
Cybernetics and Systems Analysis, Vol. 50, No. 5, September, 2014

A TWO-CRITERION LEXICOGRAPHIC ALGORITHM

FOR FINDING ALL SHORTEST PATHS

IN NETWORKS

V. A. Vasyanin UDC 519.168

Abstract. An algorithm for finding all shortest paths in an undirected network is considered. The

following two criteria are used: the minimum number of arcs in a path and a minimum path length. The

algorithm is analyzed for complexity, and it is empirically shown that, with increasing the network

density, its computational efficiency becomes higher than that of the Floyd algorithm adequately

modified to find the shortest path with the use of a two-step criterion.

Keywords: multicriteria problem of finding shortest paths, algorithm, computational complexity.

INTRODUCTION

In many theoretical and applied optimization problems on graphs such as, for example, the design of transport,

information, and telecommunication networks, shortest paths (SPs) should be found. The majority of publications devoted to

questions of finding SPs consider problems of finding SPs with the use of one criterion, namely, a minimum or a maximum

of the sum of lengths of arcs in a path. The length of an arc is understood to be some of its parameter, for example, the

distance along the arc, expenditures for the transportation along the arc, throughput of the arc, etc.

Along with problems of finding SPs with the use of one criterion, of considerable interest are multicriteria shortest

path problems (MSPs) naturally arising in many applications when there are some different parameters characterizing nodes

and arcs of a network. In the majority of cases, the choice of optimal shortest paths according to extreme values of these

parameters is a complicated problem since parameters can be inconsistent and can compete among themselves. In contrast to

the problem of optimization of paths with respect to one criterion, the conception of optimization of a MSP problem on the

whole consists of the necessity of finding some optimal solution with respect to all given criteria. In this case, as a rule, there

is not one but a set of Pareto-optimal solutions of the problem that satisfy all criteria.

Since a review of modern multicriteria algorithms is a topic in its own right and is beyond the scope this article, we

only note that they were investigated less thoroughly, for example, P. Hansen published [1] in 1979 and devoted it to

systematic investigation of two-criterion problems on paths. P. Hansen [1] and, independently, A. Warburton [2] have

developed fully polynomial time approximation schemes (FPTASs) to solve the MSP problem with obtaining Pareto-optimal

solutions in the case of two criteria. Two-criterion problems were also investigated rather well in [3]. After these

publications, many works were devoted to multicriteria problems on SPs in which issues of developing efficient algorithms

of finding Pareto-optimal paths with the use of several competitive criteria were investigated. For the cases when the number

of optimization criteria exceeds two, any special results are not obtained yet. Judging by references and publications on the

Internet, any special advancements in solving MSP problems with the use of FPTASs are not observed yet.

This article considers algorithms for finding SPs that are lexicographically ordered and satisfy two criteria. It is well

known that these algorithms have polynomial complexity in contrast to algorithms finding Pareto-optimal shortest paths.

Some algorithms for finding paths with the use of a two-step criterion were considered in [4, 5]. The idea of the algorithm

7591060-0396/14/5005-0759

©

2014 Springer Science+Business Media New York

Institute for Telecommunications and Global Information Space, National Academy of Sciences of Ukraine, Kyiv,

Ukraine, archukr@meta.ua. Translated from Kibernetika i Sistemnyi Analiz, No. 5, pp. 122–131, September–October, 2014.

Original article submitted January 30, 2014.

DOI 10.1007/s10559-014-9666-9

proposed in [4] is close to the idea of the Moore algorithm [6], and its distinctive feature is the implementation of the

procedure of arrangement of “marks” with the help of logical operations over rows of matrices characterizing a network. As

is shown in [7], the asymptotic complexity of algorithms of this kind amounts to O n()

3

, where n is the number of nodes in

a network. In [5], an algorithm is described that finds shortest path trees with the use of the following two-step criterion:

a minimum rank of a path and, if ranks are equal, then a maximum throughput (the rank of a path is understood to be the

number of transit nodes or arcs in the path). The essence of the algorithm is as follows: starting from some node i, it is

necessary to find an SP tree to all other nodes. Since paths of rank 1 are already found, paths of rank 2 are found during the

first iteration of the algorithm. At each subsequent iteration, paths are found whose rank is larger by one than the previous

rank. An iteration includes two nested loops through all nodes in the network and, hence, the asymptotic complexity of the

iteration amounts to O n()

2

. For finding an SP tree from the node i, it is required O q ni(())�1

2

actions, where qi is the

maximum rank of a found SP from the node i. The complexity of finding SP trees from all nodes is of the order of

O q n(())

max

�1

3

under the assumption that we have q qi �

max

for all nodes.

It should be especially noted that, for finding paths with the use of a two-step criterion, it is easy to modify any

well-known algorithm of finding SPs with the use of one criterion, for example, the Floyd [8] or Dijkstra [9] algorithms. It is

well known that the asymptotic complexity of finding SPs from all nodes by these algorithms is of the order of O n()

3

.

As a rule, in solving the majority of practical problems of finding SPs with the use of two criteria, of particular

interest are algorithms using a minimum of transit nodes or arcs in a path (a path rank) and a minimum path length in the

capacity of optimization criteria. Therefore, this work recommends an improved version of the two-criterion algorithm

(proposed in [10]) for finding all SPs in a network that satisfy the mentioned criteria. Since this article considers the finding

of SPs from all nodes in a network, the complexity of the proposed algorithm will be compared with the complexity of the

Floyd algorithm changed according to the same criteria. Worthy of mention is the fact that these algorithms can also be

easily generalized to the case of the presence of a larger number of ordered optimization criteria.

PROBLEM STATEMENT AND SOLUTION ALGORITHM

Let a simple undirected network G N P(,) with a set of nodes N , n N� | | , and a set of arcs P, p P� | | , be given. Some

number rkl � 0 is associated with each arc p Pkl � and is conditionally called its length. We call the number of arcs forming

some path the path rank. It is required to find SPs between all nodes of the network that satisfy the criteria of minimum path

rank and minimum path length if ranks are equal.

The idea of the proposed algorithm is similar to the idea of the Bellman–Shimbel algorithm [11, 12] according to

which, at each conditional lth iteration, all SPs of rank up to 2

l
, inclusively, are found in a network. In this case, at each

subsequent iteration, all paths found during previous iterations are used and an efficient technique of representation of

abstract data types (ADTs) is applied.

Let R rij n n�

�

|| || be a topological matrix, let rij be the length of an arc pij (if such an arc pij is absent, then rij � �),

let D dij n n�

�

|| || be the matrix of lengths of the found paths, let C cij n n�

�

|| || be a reference matrix of the found paths in

which each element cij , i j� , determines the number of the penultimate node on the shortest path from i to j‚ cii � 0, i n� 1, ,

and let Q qij n n�

�

|| || be the matrix of ranks of the found paths. Initially, D coincides with R, and, for paths of rank 1, the

corresponding matrix elements qij � 1 and c iij � . For the paths that are not found, we have qij � � and cij � 0. The signs 	,

, and � denote the operations of assignment, conjunction (logical “and”), and disjunction (logical “or”), respectively. The

sign *** is used as a separator in comments.

Let us consider an algorithm for finding SPs with the use of a two-step criterion [10].

Algorithm SP1

1. RMAX 	 1; l 	 0.

2. KU 	 0; l l	 � 1 .

3. For {i i n| , }� 1 , execute items 4–16.

4. KS 	 0.

5. For {j j n| , }� 1 , execute items 6–14.

6. If ()i j cij�
 � 0, then go to item 7; otherwise, execute KS KS	 � 1 and go to item 14.

760

7. For {k k n| , }� 1 , execute items 8–12.

8. If Q i k RMAX Q k j RMAX(,) (,)
 , then go to item 9; otherwise, go to item 12.

9. RT Q i k Q k j	 �(,) (,) .

10. If RT Q i j RT Q i j D i j D i k D k j� � �
 � �(,) ((,) (,) (,) (,)) , then go to item 11; otherwise, go to item 12.

11. D i j D i k D k j(,) (,) (,)	 � ; Q i j RT(,) 	 ; C i j C k j(,) (,)	 .

12. Go to item 7. *** End of the loop with respect to k

13. If C i j(,) � 0, then KS KS	 � 1.

14. Go to item 5. *** End of the loop with respect to j

15. If KS n� , then KU KU	 � 1.

16. Go to item 3. *** End of the loop with respect to i

17. RMAX RMAX	 2 .

18. If RMAX n KU n
 �(–)1 , then go to item 2; otherwise, go to item 19.

19. If RMAX n KU n�
 �(–)1 , then output a message about the disconnectedness of the network.

20. End.

Let us consider a modified Floyd algorithm for finding SPs with the use of a two-step criterion.

Algorithm Floyd

1. For {i i n| , }� 1 , execute items 2–9.

2. For {j j n| , }� 1 , if i j� , then execute items 3–8.

3. For {k k n| , }� 1 , if k j i� � , then execute items 4–7.

4. If Q j i Q i k(,) (,)� �
 � �, then go to item 5; otherwise, go to item 7.

5. If ((,) (,) (,)) ((,) (,) (,) (,Q j k Q j i Q i k Q j k Q j i Q i k D j k� � � � �
) (,)� �D j i D i k(,)) , then go to item 6;

otherwise, go to item 7.

6. Q j k Q j i Q i k(,) (,) (,)	 � ; D j k D j i D i k(,) (,) (,)	 � ; C j k C i k(,) (,)	 .

7. Go to item 3.

8. Go to item 2.

9. Go to item 1.

10. End.

In the algorithm SP1, the loop representing conditional iterations begins with line 2; the total number of these

iterations required for finding all paths in a network is accumulated in l . A conditional iteration contains three nested loops

over the indices i, j‚ and k.

Assume that each number l , l � 0 1 2, , ,� , of a conditional iteration of the algorithm SP1 is in one-to-one

correspondence with the set { }1 2 2

1

�

�l l
,... , of path ranks. We call this correspondence the table of ranks. The correctness

of the algorithm follows from the statements presented below and proved in [10].

LEMMA. If the lth iteration of the algorithm SP1 allows for finding paths with a rank larger than 2

l
, then shortest

paths will be incorrectly found.

Proof. In the inner loop with respect to k in the 8th line of the algorithm SP1, it is possible that Q i k(,) � � and

Q k j(,) � �. Let, at the lth iteration, paths (,)i k
1

and (,)i k
2

be found and, at the same time, let 2

2

l
Q i k� �(,)

Q i k Q k k(,) (,)

1 1 2

� � � and let the number k
2

be larger than the number k
1

. Since the loop with respect to k exhaustively

searches for all numbers of nodes in increasing order, a node will be found whose number k k k
3 2 1

� � and such that

Q i k Q i k Q k k

D i k D i k D k k

(,) (,) (,),

(,) (,) (,)

2 3 3 2

2 3 3 2

� �

� � � D i k D i k D k k(,) (,) (,).

2 1 1 2

� �

(1)

However, to the moment of determination of a path to k
2

, we have Q i k(,)

3

� � or Q k k(,)

3 2

� �, i.e., the path (,)i k
3

or (,)k k
3 2

is not found yet. At the lth iteration, the path (,)i k
2

was marked by C i k k(,)

2 1

� , and it will not be

considered at subsequent iterations; by virtue of the fulfillment of conditions (1), this path is incorrect.

THEOREM 1. All shortest paths in a network that correspond to the table of ranks are found at each conditional

iteration of the algorithm SP1.

761

Proof. Since, at each lth iteration of the algorithm, it is impossible to find paths with a rank larger than 2

l
(the

lemma), to find paths at this iteration, we use only the paths that have been found at the ()l �1 th iteration. In fact, this

impossibility is guaranteed by the use of the following comparison operations in the loop with respect to k in the 8th line:

Q i k RMAX(,) , Q k j RMAX(,) , and RMAX
l

� 2 , l � �0 1, , , and the number l � 0 corresponds to the first conditional

iteration. It is obvious that, at each lth iteration of the algorithm, all paths in a network will be found whose ranks strictly

correspond to the table of ranks. Let us prove that the found paths are shortest. Let, at the mth iteration, a path (,)i j be

obtained that does not satisfy the following criterion: a minimum rank and a minimum length. Hence, there is another

shortest path that passes through a node u and, at the same time, Q i u(,) or Q u j(,) are not found. Since the mth iteration uses

all paths found at the ()m�1 th iteration, the inner loop with respect to k exhaustively searches for the paths between i and j

among all the paths whose set of ranks is { }1 2 2

1

�

�m m
,... , with the use of the following two-step criterion:

t Q i k Q k j k n k u� � � �arg { }min (,) (,) , , , ;1 D i j D i D j t(,) min (,) (,) ,� � �{ }� � � ,

where t is the set of nodes belonging to paths having the same rank. Therefore, the path (,)i j through the node u could

be found only at subsequent iterations and its rank would be larger, contrary to the assumption on the existence of

another shortest path. The theorem is proved.

COROLLARY. To find an optimal path of rank m (m � 2), it is required � �log

2

m conditional iterations of the

algorithm SP1, where the sign � �� signifies the rounding of a number up to the larger integer.

Let S m�� �log

2

, where m is the maximum path rank among ranks of all shortest paths found in a network.

THEOREM 2. The time of finding all shortest paths in a network by the algorithm SP1 increases in proportion to the

function Sn n S c
3 2

3� �() � �2n S c() , where c is some constant.

Let us estimate the complexity of the algorithm SP1. We denote by hk i, the number of found paths from a node i that

have a rank k. Then, to find all shortest paths in a network, the number of executions of the inner loop with respect to k by

the algorithm is determined as follows:

n h n h h ni

i

n

i

n

i i

i

n

� � � � � � � � �

� � �

� � �

() (()) ((

, , ,

1 1

1

1 1

1 2

1

� 1

1 2 3

2

1

� � � � �

�

h h h hi i i S
i

, , ,

()

,

))�

� � � � � � � � � � � �

�

�

(() () (

, , , , ,

n h n h h n h hi

i

n

i i i i1 1 1

1

1

1 2 1 2

� � � �

�

h hi S
i

3

2

1

,

()

,

))�

� � � � � � � � � �

�

�

((() () ()

, , , ,

nS S h S h S h S h Si

i

n

i i i1

1

2 3 4

1 2 2 � �

�

h S
i2

1()

,

))

� � � �

�

�

�

�

�

�

� �

� �

�

() ()

,

, ...,

()

nS S S l h

l

S

k i

k
l l

0

1

1 2 2

1

{ }� �

�

�

�

�

�

�

i

n

1

� � � �

� �

�

� �

� �

�

Sn n S l h

i

n

l

S

k i

k
l l

() ()

,

, ...,

()

1

1 0

1

1 2 2

1

{� � }

�

,

where the sign � �� signifies the rounding of a number up to the smaller integer.

The number of executions of the loop with respect to k depends on the structure of the initial network, and, with

increasing the number of conditional iterations of the algorithm with respect to l, tends to ()n � 2 . Therefore, we give the

following worst-case upper estimate of the algorithm:

T Sn n n n S l h

i

n

k i

k
l

� � � � � �

�

� �

�

�

()() () ()

,

, ..

()

1 2 2

1

1 2

1

{� � ., 2

0

1

ll

S

}

��

�

�

. (2)

We denote ()

,

, ...,

()

S l h ck i

kl

S

l l

� �

� �

�

�

�

��

{ }� �1 2 2

0

1

1

under the assumption that h hk i k,

� for all i N� , and then rewrite

estimate (2) in the form

T Sn n n n c Sn n S c n S c

i

n

� � � � � � � � � �

�

�

()() () () ()1 2 2 3 2

1

3 2

. (3)

The theorem is proved.

Since the asymptotic complexity of the Floyd algorithm is always O n()

3

, it is believed that the speed of the

algorithm SP1 will increase with increasing the graph or network density in contrast to the speed of the Floyd algorithm.

762

As is easily seen from the analysis of the algorithm SP1, its complexity can be decreased owing to decreasing the

exhaustive search for nodes j in the loop in the 5th line in choosing nodes for which incoming paths are not found yet and

nodes k in the loop in the 7th line in choosing nodes whose incoming paths are already found. We introduce the following

data structures. Let A aij n n�

� �

|| ||

()1

be a matrix containing the numbers of the nodes whose incoming paths have been

found. In this case, the first matrix row contains the numbers of nodes for which the incoming paths from the first node are

found, the second row contains such data concerning the second node, etc. We also introduce a vector T t
i n� || || in which

the number of nodes is accumulated for which paths from nodes i, i n� 1, , are found and also a vector SP spi n� || ||

containing pointers spi at nodes i , i n� 1, , to linear one-sided lists consisting of elements of E. Each element of E consists of

two fields F and AJ . The field AJ contains the number of a node whose incoming path is not found, and the field F contains

the reference to the next element. The last element in the list and an empty list have null references.

Let us consider an improved version of the algorithm SP1 for finding SPs with the use of a two-step criterion.

Algorithm SP2

1. T 	 0.

2. For {i i n| , }� 1 , execute items 3–12.

3. For { j j n| , }� 1 , if j i� , then execute items 4–11.

4. If D i j(,) � �, then go to item 5; otherwise, go to item 6.

5. T i T i() ()	 � 1; A i T i j(, ()) 	 ; go to item 11.

6. Form a new element E P() .

7. If SP i F null(). � , then execute item 8; otherwise, execute item 9.

8. P P2 1� ; P P1� ; P F P2. � ; go to item 10.

9. SP i F P(). � ; P P1� ; go to item 10.

10. P AJ j. 	 .

11. Go to item 3. *** End of the loop with respect to j

12. Go to item 2. *** End of the loop with respect to i

13. RMAX 	 1; l 	 0.

14. KU 	 0; l l	 � 1.

15. For { i i n| , }� 1 , execute items 16–31.

16. If SP i F null(). � , then go to item 17 and, otherwise, KU KU	 � 1; go to item 31.

17. P SP i F� (). ; P SP i1� () .

18. Until P F null. � , execute items 19–30.

19. j P AJ	 . .

20. For {m m T i| , ()}� 1 , execute items 21–26.

21. k A i m	 (,).

22. If Q i k RMAX Q k j RMAX(,) (,)
 , then go to item 23; otherwise, go to item 26.

23. RT Q i k Q k j	 �(,) (,).

24. If RT Q i j RT Q i j D i j D i k D k j� � �
 � �(,) ((,) (,) (,) (,)), then go to item 25 and, otherwise, go to item 26.

25. D i j D i k D k j(,) (,) (,)	 � ; Q i j RT(,) 	 ; C i j C k j(,) (,)	 .

26. Go to item 20. *** End of the loop with respect to m

27. If C i j(,) � 0, then go to item 28 and, otherwise,

go to item 29.

28. T i T i() ()	 � 1; A i T i j(, ()) 	 ; P F P F1. .� ; P P3� ; P P F� . ; eliminate the element E P()3 . Go to item 30.

29. P P1� ; P P F� . . Go to item 30.

30. Go to item 18. *** End of the loop with respect to j

31. Go to item 15. *** End of the loop with respect to i

32. RMAX RMAX	 2 .

33. If RMAX n KU n �
 �()1 , then go to item 14 and, otherwise, go to item 34.

34. If RMAX n KU n� �
 �()1 , then output a message about the disconnectedness of the network.

35. End.

763

In lines 1–12, initial values for T, A, and SP are formed, and lines 13–35 form the main body of the algorithm. The

vector SP it is used in outer loops with respect to i and j to choose the nodes j whose incoming paths are not found yet (lines

15–31 and 18–30). The matrix A and vector T are used in the inner loop with respect to m to choose the number of nodes k

whose incoming paths from i to k are already found (lines 20–26). If an SP from i to j through some node k is found at an

iteration, then j is introduced into the corresponding ith row of A, and the jth node is eliminated from the list spi . After the

completion of the operation of the algorithm, lists spi are empty, and rows of the matrix A are completely filled (in the case

when the corresponding network is connected).

The operation “Form a new element E P()” in item 6 creates an element E and sets the pointer P to it, and the

operation “Eliminate an element E P()3 ” in item 28 deletes the element E to which the pointer P3 is set. Operations with the

sign � set the corresponding pointer in the left side of an expression to an element in the right side of the expression.

Expressions with points of the form SP i F(). , P F. , and P AJ. denotes the corresponding fields of elements to which the

pointers SP i() and P are set. If it will turn out that RMAX n� �()1 in line 33, then the initial network is disconnected when

KU n� .

For the algorithms SP1, Floyd, and SP2, some modified algorithms SP1S, FloydS, and SP2S were developed for the

case when the matrix R is symmetric since the property of symmetry allows one to considerably reduce the time spent for

finding SPs.

The changed lines for the algorithm SP1S are as follows:

3. For {i i n| , }� �1 1 , execute items 4–16.

5. For { j j i n| , }� � 1 , execute items 6–14.

6. If cij � 0, then go to item 7; otherwise, execute KS KS	 � 1 and go to item 14.

11. D i j D i k D k j(,) (,) (,)	 � ; D j i D i j(,) (,)	 ; Q i j RT(,) 	 ; Q j i RT(,) 	 ; C i j C k j(,) (,)	 ; C j i C k i(,) (,)	 .

15. If KS n i� � , then KU KU	 � 1.

18. If RMAX n KU n �
 � �() ()1 1 , then go to item 2 and, otherwise, go to item 19.

19. If RMAX n KU n� �
 � �() ()1 1 , then output a message about the disconnectedness of the network.

The changed lines for the algorithm FloydS are as follows:

2. For { j j n| , }� �1 1 , if i j� , then execute items 3–8.

3. For {k k j n| , }� � 1 , if k j i� � , then execute items 4–7.

6. Q j k Q j i Q i k(,) (,) (,)	 � ; Q k j Q j k(,) (,)	 ; D j k D j i D i k(,) (,) (,)	 � ; D k j D j k(,) (,)	 ;

C j k C i k(,) (,)	 ; C k j C i j(,) (,)	 .

The changed lines for the algorithm SP2S are as follows:

4. If D i j(,) � �, then go to item 5 and, otherwise, go to item 5a.

5a. If i j� , then go to item 6 and, otherwise, go to item 11.

15. For {i i n| , }� �1 1 , execute items 16–31.

25. D i j D i k D k j(,) (,) (,)	 � ; D j i D i j(,) (,)	 ; Q i j RT(,) 	 ; Q j i RT(,) 	 ; C i j C k j(,) (,)	 ; C j i C k i(,) (,)	 .

28. T i T i() ()	 � 1; T j T j() ()	 � 1; A i T i j(, ()) 	 ; A j T j i(, ()) 	 ; P F P F1. .� ; P P3� ; P P F� . ;

eliminate the element E P()3 . Go to item 30.

33. If RMAX n KU n �
 � �() ()1 1 , then go to item 14 and, otherwise, go to item 34.

34. If RMAX n KU n� �
 � �() ()1 1 , then output a message about the disconnectedness of the network.

EXPERIMENTAL INVESTIGATION OF THE ALGORITHMS

To perform an experiment, a test program was written in the language Digital Visual Fortran (DVF) of the Digital

Equipment Corporation in the environment of Microsoft (MS) Developer Visual Studio (VS) DVF 6.1. An external program

interactively entered the following data: n is the number of nodes in a network; �al is the number of outgoing arcs of each

node (the degree of the node); boundaries of arc weight values varied from MINVAL to MAXVAL; a parameter controlling the

input–output data exchange. Hereafter, with the help of a random number generator (the built-in function RAND()), arc

764

weights from MINVAL to MAXVAL were generated, and arrays R, D, Q, and C and also arrays A, T, and SP (for the algorithms SP2

and SP2S) were formed. The whole main memory necessary for the operation of the algorithms was allocated and unallocated

dynamically by an external program. The running time of the algorithms was fixed by the built-in subprogram cputime()

immediately before the start and after the completion of the algorithms of finding SPs. The work of the algorithms was tested on

a PC (2.66 GHz/2 Gb) under the control of the Windows Vista operating system. The solution of the problem in the case of

sparse networks with the number of nodes n � 1000 was independently modeled with changing the values of the parameter

�al from 2 to 999; with changing n from 100 to 1000 when �al � 5; in the case of highly sparse networks, when �al � 2 and n

varied from 500 to 1000. In all these cases, it was assumed that MINVAL � 30 and MAXVAL � 120. All the algorithms were

represented in the form of external subprograms with substitution of actual parameters.

Figure 1 presents the plots of the change in the running times of the algorithms SP1, Floyd, and SP2 and SP1S,

FloydS, and SP2S, respectively, against the increase in the degree of nodes �al from 2 to 999 for n � 1000.

As is easily seen from the plots in Fig. 1, the computational efficiency of the algorithms SP1 and SP1S is better than

that of the algorithms Floyd and FloydS even when the degree of nodes �al � 5, and the algorithms SP2 and SP2S

considerably outrun the algorithms Floyd and FloydS with increasing the degree of nodes. For large values of the parameter

�al (from 200 to 999), the algorithms SP1 and SP1S turn out to be better than SP2 and SP2S. The algorithms SP2 and SP2S

are always better than the Floyd algorithms and, with increasing the degree of nodes, are faster than the latter by several fold.

The plots of changing running times of the algorithms SP1, Floyd, and SP2 and SP1S, FloydS, and SP2S against the

increase in the number of nodes from 100 to 1000 when �al � 5 are presented in Fig. 2, and those for the case of increasing

the number of nodes from 500 to 1000 when �al � 2 are presented in Fig. 3. For networks with a moderate degree of

sparseness, the algorithms SP1 and SP2 and also SP1S and SP2S become better than the Floyd and FloydS algorithms with

increasing the number of nodes in the network. For strongly sparse networks, the algorithms Floyd and FloydS are faster

than the algorithms SP1 and SP1S but are worse than the algorithms SP2 and SP2S with increasing the number of nodes.

765

Fig. 1. Diagram of changing the running times of the algorithms SP1 (1), Floyd (2), and

SP2 (3) (a) and SP1S (1), FloydS (2), and SP2S (3) (b)

against the degree of nodes.

a

b

R
u

n
n

i
n

g
T

i
m

e
,

s
e
c

R
u

n
n

i
n

g
T

i
m

e
,

s
e
c

a

766

0

5

10

15

20

25

30

35

40

45

Â
ð
å
ì

ÿ
ð

à
á

î
ò
û

,
ñ

500 600 700 800 900 1000

1

3

2

n

Fig. 3. Diagram of changing the running times of the algorithms SP1 (1),

Floyd (2), and SP2 (3) (a) and SP1S (1), FloydS (2), and SP2S (3) (b) against the

increase in the number of nodes when �al � 2 .

0

5

10

15

20

25

30

500 600 700 800 900 1000

Â
ð
å
ì

ÿ
ð

à
á

î
ò
û

,
ñ

1

3

2

n

a

b

R
u

n
n

i
n

g
T

i
m

e
,

s
e
c

R
u

n
n

i
n

g
T

i
m

e
,

s
e
c

0

2

4

6

8

10

12

14

16

18

20

Â
ð

å
ì

ÿ
ð

à
á

î
ò
û

,
ñ

100 200 300 400 500 600 700 800 900 1000

1

3

2

n

Fig. 2. Diagram of changing the running times of the algorithms SP1 (1), Floyd (2),

and SP2 (3) (a) and SP1S (1), FloydS (2), and SP2S (3) (b) against the increase

in the number of nodes when �al � 5.

0

1

2

3

4

5

6

7

8

9

10

Â
ð
å
ì

ÿ
ð

à
á

î
ò
û

,
ñ

100 200 300 400 500 600 700 800 900 1000

1

3

2

n

a

b

R
u

n
n

i
n

g
T

i
m

e
,

s
e
c

R
u

n
n

i
n

g
T

i
m

e
,

s
e
c

CONCLUSIONS

An improved version of the algorithm from [10] is considered; it finds all SPs in a network that satisfy the criteria of

minimum of arcs in a path and a minimum path length. It is proved that the running time of the algorithm from [10] can be

reduced owing to the use of ADTs and a decrease in the number of scanning nodes in inner loops.

It is empirically shown that the improved algorithm works faster than the algorithm from [10] on sparse networks and, with

increasing the density of networks, its operating speed exceeds that of the modified Floyd algorithm by several orders of magnitude.

On the whole, the experiment has shown a high computational efficiency of the proposed algorithm that can be used

as a component of a standard developer’s toolkit and can be advantageously employed in solving practical problems of

finding SPs with the use of two criteria on high-dimensional graphs and networks.

REFERENCES

1. P. Hansen, “Bicriterion path problems,” in: G. Fandel and T. Gal (eds.), Multiple Criteria Decision Making Theory

and Application, Springer, Berlin (1979), pp. 109–127.

2. A. Warburton, “Approximation of Pareto optima in multiple-objective, shortest-path problems,” Oper. Res., 35, No.

1, 70–79 (1987).

3. M. Ehrgott and X. Gandibleux, Multiple Criteria Optimization — State of the Art Annotated Bibliographic Surveys,

Kluwer, Boston, MA (2002).

4. N. A. Knyazeva, “The use of logical operations for searching for optimal paths in networks,” in: Proc. 2nd All-Union

Conf. “Methods and programs for solving optimization problems on graphs and networks,” Part 1, Theory and

Algorithms, Novosibirsk (1982), pp. 85–86.

5. V. V. Dobrolyubov and V. A. Pedyash, “A network algorithm for finding paths with a minimal number of transit

nodes and a maximum capacity,” Computing Machinery in Engineering and Communication Systems, No. 4,

129–132 (1979).

6. E. F. Moore, “The shortest path through a maze,” in: Proc. Intern. Symp. on the Theory of Switching, Part II, Harvard

University Press, Cambridge, MA (1959), pp. 285–292.

7. A. V. Aho, J. Hopcroft, J. D. Ullman, The Design and Analysis of Computer Algorithms [Russian translation], Mir,

Moscow (1979).

8. R. W. Floyd, “Algorithm 97: Shortest path,” Comm. ACM, Vol. 5, 345 (1962).

9. F. W. Dijkstra, “A note on two problems in connection with graphs,” Numerical Mathematics, Vol. 1, 269–271

(1959).

10. V. A. Vasyanin and A. I. Savenkov, “An algorithm for finding shortest paths in a network with the use of a two-step

criterion,” in: Diskretn. i Ergatich. Sist. Upravl, Collected Scientific Papers, Kyiv (1983), pp. 40–49.

11. R. E. Bellman, “On a routing problem,” Quart. Appl. Math., 16, No. 1, 87–90 (1958).

12. A. Shimbel, “Applications of matrix algebra to communication nets,” Bulletin of Mathematical Biophysics, 13,

165–178 (1951).

767

	Abstract
	INTRODUCTION
	PROBLEM STATEMENT AND SOLUTION ALGORITHM
	EXPERIMENTAL INVESTIGATION OF THE ALGORITHMS
	CONCLUSIONS
	REFERENCES

