
Cybernetics and Systems Analysis, Vol. 49, No. 5, September, 2013

PROBLEMS OF GROUP PURSUIT WITH INTEGRAL

CONSTRAINTS ON CONTROLS OF THE PLAYERS. I

B. T. Samatov UDC 518.9

Abstract. The paper studies problems of group pursuit for linear differential games with integral

constraints. The problems are analyzed on the basis of Chikrii’s method of resolving functions. The

proposed method substantiates the parallel approach strategy, i.e., the Ï-strategy. The new sufficient

solvability conditions are obtained for problems of group pursuit. As an example, two classes of

problems are considered, namely, the Pontryagin control example and a group pursuit with a simple

motion for the case of “l-catch.”

Keywords: problem of group pursuit, integral constraint, resolving function, strategy, guaranteed

time of pursuit.

1. PROBLEM STATEMENT

Consider a linear differential game in a finite-dimensional Euclidean space, described by the system of equations

� , ( )z A z B u C z zi i i i i i i i� � � �� 0

0

,

(1)

where z R u R Ri

n

i

p qi i
� � �, ,� ; ni �1, pi �1, q �1, i m�1, is the set of integer numbers from 1 to m; Ai , Bi , and

Ci are constant rectangular n n n pi i i i� �, , and n qi � matrices, respectively; zi

0

is the initial state of the ith object; ui is

the control parameter of the ith pursuer; � is the control parameter of the evader. The realizations of the parameters

u i mi , ,�1 , and � at the end of the game should be measurable functions from the class L T pp [ , ],0 1� , and satisfy the

constraints

| ( ) | , , ,u d i mi

p

i i

T

� � � �	 � �



0 1

0

, (2)

| ( ) | ,� � � � �
p

T

d 	 �



0

0

, (3)

respectively, where T � 0 (the case T � �� is not excluded). In what follows, we will call such controls admissible and

will denote their sets by U i m
T

i
, ,�1 , and VT , respectively.

The terminal set consists of the union of sets M M
1 2

, ���� M m , each having the form M M Mi i i� �

0 0

, where M i

0

is a

linear subspace from R
ni

and M i

1

is a convex compact subset of the orthogonal complement Li to the subspace M i

0

in R
ni

.

Definition 1. In game (1)–(3) the set of mappings u T V Ui T T

i
: [ , ]0 � 
 , i m�1, , is called a strategy of the group of

pursuers if the following conditions are satisfied:

(i) admissibility: for each �( )� �VT the inclusion u u Ui i T

i
( ) ( , ( ))� � � � �� , i m�1, , holds;

(ii) the property of being Volterrian: if for any t T VT� � � �[ , ], ( ), ( )0

1 2

� � the equality � � � �
1 2

( ) ( )� holds for almost

all ��[ , ]0 t , then u ui i

1 2

( ) ( )� �� almost everywhere on [ , ]0 t , where u ui i

1 1

( ) ( , ( ))� � � �� , u ui i

2 2

( ) ( , ( ))� � � �� .
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Definition 2. In game (1)–(3) from the initial position z z z zm

0

1

0

2

0 0

�{ }, ,... , it is possible to complete the pursuit in

time T T z� ( )

0

if at least for one value of i, i m�1, , the absolute continuous solution z ti ( ) of the Cauchy problem

� ( , ( )) ( ), ( )z A z B u t t C t z zi i i i i i i i� � � �� � 0

0

, belongs to the terminal set M i in time not exceeding T T z� ( )

0

, i.e.,

z t Mi i( )

*

� for some t T
*

[ , ]� 0 . The number T z( )

0

is called guaranteed time of pursuit.

Finding the initial positions from which the pursuit can be ended in a finite time is one of the pursuit problems. The

pursuit problem has been sufficiently studied. First of all, noteworthy are the studies [1–11], whose methods and results are

generalized and developed in [12–19], etc.

Differential games with integral and multi-type constraints on controls of the players have been intensively

investigated [20–36], etc.

In the paper, we will analyze the problem of group pursuit in linear differential games with integral constraints. We

will be based on Pontryagin’s formalization [1, 2] and use Chikrii’s method of resolving functions [8]. Note that the class of

strategies introduced above for the group of pursuers is the widest from the point of view of awareness level. Actually, in the

paper we will develop a specific strategy, which uses a much smaller amount of current information. Namely, the time

interval [ , ]0 T consists of active and passive parts for the pursuers. On each active section, the appropriate pursuer applies

actually the stroboscopic strategy u ti ( , )� , where the so-called resolving function plays the dominant role; in the passive part

it is equated to zero. To determine the time of passage from the active section to the passive one, the pursuer needs the

information about the control of the evader on the time interval [ , ]0 t , i.e., about the function � � � �t t( ) ( ) :� � 	 	{ }0 for

each current value of time t.

The present part of the study consists of five sections. Section 2 proposes a general pursuit scheme where the problem

is divided into two substantially different cases depending on the parameters of system (1) and on the parameters of

constraints (2) and (3). In Section 3, the resolving function is defined and its properties are analyzed for each case. These

functions are used in Secs. 4 and 5 to prove Theorems 1 and 2 about the possibility of terminating the pursuit. The proof of

these theorems employs the ideas from [8, 22–24, 34]. In the second part of the study we will apply the proposed solution

technique to Pontryagin’s control example [1, 2] and the problem of group pursuit in simple motion of players for the case of

l-catch.

2. MAIN ASSUMPTIONS

In what follows, index i runs from 1 to m by default. Moreover, the statement of the problems includes a fixed

parameter p p, �1, which is omitted in the notation.

Let � i be the operator of orthogonal projection from R
ni

onto the subspace Li . Consider the linear mappings

� i

A t

i

p

ie B R Li i
� and � i

A t

i

q

ie C R Li
� for t � 0 .

Assumption 1. The equation � �i

A t

i i

A t

ie B F e Ci i
� has a solution F F ti� ( ) , which is a continuous and nonsingular

matrix for all t t, � 0.

Let us use the matrix Fi ( )� to construct the function

� � � � �

�

i

V s t

i

p

s

t

t s F t d s t( , ) sup | ( ) ( ) | ,

( ) [ , ]

� � 	 	

� �




1

0 ,

where V s t d
p

s

t

1

1[ , ] ( ) : | ( ) |� � 	

�

�

�

�

�

�

�

�

�

�



� � � � . The quantity � �i

s t

i t s�

	 	 ��

sup ( , )

0

is called the Nikol’skii coefficient [23]. It is

easy to verify that � i � 0; however, the case � i � � � is not excluded.

Assumption 2. The inequality is true

�

�

�

�

�

�

�
1

1

2

2

� � � ��

m

m

. (4)

If inequality (4) holds, it is clear that all the coefficients � i cannot be equal to � � simultaneously.

757



Two cases are possible:

(a) � � �i i/ 	 for any i;

(b) � � �i i/ � for some i .

The pursuit problem is analyzed differently for these cases. In case (a), � is divided as follows:

� � � �� � � �
1 2

� m , (5)

where �

��

�

�

�

�

�

�

�
i

i

i

m

m

� � � �

�

�

�

�

�

�

�

�

�

1

1

2

2

1

� . It can be easily seen that � � �i i i� for all i . In this case, the pursuit strategy

is constructed in Sec. 4 (Theorem 1). In case (b), to complete the pursuit it will suffice that only the pursuers for

which � ��i i� actively participate (Sec. 5, Theorem 2).

3. CONSTRUCTION OF THE RESOLVING FUNCTION

3.1. Resolving Function for Case (a). Let us introduce the multi-valued mapping

U t F t e B Si i

p

i

p

i

t A

i

p

i
i i

( , , ) ( | ( ) | )

/ ( )

� � � � �

�

� � 	 � � 	
 � �
�1

e C
t A

i
i( )��

�,

(6)

where 0 	 	� t , ��R
q

, 	 
 � � �� � �0, i i i i , S
pi

is a ball of radius 1 centered at zero of the space R
pi

.

LEMMA 1. The inclusion 0� �U ti ( , , )� � 	 holds for all i t, , , ,� � 	 such that 0 	 	 �� �t R
q

, and 	 � 0.

Proof. Consider the multi-valued mapping (6) for 	 � 0. Then

U t F t e B S e Ci i i

t A

i

p

i

t A

i
i i i

( , , ) | ( ) |

( ) ( )

� � � �

� �

� � � � � �
� �

0 �.

In view of Assumption 1 we get � � � � �
� �

i

t A

i i

t A

i ie C e B F ti i( ) ( )

( )

� �

� � , whence

U t F t e B S e Bi i i

t A

i

p

i

t A

i
i i i

( , , ) | ( ) |

( ) ( )

� � � �

� �

� � � � � �
� �

0 F ti ( )�� �

�

� �

�

�

�

�

�

�

�
�

| ( ) |

( )

| ( ) |

( )

F t e B S
F t

F t
i i

t A

i

p i

i

i i
� � �

� �

� �

�

�

�

�

� �

� �

�

�

�

�

�

if

if

F t

F t

i

i

( ) ,

{ } ( ) .

� �

� �

0

0 0

From F t Ri

pi
( )� �� � and

F t

F t
S

i

i

pi
( )

| ( ) |

�

�

�

� �

� �

it is seen that 0 0� �U ti ( , , )� � for all 0 	 	� t and ��R
q

.

It is easy to verify that for 
 i � 0 the multi-valued mapping (6) monotonically increases in the parameter 	 � 0, i.e.,

f rom 	 	
1 2

� the inclusion U ti ( , , )�� � 	
2

� �U ti ( , , )� � 	
1

fol lows. As a resul t , we obtain that

0 0� � � �U t U ti i( , , ) ( , , )� � � � 	 for all 	 � 0, 0 	 	� t and ��R
q

.

The lemma is proved.

LEMMA 2. If � i

t t A

i ie z Mi i( )�

 

1

, where z R t ti

n

i
i

� 	 	, 0 , then the function

	 � � 	 	 �i i i i i

t t A

i it t t z M e z Ui i
( , , , ) max : ( ) (

( )

� � � � � !

�

{ 0

1

t � �"� � 	, , ) }, (7)

defined as a resolving one for the ith pursuer, is upper semicontinuous with respect to the variables � and �, where

t ti 	 	� and ��R
q

.

Proof. Let us show the correctness of the definition of function (7). To this end, we will consider the multi-valued

mappings 	 �( )

( )

M e zi i

t t A

i
i i1

�

�

and U ti ( , , )�� � 	 as the mappings dependent only on 	 by fixing the other variables. For

brevity, we introduce the notation K M e zi i i

t t A

i
i i

( ) ( )

( )

	 	 �� �

�1

, U U ti i( ) ( , , )	 � � 	� � and Q K Ui i i( ) ( ) ( )	 	 	� ! . Let

us show that the domain of definition of the multi-valued mapping Qi ( )	 , i.e., dom { }Q Qi i� �"	 	: ( ) , is a nonempty

compact set.
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First, let us show the boundedness of domQi . To this end, suppose by contradiction that there exists a sequence

	 n iQ�dom such that 	 n ��� as n ��. By Theorem 1.1 from [7] we obtain that Qi ( )	 �" if and only if the inequality

min ( ( ) ( ))

| |

( ) ( )

�

	 	
� �

�

� � �

1

0W WU Ki i

holds, where ��Li . Hence, from the properties of support function [37] and the specific form of multi-valued

mappings K i ( )	 and Ui ( )	 we get

(| ( ) | ) ( )

/

( )

F t Wi

p

i

p

e B Si

t Ai
i

pi
� �

�
� � 	
 �

�
�

1

� � � �

�

� �

�
( , ) ( )

( )

( )

� � � 	 �
�

�
i

t A

i e z M
e C Wi

i

t ti Ai
i i

1

0 (8)

for all � �, | | �1. According to Lemma 1, for all � �, | | �1, the inequality

(| ( ) | ) ( ) (

/ ( )

( )

F t W ei

p

i

p

e B S i

t A

i

t Ai
i

pi
� � �

�

�

� � 	
 � �
�

�

�

1 i Ci � �, ) � 0

holds. Therefore, if W
i

t ti Ai
i ie z M� �

�
� �

�
�

( )

( )
1

0 , then inequality (8) holds for all 	 � 0. It remains to consider the case

where W
i

t ti Ai
i ie z M� �

�
� �

�
�

( )

( )
1

0. From the fact that � i

t t A

i ie z Mi i( )�

 

1

and M i

1

is a convex compact set, we obtain

that the set

#i i e z M
L W

i

t ti Ai
i i

� � � � �

� �

�
{ }� � �

�
: | | , ( )

( )

1 0
1

is nonempty. Then there exists � from #i such that inequality (8) does not hold beginning with some 	 � 0, which

contradicts the assumption. Hence, the set domQi is bounded.

It remains to show that domQi is closed. Since the multi-valued mappings Ui ( )	 and K i ( )	 for all 	 � 0 are

compact-valued and continuous, their support functions WU i ( )

( )

	
� and WKi ( )

( )

	
�� are also continuous for all 	 � 0 and

��#i [37]. Therefore, the function � 	i ( )� � �

�

min [ ( ) ( )]

| |

( ) ( )

�

	 	
� �

1

W WU Ki i
is also continuous in 	 	, � 0. Hence

dom { }Qi i� �	 � 	: ( ) 0 is closed, which completes the proof of its compactness.

If domQi is a compact set from [ , )0 �� , then there exists its greatest element; we will take it as the function

	 � �i i it t t z( , , , )� � and will show that this function is upper semicontinuous in the variables � and � , where t ti 	 	� ,

��R
q

.

As is known from [8, 17], if a function g x y( , ) is continuous on the product of compact sets X Yand , which are

subsets of some finite-dimensional Euclidean spaces, then the nonempty multi-valued mapping N x y Y( ) :� �{ g x y( , ) � 0}

for all x X� is upper semicontinuous on X .

Hence, the continuity of the function

� 	 � � �

�

� � 	
	

i i i U t M
t t t z W W

i
i

( , , , , ) min [ ( )

| |

( , , )

(

� � � �

�

�

1

1

�

�
�

�
�

i

t ti Ai
ie z

( )

)

( )]

in the variables 	 �, , and �, where 	 � �� 	 	 �0, ,t t Ri

q
, yields that the multi-valued mapping

Q t t t z Q t t t zi i i i i i i( , , , ) : ( , , , , )� � � � � � �� � 	 � 	 � �dom { }0

is upper semicontinuous in the variables � and �. From here and from the fact that Q t t t zi i i( , , , )� �� � is a

compact-valued mapping, we can easily obtain that the function 	 � � � �i i i i i it t t z Q t t t z( , , , ) max ( , , , )� � � � � is also

upper semicontinuous in � and � , where t ti 	 	� and ��R
q

.

The lemma is proved.

3.2. Resolving Function for Case (b). Let � � �i i� for i k�1

1

, , � � �i i� for i k k� �1

1 2

, , and � � �i i� for

i k m� �
2

1, . In this case, as is told in Sec. 2, to solve the pursuit problem, it will suffice that pursuers with the indices from 1

to k
2

participate.

As in case (a), a multi-valued mapping (6) is introduced, but with a modification where the constant 
 � � �i i i� � for

i k�1

1

, and 
 i � 0 for i k k� �
1 2

1, .
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It can be easily verified that Lemma 1 is also true in this case. Therefore, similarly to Lemma 2 we can prove the

following statement.

LEMMA 3. If � i

tA

i ie z Mi 0 1

 , where z R ti

ni0

0� �, , then the function

	 � � 	 	 � � �i i i i

tA

i it t z M e z U ti
( , , , ) max : ( ) ( , ,� � � � ! �

0 1 0

0{ 	 ) �"}

defined as resolving one for the ith pursuer, where i k�1

2

, , is upper semicontinuous in the variables � and � when

0 	 	 �� �t R
q

, .

For i k m� �1

2

, we assume that 	 � �i it t z( , , , )� $

0

0.

4. THEOREM ON THE POSSIBILITY OF TERMINATING

THE PURSUIT FOR CASE (a)

Let Assumptions 1 and 2 be satisfied. For case (a) � is represented as (5) and for each ith pursuer the appropriate

resolving function 	 � �i i it t t z( , , , )� � , upper semicontinuous in � and �, is constructed. Now we use this resolving function

to introduce the function

%i i i
t t

i i it t z t t t z

i i

( , , ) inf ( , , ( ),

( ) [ , ]

� � � �

� �

1

� �
�

	 � � � ) ,d t ti

t

t

i

� 0 	 	



,

where V t t d
i

i

i

p

i

t

t

�
� � � � �[ , ] ( ) : | ( ) |� � 	

�

�

�

�

�

�

�

�

�

�



, t i is a fixed time, z Ri

ni
� . Let T T t zi i i i� ( , ) be the first positive root of

the equation %i i it t z( , , ) � 0 with respect to t . If there is no such root, we assume that Ti � �.

Assumption 3 (for case (a)). For each i there exists a continuous mapping T R Ri

ni*

: [ , )0

1

�� � � such that

T t z T t zi i i i i i( , ) ( , )

*

	 and T t zi i i

*

( , ) � �.

THEOREM 1. If Assumptions 1, 2, and 3 are satisfied for the initial position z
0

, then in game (1) with constraints

(2) and (3) in case (a) the pursuit can be terminated in a finite time T T z� ( )

0

.

We will prove Theorem 1 in four steps.

4.1. The Structure of the Strategy. For fixed t i and zi let us introduce the set

Ì T m M T t T z m ei i i i i i i i i i i

T1 1 1 1

( , ) { : ( , , , )(

(

� � � � � �� � 	 � � �
i i it A

iz
� )

)

� � � � �

�

( | ( ) | ( , , , ) )

/
(

F T T t T z e Bi i

p

i i i i i i

p

i

Ti
� � 	 � � 
 �

�

1

i

p

i

T A

iS e Ci i i
�

�

� �
�( )

},

where t T T T z ti i i i i i	 	 �� , ( , ) and i m�1, . From the upper semicontinuity of the function 	 � �i i i i iT t T z( , , , )� � with

respect to ( , )� � it follows that the multi-valued mappings

	 � � �i i i i i i i

T t A

iT t T z M e zi i i
( , , , )( )

( )

� � �

�1

,

(| ( ) | ( , , , ) )

/ ( )

F T T t T z e Bi i

p

i i i i i i

p

i

T

i
i

� � � �

�

� � 	 � � 
 �
�1

S e C
p

i

T A

i
i i i
�

�

� �
�( )

are upper semicontinuous with respect to ( , )� � . By Lemma 1.7.5 from [38], the intersection of these sets M Ti i

1

( , )�� �

is Borel measurable from ( , )� � . Hence, there exists a single-valued Borel measurable branch

m T M Ti i i i

1 1

( , ) ( , )� � �� � � � (Lemma 1.7.7. [38]). Then the inclusion follows from the definition of resolving function (7)

	 � � � � � �i i i i i i i i

T t A

i iT t T z m T e zi i i
( , , , )( ( , ) )

( )

� � � � �

�1

e C
T A

i
i i( )��

�

� � � � �

�

(| ( ) | ( , , , ) )

/ ( )

F T T t T z e Bi i

p

i i i i i i

p

i

Ti
� � 	 � � 
 �

�1

i

p
S i

.
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Since all the conditions of Filippov–Casten Theorem 1.7.10 [38, 39] are satisfied, there exists a Borel measurable

single-valued branch � ( , )u Ti i �� � from S
pi

such that

	 � � � � � �i i i i i i i i

T t A

i iT t T z m T e zi i i
( , , , )( ( , ) )

( )

� � � � �

�1

e C
T A

i
i i( )��

�

� � � � �

�

(| ( ) | ( , , , ) )

/ ( )

F T T t T z e Bi i

p

i i i i i i

p

i

Ti
� � 	 � � 
 �

�1

i i iu T� ( , )�� � , (9)

where t T Ri i

q
	 	 �� �, . In view of the last equality in (9), it is possible to determine the strategy for the ith pursuer

in the form

u T F T T t T zi i i i

p

i i i i i i

p
( , ) (| ( ) | ( , , , ) )

/

� � � � � �� � � � 	 � � 

1

� ( , )u Ti i �� � , (10)

which is Borel measurable for t T Ri i

q
	 	 �� �, .

4.2. An Auxiliary Lemma. Lemma 4. If � i

T t A

i ie z Mi i i( ) *�

 

1

, z Ri

ni*

,� 0 	 	t Ti i , and the inequality

t

T

p

i

i

i

d



	| ( ) |� � � � holds for control � � �� ( ) , t Ti i	 	� , then the pursuit can be terminated from the point zi

*

for the ith

pursuer in time T ti i� , where T T t zi i i i� ( , )

*

is the first positive root of the equation %i i it t z( , , )

*

� 0 with respect to t.

Proof. Let us introduce the control function

%i i i i i i i i

t

t

t t z T t T z d

i

* * *

( , , ( ), ) ( , , ( ), )� 	 � � � �� � � � �



1 ,

where � � � �� 	 	( ), t ti , is the control of the evader for which the inequality | ( ) |� � � �
p

i

t

t

d

i

	



holds. It is obvious

that %i i i it t z
* *

( , , ( ), )� � �1 and the function %i i it t z
* *

( , , ( ), )� � in the variable t t t Ti i, 	 	 is uniformly continuous and

monotonically nonincreasing. From here and from Assumption 3 it follows that there exists time t t t Ti i i i

* *

, � 	 , such

that

%i i i it t z
* * *

( , , ( ), )� � � 0 (11)

and %i i it t z
* *

( , , ( ), )� � � 0 for all t, where t t ti i	 �

*

.

Then we prescribe to the ith pursuer in the time interval [ , ]t Ti i to implement strategy (10) in the form

u Ti i( , ( ))�� � � � � � � �( | ( ) ( ) | ( , , ( ), ) ) �

* * /

F T T t T z ui i

p

i i i i i i

p
� � � 	 � � � 


1

i iT( , ( ))�� � � ,

(12)

where

	 � � �
	 � � �

i i i i i
i i i i iT t T z

T t T z
* *

*

( , , ( ), )

( , , ( ), )

� � �

� � when

when

t t t

t t T

i i

i i

	 	

� 	

�

�

�

*

*

,

.0

The superposition of a Borel and a Lebesgue measurable functions is known to be Lebesgue measurable [40].

Therefore, the control of the ith pursuer (12) is also Lebesgue measurable for the arbitrary admissible control of the evader

� � �( ), t Ti i	 	 .

Let now the evader choose control �
�

( ) [ , ]� �V t T
i i i , and the pursuer implement the strategy corresponding to control (12).

Then for the equation

� ( , ( )) ( ), ( )

*

z A z B u T C z z ti i i i i i i i i i� � � � �� � � � �

the Cauchy formula

z t e z e B u T Ci

t t A

i

t A

i i i i
i i i

( ) ( ( , ( )) ( )

( ) * ( )

� � � �

� ��
� � � � � )d

t

t

i

�



is true. From here, for the time T T t zi i i i� ( , )

*

in view of Eq. (9) and the form of the control of the pursuer (12) we
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find

� �i i i i

T t A

iz T e zi i i
( )

( ) *

� �

�

	 � � � � � � �i i i i i i i i

T t A
T t T z m T e i i

( , , ( ), )( ( , ( ))

* ( )

� � � �

�1 i

i

i

z di

t

t

*

)

*

�



� � � �

�

�



� 	 � � � �i

T t A

i i i i i i

t

t

e z T t T z di i i

i

i

( ) * *

( , , ( ), )

*

1

�

�

�

�

�

�

�

�

�

� � � �



	 � � � � � � �i i i i i i i

t

t

T t T z m T d

i

i

( , , ( ), ) ( , ( ))

*

*

1

.

Since %i i i it t z
* * *

( , , ( ), )� � � 0, from the Satimov lemma [15] we obtain

� 	 � � � � � � �i i i i i i i i i i

t

z T T t T z m T d

i

( ) ( , , ( ), ) ( , ( ))

*

� � � �

1

ti

*



� � � �



M T t T z d Mi i i i i i i

t

t

i

i

1 1

	 � � � �( , , ( ), )

*

*

or z T Mi i i( )� .

It now remains to show that the selected control u Ti i( , ( ))�� � � , t Ti i	 	� , is admissible. By the definition of � i we

have

t

T

i i

p

i

V t T
t

T

i

i

i

i i
i

i

F T d F

 


� 	

� �

| ( ) ( ) | sup |

( ) [ , ]

� � � � �

�
1

( ) ( ) | ( , )T d T ti

p

i i i i i i� � 	� � � � � � � � .

Then from (12) by choosing the control of the pursuer and from Eq. (11) we find that

| ( , ( )) | | ( ) ( ) |u T d F T di i

p

i i

p

t

T

t

T

i

i

i

i

� 	 �




� � � � � � � �

� � � 	 � �




 	 � � � � � � 
 �i

t

t

i i i i i i i i i

i

i

T t T z d

*

( , , ( ), )

*

,

as was to be shown.

Let T T t zi i i i� ( , )

*

be the first instant of time when � i

T t A

i ie z Mi i i( ) *�

�

1

and | ( ) |� � � �
p

i

t

T

d

i

i

	



. In this case, for the

ith pursuer in the time interval t Ti i	 	� it will suffice to implement control (12) on the assumption that

	 � � �i i i i iT t T z
* *

( , , ( ), )� � $ 0 on [ , ]t Ti i . Then it is easy to verify that game (1) will be completed in time T ti i� from the

point zi

*

by the ith pursuer.

The lemma is proved.

4.3. The Main Part of the Proof. Consider the differential game (1) for i �1:

� , ( )z A z B u C z z
1 1 1 1 1 1 1

1

0

0� � � �� .

(13)

By Assumption 3, there exists a finite solution T T z
1 1

1

0

� ( ) of the equation %
1 1

1

0

0( , , )t t z � , where t
1

0� . It is

assumed that �
1

1

0

1

1

1e z M
tA

 for t T�[ , ]0

1

.

Let � �� �( ) be an arbitrary admissible function of the evader. Then two cases are possible for the control

� � �( ), 0

1

	 	T :

(i) | ( ) |� � � �
p

T

d 	


 1

0

1

; (ii) | ( ) |� � � �
p

T

d �


 1

0

1

.

In case (i) by Lemma 4 the first pursuer in differential game (13) completes the pursuit in time T T z
1 1

1

0

� ( ) from the

point z
1

0

by applying control (12) for i �1. Hence, game (1) from the point z
0

will also be completed in time

T z T z( ) ( )

0

1

1

0

� .
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In case (ii) there exists time t T
2 1

� such that | ( ) |� � � �
p

t

d �


 1

0

2

. Till the moment t
2

, the first pursuer can use control (12)

for i �1. However, from this point t
2

from the position

z z t e z e C d
t A t A

t

2 2 2

2

0

0

2

2 2

2

2 2*

( )

( ) ( )� � �




��
� � �

the second pursuer starts constructing the control, for which we assumed till the time t
2

that u
2

0( )� $ . Then all the

procedure of pursuit repeats for the second pursuer, like for the first pursuer. For the control � � �� ( ) , when

t T
2 2

	 	� , where T T t z
2 2 2 2

� ( , )

*

is the first positive root of the equation %
2 2 2

0( , , )

*

t t z � , the following two cases

are possible:

(i&) | ( ) |� � � �
p

t

T

d 	


 2

2

2

; (ii&) | ( ) |� � � �
p

t

T

d �


 2

2

2

.

In case (i&) by Lemma 4 the second pursuer from the point z
2

*

completes the pursuit in time T t
2 2

� . Then game (1)

from the point z
0

is completed in time T z T t z( ) ( , )

*0

2 2 2

� by the second pursuer.

In case (ii&), there exists a time t T
3 2

� such that | ( ) |� � � �
p

t

t

d �


 2

2

3

. As above, from the time t
3

from the position

z z t e z
t A

3 3 3

3

0

3 3

*

( )� � � e C d
t A

t

( )

( )

3 3

3

3

0

�




�
� � � similarly to the first two pursuers, the third pursuer, for which we assume till

the time t
3

that u
3

0( )� $ , starts to implement the strategy, etc.

Thus, implementing in turn their controls u u um1 2 1 1

, � �
�

� , the pursuers can complete game (1) from the initial

position z
0

till the m�1th step in time T z T t zi i i( ) ( , )

*0

� , where 1 1	 	 �i m and z z
1

1

0*

� . The last statement for i � 3 can be

proved in the same way as for i �1 2, .

If the pursuit is not terminated from the initial position z
0

till the (m�1)th step, there will become a time t Tm m�
�1

such that | ( ) |� � � �
p

m

t

t

d

m

m

�
�

�


 1

1

, and the mth pursuer starts to implement control (12) from the point

z z t e z e C dm m m

t A

m

t A

m

t

m m m m

m

* ( )

( ) ( )� � �

�




0

0

�
� � � for i m� , and control u T t Tm m m m( , ( )),� 	 	� � � � , is applied until

| ( ) |� � � �
p

m

t

T

d

m

m

	



, where T T t zm m m m� ( , )

*

is the first positive root of the equation %m m mt t z( , , )

*

� 0. Since

� � � �m m� � � �
�

( )

1 1

� and it is the last part of the evader’s resource, we obtain for arbitrary � � �( ), t Tm m	 	 , that

| ( ) | | ( ) | | ( ) | | ( ) |� � � � � � � � � � � � �
p p p p

t

t

d d d d

m

m

	 � � � �

�



�

1

t

tt

t

T

m

m

m

2

32

0






�

�

�

�

�

�

�

�

�

�

� � .

Therefore, in view of Lemma 4, it takes time T tm m� for the mth pursuer from the position zm

*

till the time of the

pursuit termination. Hence, game (1) with constraints (2), (3) from the point z
0

is also completed in time

T z T t zm m m( ) ( , )

*0

� .

Note that the point zm

*

depends on the choice of the admissible control � � �� ( ) , 0 	 	� tm , and thus the function

T T t zm m m m� ( , )

*

also depends on this control.

4.4. End of the Proof or Boundedness of the Function T t zm m m( , )
*

. The boundedness of the functions

T t z T t zm m m2 2 2 1 1 1

( , ),... , ( , )

* *

� � �

yields the boundedness of T t zm m m( , )

*

. First, let us show the boundedness of the function

T t z
2 2 2

( , )

*

.
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By the Cauchy–Bunyakovskii inequality and the matrix inequality | | ||

|| ||

e e
At A

t

	 for z z t t2 2 2

2

*

( , ( ))� �� , where

� � � �t t
2

0

2

( ) ( ) :� � 	 	{ }, we get

| | [ | | | | | | ] (| |

* || || || ||

z e z C t e z
A t p A T

2

2

0

2 2 2

2

0

2 2 2 1

	 � �� � | | | | )C T
p

2 1 2

� ,

which shows that the position of z
2

*

is bounded. The last inequality is obtained from the condition t T
2 1

� , where

T T z
1 1

1

0

� ( ) . In view of Assumption 3 there exists function T t z
2 2 2

* *

( , ), continuous in ( , )

*

t z
2 2

such that T t z
2 2 2

( , )

*

	T t z
2 2 2

* *

( , ) . For the function T t z
2 2 2

* *

( , ) on [ , ]0

1 2

T Q� , where Q z z e z
A T

2 2 2

2

0

2 1

� 	 �{

* * || ||

: | | (| | | | | | )C T
p

2 1 2

� }, there

exists the greatest value T
2

*

. From here the boundedness of the function T t z
2 2 2

( , )

*

follows.

The boundedness of T t z
3 3 3

( , )

*

follows from the boundedness of T
2

, etc. Finally, we obtain the boundedness of the

function T t zm m m( , )

*

. Thus, the time of the completion of the differential game (1) T z( )

0

is bounded from above.

Theorem 1 is proved.

Remark 1. For each i we assumed that � i

t t A

i ie z Mi i( ) *�

 

1

for t t i� . If now for some i i m, ,�1 , there exists the first

instant of time T T t zi i i i� ( , )

*

such that � i

T t A

i ie z Mi i i( ) *�

�

1

and %i i it t z( , , )

*

� 0 for all t , t t Ti i	 � , then, as is mentioned

at the end of the proof of Lemma 4, in this case it is also possible in game (1) to terminate the group pursuit from the

position z
0

in time T z T t zi i i( ) ( , )

*0

� by the ith pursuer.

5. THEOREM ON THE POSSIBILITY OF TERMINATING

THE PURSUIT IN CASE (b)

In Sec. 3.2 we have defined the resolving function 	 � �i it t z( , , , )�

0

, upper semicontinuous in � �, 0 	 	 t, and ��R
q

.

Now we will use it to introduce the function

%( , ) – inf max ( , , ( ),

( ) [ , ]
,

t z t t z
V t i k

i i

0

0
1

1

2

� �

� �
�

� �

	 � � �
0

0

)d

t

�



,

where V t d
p

t

�
� � � � �[ , ] ( ) : | ( ) |0

0

� � 	

�

�

�

�

�

�

�

�

�

�



, and for i k m� �

2

1, assume 	 i $ 0. Let
& � &T T z( )

0

be the first positive root

of the equation %( , )t z
0

0� ; if there is no such root, we assume
& � � �T z( )

0

.

Assumption 4 (for case (b)). Let for the position z
0

there exist a finite time
& � &T T z( )

0

.

THEOREM 2. If Assumptions 1, 2, and 4 are satisfied, then from the position z
0

in game (1) with constraints (2), (3)

in case (b) the pursuit can be ended in time
& � &T T z( )

0

.

Proof. Let Assumptions 1, 2, and 4 be satisfied for some position z
0

. Let us consider the control function

%

*

,

( , , , ( )) max ( , , ( ), )
& � � � & & �

�

T t z T T z d

i k

i i

0

1

0

1

2

� 	 � � � �

0

t



,

where � �� �( ) is an arbitrary admissible control of the evader. It is obvious that %

*

( , , , ( ))
& � �T z0 1

0

� and the function

%

*

( , , , ( ))
& �T t z

0

� is continuous in t , 0 	 	 &t T . By Assumption 4, there exists an instant of time t
*

such that t T
*

	 &

and %

* *

( , , , ( ))
& � �T t z

0

0� . In this case, %

*

( , , , ( ))
& � �T t z

0

0� for all t , 0 	 �t t
*

.

Now consider the multi-valued mapping

M T m M T T z m ei i i i i i i

T Ai1 1 1 0 1

( , ) : ( , , , )(
& � � � & & � �� � 	 � � �{

'
z i

0

)

� & � � & & �

�

(| ( ) | ( , , , ) )

/ ( )

F T T T z e Bi

p

i i i

p

i

T Ai
� � 	 � � 
 �

�0 1 '

i

p

i

T A

iS e Ci i
�

�

� �
�( )'

},
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for fixed z i ki

0

2

1, ,� , and
& � &T T z( )

0

. Like in the proof of Theorem 1, the multi-valued mapping M Ti

1

( , )
& �� � is

measurable in ( , )� � , where 0 	 	 & �� �T R
q

, . Hence, there exists a single-valued Borel measurable branch

m T M Ti i

1 1

( , ) ( , )
& � � & �� � � � (Lemma 1.7.7 [38]). By Lemma 3, the inclusion holds

	 � � � � � �
�

i i i i

T A

i i

T
T T z m T e z ei

( , , , )( ( , ) )

' (

& & � & � � �

�0 1 0 ' )A

i
i C �

� & � � & & �

�

( | ( ) | ( , , , ) )

/ ( )

F T T T z e Bi

p

i i i

p

i

T Ai
� � 	 � � 
 �

�0 1 '

i

p
S i

.

Since the functions 	 � �i iT T z( , , , )
& & �

0

, i k�1

2

, , and mi ( , )� � are Borel measurable in ( , )� � , by the Filippov–Casten

Theorem 1.7.10 [38, 39] the equation

	 � � � � � �
�

i i i i

T A

i i

T
T T z m T e z ei

( , , , )( ( , ) )

(

& & � & � � �

�0 1 0' ' )A

i
i C �

� & � � & & �

�

(| ( ) | ( , , , ) )

/ ( )

F T T T z e Bi

p

i i i

p

i

T Ai
� � 	 � � 
 �

�0 1 '

i iu� (14)

is uniquely solvable in the class of Borel measurable functions. Denote this solution by � ( , )u Ti
& �� � , where

� ( , )u T Si

pi
& � �� � for 0 	 	 & �� �T R

q
, .

During the game, for the admissible control of the evader � �( ) , 0 	 	 &� T , the pursuers should implement the

strategies u Ti ( , )
& �� � , 0 	 	 &� T , i k�1

2

, , in the form of Lebesgue measurable controls

u T F Ti i

p
( , ( )) (| ( ) ( ) |
& � � & �� � � � � �

� & & � & �	 � � � 
 � �i i i

p

iT T z u T
* /

( , , ( ), ) ) � ( , )

0 1

, (15)

where

	 � � �
	 � � �

i i
i iT T z

T T z t t
*

( , , ( ), )

( , , ( ), )

& & � �

& & � 	 	
0

0

0for

*

*

,

.0 for t t T� 	 &

�

�

�

Let us show that the proposed control ui ( , ( ))� � � , 0 	 	 &� T , allows completing the pursuit for the arbitrary admissible

control � � �� ( ) , 0 	 	 &� T , in time
& � &T T z( )

0

. To this end, we consider the Cauchy problem

� ( , ( )) ( ), ( )z A z B u T C z zi i i i i i i i� � & � � �� � � � � 0

0

,

for each i k�1

2

, . Then based on the Cauchy formula we get

z T e z e B u T C di

T A

i

T A

i i i
i i

( ) [ ( , ( )) ( )]

( )

& � � & � �

�' '0 �
� � � � � �

0

T '



.

From (14) and (15) we find

� � � � � �
�

i i i

T A

i i

T A

i i iz T e z e B u T Ci i
( ) [ ( , ( ))

( )

& � � & � �

�' '0

� � �( )]d

T

0

'




� � & & � & � �� 	 � � � � � � �i

T A

i i i i ie z T T z m Ti' 0 0 1

( , , ( ), )( ( , ( )) e z d
T A

i

t

i' 0

0

)

*

�



� � & & �

�

�

�

�

�

�

�

�

�

�



� 	 � � � �i

T A

i

t

i ie z T T z di' 0

0

0

1

*

( , , ( ), ) � & & � & �



	 � � � � � � �i

t

i iT T z m T d

0

0 1

*

( , , ( ), ) ( , ( )) .

But for t
*

there exists i
0

from 1

2

, k such that 	 � � � �
i i

t

T T z d
0

0

0

0

1( , , ( ), )

*

& & � �



. Indeed, if we suppose the opposite,

then the inequality 1 0

0

0

� & & � �



	 � � � �i i

t

T t z d( , , ( ), )

*

should hold for all i k�1

2

, , which yields

min ( , , ( ), )

,

*

i k

t

i iT T z d

�

� & & �

�

�

�

�

�

�

�

�

�

�

� �




1

0

0

2

1 1	 � � � � max ( , , ( ), )

,

*

i k

i i

t

T T z d

�

& & � �




1

0

0

2

0	 � � � � .
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However, this contradicts the fact that %

* *

( , , ( ), )
& � �T t zi�

0

0; therefore, for i
0

we obtain

� � 	 � � � �
i i i

TA

i i i
z T e z T T z di

0 0 0

0

0

0

0

0 0

0

1( ) ( , , ( ), )
& � � & & �

t
*




�

�

�

�

�

�

�

�

�

�

� & & � & �



	 � � � � � � �

i i i

t

T T z m T d
0

0 0

0 1

0

( , , ( ), ) ( , ( ))

*

� & & � & �



	 � � � � � � �

i i i

t

T T z m T d
0

0 0

0 1

0

( , , ( ), ) ( , ( ))

*

� & & � � & & �	 � � � � 	 � � �
i i i i i

T T z M d M T T
0

0 0 0

0

0 1 1

( , , ( ), ) ( , , ( ), )

**
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& � . Thus, game (1) from the initial position z

0

in case (b) is completed in time
& � &T T z( )

0

.

It remains to show the admissibility of the control u u Ti i� & �( , ( ))� � � , 0 	 	 &� T . Since by construction for all

i k�1

2

,

| ( , ( )) | | ( ) ( ) | ( ,

*
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p

i

p

i i

t

& � � & � � & &



� � � � � � � � 
 	

0

T z di

TT

�
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0

00

''

,

the easily checked inequalities

| ( ) ( ) |F T di

p

i

T

& � 	



� � � � ��

0

'

,

0

0

1

t

i iT T z d

*
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& & � 		 � � � �

yield the inequality | ( , ( )) |u T di

p

i i

T

& � 	 �



� � � � �� 


0

'

. Since the constant 
 � ��i i i� � for i k�1

1

, and 
 �i i�

� ��� i 0 for i k k� �
1 2

1, , we arrive at the inequality | ( , ( )) |ui

p

i

T

� � � �	



0

'

for all i k�1

2

, .

Theorem 2 is proved completely.

Remark 2. If for some i
0

and z
i
0

0

there exists a time
& � &T T z
i i
0

0

0

( ) such that �
i

T A

i i
e z Mi i

0

0 0

0 0

0 1

'

� and %( , )t z
i

0

0

0�

for all 0
0

	 	t T
i

'
, the i

0

th pursuer, constructing the control u u T
i i i
0 0 0

� �( , ( ))

'
� � � , 0

0

0

	 	 &� T z
i

( ), like in (15), assuming

that 	 � �
i i iT T z
0 0

0

0

*

( , , , )
& � $

'
on [ , ( )]0

0

0

&T z
i

, completes game (1) from the point z
0

in time
& � & � &T T z T z

i
( ) ( )

0

0 0

.
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