22 + 004.93’11

Abstract. This article proposes to use a binary random matrix with the elements {0,1} to project input

floating-point vectors onto output floating-point vectors of smaller dimension. The accuracies of

estimates of the scalar product, Euclidean distance, and norm of input vectors are analyzed with

respect to output vectors. It is analytically and experimentally shown that an error for the proposed

random projection is smaller than that for a ternary random matrix.

Keywords: binary random projection, decrease in dimension, estimate for the similarity of vectors.

INTRODUCTION

A considerable part of digital data on objects different in nature can be represented in vector form, i.e., as a collection

of features, fields, and components of vectors corresponding to the objects. The number of objects and dimension of vector

descriptions of complicated objects can amount to thousands, millions, and billions. The presence of such data volumes

allows one to search for similar data, to analyze, classify, and detect regularities, and to solve problems on the basis of

precedents and analogies [1–5]. At the same time, a large number of features in descriptions of numerous complicated

objects complicate data storage, access, analysis, and understanding.

The search for similar data (examples, precedents, and analogues) is of independent importance (for example,

searching for information on the Internet), and also is the first stage of reasoning based on precedents and analogies and the

application of this productive approach to the analysis and understanding of data in intelligent technologies and devices. One

of directions of increasing the efficiency of searching for similar vector data and processing them consists of transformation

of initial representations into vectors whose dimension is smaller and whose processing would yield results concordant with

the results for the initial vectors but with smaller computational expenditures.

Methods that reduce dimensions, are adaptable to data, and do not use information obtained from a teacher (such as

Principal Component Analysis (PCA) and others) or use such information (Linear Discriminant Analysis (LDA) and others) [6]

are computationally intensive and transform similarity-difference measures of initial vectors in estimating them from vectors

of smaller dimension.

The use of random projections is a computationally more efficient approach in which vectors are produced that make it

possible to estimate similarity–difference measures of initial vectors. In this case, initial vectors are transformed into a

secondary vector space by multiplication by projection matrices whose elements are randomly generated numbers from some

distribution. (Note that here, unlike the traditional use of this mathematical term, such a random projection matrix is not

idempotent, etc.). For a number of distributions of elements of random projection matrices, output vectors allow one to estimate

some similarity and differences measures for initial vectors. This is shown for projecting with the help of random matrices with

the Gaussian distribution [7, 8], ternary distribution with elements from { , , }� �1 0 1 and also from { , }� �1 1 [9–11], stable
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distribution [12], etc. Random projections are also used in other problems, for example, to efficiently reconstruct sparse

signals (Compressed Sensing) [13] or to stably solve a discrete ill-posed inverse problem [14].

It is obvious that the simplest and most computationally efficient version of a random projection matrix from the

viewpoint of generation and use is a binary random matrix with the elements {0,1}. However, as far as we know, the use of

these matrices and properties of vectors obtained with their help have not been considered yet. This article investigates

properties of retention of similarity–difference measures for vectors projected with the help of such matrices.

PROJECTION WITH THE HELP OF A RANDOM BINARY MATRIX

Let us consider the projection of vectors with the help of a random binary projection matrix R with elements rij from

the set {0,1}. The distribution of elements (ones and zeros) from R is independent and identical (i.i.d.). Each rij assumes the

value 1 with probability q and the value 0 with probability 1� q. We denote by x yand input vectors (of dimension D) and by

u Rx
R

� and v Ry
R

� (of dimension d) the result of their projection. Accordingly, the dimension of R equals D d� . The

problem is to estimate the measures of similarity–difference between x yand from u and v. As well as in [10] where a

ternary projection matrix with elements from {–1,0,+1} is considered, we will estimate the value of the scalar product � �x y, ,

square of the Euclidean distance || ||x y�

2

, and square of the Euclidean norm || ||x
2

but for the case of projection with the

help of a binary random matrix.

In projecting, each component u i di

r
, ,... ,� 1 , of the vector u

R
is formed as a result of scalar multiplication of the

ri th row of the matrix R by x, i.e., u r xi i ij jj

Dr
r x� � � �

�

�

,

1

. We compute the expectation E ui{ }

r
, where the averaging is

performed over different realizations of rows ri for the same (constant) input x by the formula

E u E r x x E r q xi ij jj

D

j ijj

D

jj

D
{ } { }

r
�

	




�

�




�

� �

� � �

� � �

1 1 1

since E r q q qij{ } ( )� � � �1 0 1 .

We define a centered random quantity ui with Eui � 0 as follows: u u E u u q xi i i i jj

D
� � � �

�

�

r r r
{ }

1

. We can

represent ui in the form

u r x q x r q xi ij jj

D

jj

D

ij jj

D
� � � �

� � �

� � �

1 1 1

( ) .

Thus, the same result u(v) will also be obtained for projecting u Px� (v Py� ) with the help of the centered random

matrix P R� � q with elements �ij ijr q� � , E E r q q q q qij ij{ } { } ( ) ( )( )� � � � � � � � �1 0 1 0 . The analysis of projection

with the help of the centered P is simpler than with the help of R , and the results are identical if ui

r
is transformed

into the form u q x ui jj

D

i

r
� �

�

�

1

and then ui is used. Therefore, we will analyze the projection of the centered P.

Since �ij are i.i.d., we will use � everywhere where it is pertinent, instead of �ij for compactness. Since

u xi ij jj

D
�

�

�

�
1

also are i.i.d., we will sometimes consider u xj jj

D
�

�

�

�
1

, where � j are elements of a row that

belongs to P and is multiplied by the input vector. We introduce random variables � �j j jx� and � �j j jy� . For

them, we have E x Ej j j{ } { }� �� � 0 ; similarly, E j{ } .� � 0 When j k� , the variables � �j kand are independent.

Scalar product. Let us find the expectation value (e.v.) and variance of the scalar product � �u v, ,

E E ui ii

d
{ , } { }� � �

�

�

u v �
1

.

Since addends ui i� are independent random quantities (r.q.) for different i, the variance

V V ui ii

d
{ , } { }� � �

�

�

u v �
1

.

Let us consider u ui i j j j kj kj

D
� � � � � �� � �

��

��

1

. The expectation value

E u E x y E E qj jj

D

j jj

D

j{ } { } { } { } , (� � � � �� � � � � � �

� �

� �

1 1

2 2

1x y q ) ,� �x y
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since, by virtue of independence, E E Ej kj k j kj k
{ } { } { }� � � �

� �

� �

� � 0 and

E q q q q q q{ } ( ) ( ) ( ) .�
2 2 2 2

1 0 1� � � � � � �

Thus, we have

E E u q q di ii

d
{ , } { } ( ) ,� � � � � � �

�

�

u v x y�
1

1 . (1)

Therefore, the estimate of � �x y, is found from the estimate E
*

,� �u v as E q q d
*

, / ( ( ) )� � �u v 1 .

We find the variance V u E u E u{ } {( ) } {� � ��� �

2 2

as follows:

( )u j j j kj kj

D

� � � � �
2

1

2

� �

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � �

� � �

� � � � � �j jj

D

j jj

D

j kj k1

2

1

2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �j kj k

2

,

� � � � � � � �j jj

D

j jj

D

j j k kj k� � �

� � �

�

�

�

�

�

�

�

�

� �

1

2

2 2

1

,

� � � � � � � �j kj k j kj k j j k kj k� � �

� � �

�

�

�

�

�

�

�

�

� �

2

2 2

.

We find E u{( ) }�
2

. Since 2

1

� � � �j jj

D

j kj k� �

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

contains a multiplicand in the form of an independent r.q. � k

(k j� ) with E k{ }� � 0 , we have E j jj

D

j kj k
2 0

1

� � � �
� �

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	




�

�

�

�




�

�

�

� . Thus, we have

E u E E Ej jj

D

j kj k j j k kj
{( ) } { } { } {� � � � � � � � �

2 2 2

1

2 2

2� � �

� �

� �

�

� k
}

� � �

� �

� �

E x y E x y E x y x yj jj

D

j kj k j j k k{ } { } { }� � �
4 2 2

1

2 2 2 2 2 2

2

j k�

�

.

We obtain

E E E x y x y x y xj jj

D

j kj k j j k

2 2 4 2 2 2 2

1

2 2

2{ } ( { }/ { })� � �
� �

� �

� � ykj k�

�

�

�

�

�

�

�

�

�

� � � � � �

�

�

E E E x yj jj

D
2 2 4 2 2 2 2

1

2 2

3 2{ } ( { }/ { } ) , || || |� � � x y x | ||y
2

�

�

�

�

�

�

�

�

since

|| || || ||x y
2 2 2

1

2

1

2

1

2 2 2

� � �

� � � �

� � �

x y x y x yjj

D

jj

D

jj

D

j j kj k

D

�

,

� � �

�

�

�

�

�

�

�

�

� �

� � �

� � �

x y,

2

1

2

2 2

1

x y x y x y x yj jj

D

j jj

D

j jj k

D

k k
.

Thus, we have

V u E u E u{ } {( ) } { }� � �� �

2 2

� � � � � �

�

�

E E E x yj jj

D
2 2 4 2 2 2 2

1

2 2

3{ } ( { }/ { } ) , || || ||� � � x y x y ||

2

�

�

�

�

�

�

�

�

,

V V u V u dj ji

d
{ , } { } { }� � � �

�

�

u v � �
1

. (2)
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Euclidean distance. Let us find the e.v. and variance of the square of the Euclidean distance || ||u v�

2

,

E E ui ii

d
{|| || } {( ) }u v� � �

�

�

2 2

1

� , V V ui ii

d
{|| || } {( ) }u v� � �

�

�

2 2

1

� ,

( ) ( ) ( ) ( )u j jj

D

j jj

D

j j� � �

�

�

�

�

�

�

�

�

� � � �

� �

� �

� � � � � � �
2

1

2

2

1 j k k k
�

�

�( )� � ,

E u E Ej jj

D

j j k kj k
{( ) } {( ) } {( )( )}� � � � � �

� �

� �

� � � � � � �
2 2

1

.

Since � �j j� and � �k k� are independent when j k� and E j j{( )}� �� � 0, we have

E E Ej j k kj k j jj k k k{( )( )} {( )} {( )}� � � � � � � �� � � � � �

� �

� �

0.

Therefore,

E u E E x y q qj jj

D

j j jj
{( ) } {( ) } { }( ) ( )� � � � � � �

� �

�

� � � �
2 2

1

2 2 2

1

2
D

�

�|| ||x y ,

E q q d{|| || } ( ) || ||u v x y� � � �

2 2 2

.

(3)

We determine the variance V u E u E u{( ) } {( ) } {( ) }� � � � �� � �
2 4 2 2

as follows:

( ) ( ) ( )( )u j j j jj kj

D

k k� � � � � �

�

�

�

�

�

�

�

�

��

��

� � � � � � �
4 2

1

2

� �

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

� �

( ) ( ) (� � � � �j jj

D

j jj

D

j

2

1

2

2

1

2 � � �j k kj k
)( )�

�

�

�

�

�

�

�

�

�

�

� � �

�

�

�

�

�

�

�

�

�

�

( )( )� � � �j j k kj k

2

,

( ) ( ) ( ) (� � � � � � � �j jj

D

j jj

D

j j k�

�

�

�

�

�

�

�

�

� � � � �

� �

� �

2

1

2

4

1

2

kj k
)

2

�

�

,

( )( ) ( ) ( )� � � � � � � �j j k kj k j j k kj k
� �

�

�

�

�

�

�

�

�

� � � �

� �

� �

2

2 2

2 �

�

.

Let us find E u{( ) }� �
4

. When D � 2 , the expression

2

2

1

( ) ( )( )� � � � � �j jj

D

j j k kj k
�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

� �

� �

contains a multiplicand in each addend in the form of the independent r.q. ( )� �k k� (k j� ) and, hence,

E j jj

D

j j k kj k
2

2

1

( ) ( )( )� � � � � ��

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

	

� �

� �


�

�

�

�




�

�

�

� 0

since each addend includes the multiplicand E k k{( )}� �� � E Ek k{ } { }� �� � 0. Similarly, we have E{ }�

�

� 0. Thus, we

obtain

E u E Ej jj

D

j j k kj k
{( ) } {( ) } {( ) ( ) }� � � � � �

� �

�

� � � � � � �
4 4

1

2 2

3

�
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= E x y E x y x yj jj

D

j j k kj k
{ } ( ) { } ( ) ( )� �

4 4

1

2 2 2 2

3� � � �

� �

� �

� � � � �

�

�

�

�

�

�

E E E x yj jj

D
2 2 4 2 2 4

1

4

3 3{ } ( { }/ { } ) ( ) || ||� � � x y

�

�

�

�

,

since

|| || ( || || ) ( )x y x y� � � � �

�

�

�

�

�

�

�

�

�

�

4 2 2 2

1

2

x yj jj

D

� � � � �

� �

� �

( ) ( ) ( )x y x y x yj jj

D

j j k kj k

4

1

2 2

.

We obtain

V u E u E u{( ) } {( ) } {( ) }� � � � �� � �
2 4 2 2

� � � � �

�

�

�

�

�

�

E E E x yj jj

D
2 2 4 2 2 4

1

4

3 2{ } ( { }/ { } ) ( ) || ||� � � x y
�

�

�

�

,

V V u V u di ii

d
{|| || } {( ) } {( ) }u v� � � � �

�

�

2 2

1

2

� � .

(4)

Analysis of estimates. The expressions for the e.v. and variance of the square of the Euclidean norm of a vector are

obtained from formulas (1), (2) or (3), (4) as � �u u, or || ||u � 0

2

.

To compare errors of estimates of the scalar product, Euclidean distance, and norm of the initial vectors with respect

to vectors after a random projection, the following relative standard deviation (variation coefficient) V E
1 2/

/ was used:

V E
1 2/

{ , }/ { , }� � � � �u v u v
1

3

4 2 2 2 2

1

2 2

� �

� � � � �

�

�

x y

x y x

,

( { }/ { } ) , || || ||

d

E E x yj jj

D
� � y ||

/

2

1 2

�

�

�

�

�

�

�

�

,

V E
1 2 2 2/

{ || || }/ { || || }u v u v� �

�

�

� � � �

�

�

1

3 2

2

4 2 2 4

1

4

|| ||

( { }/ { } ) ( ) || ||

x y

x y

d

E E x y
j jj

D� �
�

�

�

�

�

�

1 2/

. (5)

For the binary random projection matrix being considered, we have

E q q q q q q q q{ } ( ) ( ) ( ) ( )( ( ))�
4 4 4 2 2

1 0 1 1 3� � � � � � � � � ,

E E{ }/ { }� �
4 2 2

� ( )( ( )) / ( ) / ( )q q q q q q q q� � � � � � �

2 2 2 2 2

1 3 1 3.

For a ternary random projection matrix with elements �1/ q (with probability q / 2), �1/ q (with probability q / 2),

and 0 (with probability 1� q), we have

E q q q q{ } ( / ) / ( / ) /�
2 2 2

1 2 1 2 1� � � � ,

E q q q q q{ } ( / ) / ( / ) / /�
4 4 4

1 2 1 2 1� � � � , E E q{ }/ { } /� �
4 2 2

1�

(see also [10]). When q � 2 3/ , we have 1 3 1

2

/ ( ) /q q q� � � and, hence, the error of estimates for the proposed binary

random projections is smaller than for ternary ones with the same probability q of a nonzero matrix element.

For a random projection matrix with elements from the Gaussian distribution [8, 10], we have

V E
1 2/

{ , }/ { , }� � � �u v u v �

� �

� � �

1

2 2 2 1 2

x y

x y x y

,

( , || || || || )

/

d

, V E
d

1 2 2 2

2

/

{ || || }/ { || || }u v u v� � � .

(6)
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Comparing formulas (5) and (6), we can see that since 1 3 3 0

2

/ ( )q q� � � � when q � [ . ; . ]0 2113 07887 (i.e., when

1 2 1 2 3/ / ( )� � �q 1 2 1 2 3/ / ( )� ), over this range, the accuracy provided by binary random projections exceeds that of

Gaussian ones (the best result is reached when q � 0 5. ). On the other hand, to accelerate projecting, it is necessary to have

q �� 0 5. but, in this case, binary projections are not very efficient because of the presence of addends in an error with

positive coefficients multiplying x yj jj

D
2 2

1�

�

and ( )x y
j jj

D
�

�

�

4

1

. However, when D �� 1, their contribution is small (for

data with finite fourth moment) and, therefore, we also obtain an accuracy comparable with the accuracy of Gaussian

random projections in the case when q �� 0 5. .

EXPERIMENTAL INVESTIGATION

The behavior of the error V E
1 2/

/ was investigated for the squares of the Euclidean norm and distance and also for

the scalar product of vectors in projecting with the help of random binary (the elements {0 1, }) and ternary (the elements

{ , , }� �1 0 1) matrices with different parameters. The experimentally obtained errors (computed from sample averages and

variances) were compared with analytical expressions and included the error for Gaussian random projections.

Matrices were investigated for q � { . , . , . }0 5 0 1 0 01 (for binary matrices, q was the probability of 1, and, for ternary

matrices, the probability of 1 and �1was the same and equaled q / 2). Input vectors of length D � { , , , }10 100 1000 10000 were

used. Their components were generated from the uniform distribution over [ , ]� �D D , and similarity was varied by

concatenating different fragments of identical and different vectors. Note that the small D � { , }10 100 are usually

uninteresting from the viewpoint of practical applications and were investigated to illustrate distinctive features of error

behavior and to confirm the correctness of analytical expressions. Output vectors of dimension d � { , , }10 100 1000 were

obtained. For each investigated set of projection parameters, experimental V Eand are obtained by averaging over 10000

realizations of output vectors corresponding to 10000 realizations of random matrices (1000 realizations for both

D d� �10000 1000and ).

The results of all experiments for all parameter values (and for different values of similarity between input vectors)

are close to the theoretical results. Figure 1 presents the dependences of the error of the estimate for the Euclidean distance

between (two fixed) input vectors of length D � 10 on the dimension of vectors that were obtained after projection and from

which this distance was estimated. Here, the lines whose denotations begin with T correspond to analytical expressions and

with E correspond to the experimentally obtained results, Norm is a Gaussian projection matrix, Tern is a ternary matrix, Bin

is the proposed binary matrix, and q is the probability of nonzero elements in a matrix.

965

Fig. 1. Dependence of the error V E
1 2/

/ of the estimate for the square of the

Euclidean distance between input vectors on the dimension d of vectors after

projection. The dimension of input vectors equaled D � 10.

V E
1 2/

/
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Errors considerably differ for different values of q for the same d. For q � 0 5. , the error for a Gaussian projection

matrix is higher than for ternary and binary ones, and, for q � 001. , it is considerably lower. For D � 100, distinctions

between values of errors decrease and, for D � 1000, they become insignificant. For D � 10000, distinctions between values

of errors for Gaussian, ternary and binary random projection matrices are very small (Table 1). For all investigated q, the

error for binary random projections is smaller than for ternary ones, which corresponds to the analytical estimates

(distinctions are insignificant for the investigated parameters). Similar results are obtained for the scalar product and square

of the norm of vectors.

In comparison with a Gaussian projection matrix, memory required for a binary matrix is smaller by a factor of 32–64

in using 1 bit per a matrix element instead of 32–64 bits for the representation of Gaussian random floating-point quantities.

CONCLUSIONS

To transform floating-point input vectors into floating-point output vectors, it is proposed to use the projection with

the help of a random matrix with the binary elements { , }0 1� . The output vectors allow one to estimate the

similarity–difference measures (the Euclidean distance, scalar product, and also Euclidean norm) for the initial vectors; the

computational efficiency of estimates increases with decreasing the dimension of output vectors.

The error of estimation of similarity–difference measures is analytically and experimentally investigated. As well as

for other types of random projection matrices, this error decreases with increasing the dimension d of output vectors

(~ /1 d ). When d is fixed and the probability q is for the neighborhood of 0.5, in a binary projection matrix (the so-called

“dense” binary matrices), the error of the estimate for similarity–difference measures is smaller than for a Gaussian random

projection matrix. In this case, the generation of binary random quantities and the multiplication operation for the realization

of a projection can be performed more efficiently than for Gaussian random quantities as a result of the absence of the need

for multiplying floating-point numbers. The computational efficiency can be even higher with decreasing q (with increasing

the “sparseness” of a binary projection matrix). In this case, to retain the accuracy of estimates, the dimension of input

vectors must be rather large, which is what we have assumed in stating the problem of efficient estimation of the similarity

of multidimensional vectors.

In comparison with a random matrix with ternary elements, a binary matrix gives a smaller error and, at the same

time, provides a simpler generation of a random matrix and realization of a projection.

The investigation of questions of efficient realization of projections and also the applicability of binary projection

matrices is promising when binary output vectors are obtained (by analogy with the investigation [11] for a ternary matrix).

Such vectors reflecting similarity are examples of neural network-based randomized distributed representations that can be

not only used for efficient similarity search [15–18] but also can be stored and processed in associative neural networks

[19–29] and can also be elements of representations of hierarchically structured models of complicated objects (different in

nature) of the outside world [30–37].
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TABLE 1

Types

of Random

Projections

Value of V E
1 2/

/

d �10 d �100 d �1000

T-Norm 0.447214 0.141421 0.044721

T-Tern q �0.5 0.447173 0.141409 0.044717

T-Bin q �0.5 0.447133 0.141396 0.044713

E-Tern q �0.5 0.442526 0.140829 0.04454

E-Bin q �0.5 0.448362 0.142213 0.04466

T-Tern q �0.1 0.447495 0.14151 0.044749

T-Bin q �0.1 0.447419 0.141486 0.044742

E-Tern q �0.1 0.441405 0.141205 0.044144

E-Bin q �0.1 0.446487 0.14008 0.044195

T-Tern q �0.01 0.451096 0.142649 0.04511

T-Bin q �0.01 0.451017 0.142624 0.045102

E-Tern q �0.01 0.452649 0.142631 0.044639

E-Bin q �0.01 0.44236 0.141008 0.045312
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